

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://dx.doi.org/10.1007/s10732-011-9185-z

http://hdl.handle.net/10251/58853

Springer Verlag

García-Archilla, B.; Lozano, AJ.; Mesa, JA.; Perea Rojas Marcos, F. (2011). GRASP
algorithms for the robust railway network design problem. Journal of Heuristics. 19(2):399-
422. doi:10.1007/s10732-011-9185-z.

GRASP Algorithms for the Robust Railway Network Design

Problem

Bosco Garćıa-Archilla, Antonio J. Lozano , Juan A. Mesa, Federico Perea

March 16, 2011

Abstract

This paper analyzes the solvability of a railway network design problem and its robust

version. These problems are modeled as integer linear programming problems with binary

variables, and their solutions provide topological railway networks maximizing the trip cov-

erage in the presence of a competing mode, both assuming that the network works fine and

that links can fail, respectively. Since these problems are computationally intractable for

realistic sizes, GRASP heuristics are proposed for finding good feasible solutions. The results

obtained in a computational experience indicate that our GRASP algorithms are suitable for

railway network design problems.

Keywords: Transportation Robustness Heuristics

1 Introduction

Increasing mobility, longer trips due to house spreading, and traffic congestion in entrances

to cities, are some of the reasons why many metropolitan areas are planning, constructing

or extending railway systems. The investment in the construction or extension of a Railway

Network (RN) (which consists of selecting a set of stations and the links joining them) is

justified by the savings in travel times and energy, and by the considerable reduction of

pollution that trains generate with respect to buses or cars. Due to the high construction

cost of a RN, it is important to pay attention to issues affecting effectiveness and robustness

when planning new lines. Since railway networks do not always work as expected, due to

uncertainty in the input data, climatological events, or even intentional attacks, the RN to

be designed should be not only effective but also “robust”. Borrowing from [6] robustness

can be defined as the degree to which a system or component can function correctly in the

presence of invalid inputs or stressful environmental conditions. In our context, a RN is said

to be robust when it maintains its functionality as well as possible when one of its links fails.

In this paper we introduce an Integer Linear Programming (ILP) model for the railway

1

1 INTRODUCTION 2

network design (RND) problem. Similar models have previously been posed in Laporte et

al. [7] and Laporte et al. [8], who design a set of railway lines to optimize a certain utility

function, and deal with the robustness of the resulting network. Maŕın and Garćıa-Ródenas

[9] go one step further and consider a model with a Logit function for the trip coverage,

instead of the previous all-or-nothing models. Since capacity constraints were not considered

in these papers, the resulting lines could not be completely defined because frequencies could

not be determined. Therefore a subsequent line planning step was needed. In Maŕın et al.

[11] an attempt to integrate both network design and line planning steps is proposed.

The main difference of the previously cited models with respect to the one presented in

this paper is that they were thought to design a set of lines, unlike the one in this paper

which only designs a topological network, i.e., stations and links joining the stations. The

reason why we choose this simplification is that the models presented in [7] and [8] were far

too complex. They could hardly handle toy instances made of 10 possible stations. Besides,

as mentioned before, the lines designed were not completely defined and the line planning

phase was needed anyway. With this simplified model, in which several sets of variables and

constraints have been reduced or eliminated with respect to those in [8] and [7], instances

constituted by up to 18 possible stations and all 18 · 17 = 306 origin-destination (O/D) pairs

have been solved to optimality in minutes. Besides this simplification, our new ILP model

makes use of, at most, 2-index variables, as opposed to the 4-index formulation of previously

cited models.

Thus, the model introduced in this paper only aims at designing the infrastructure net-

work, that is, the set of links and stations to be built, whereas the design of lines (together

with their frequencies) is to be done in the subsequent line planning phase. Line Planning

Problems (LPP) consists of determining the number of lines, their origins, itineraries and

destinations as well as the frequency of each one. Lines are selected from a line pool or as

paths of a infrastructure (or underlying) network and the objectives can be cost-oriented (e.g.

see [5]) and customers-oriented (e.g. see [15]).

Our RND problem can be schematically described from a set of feasible networks R, and a

utility function K : R → R, which assigns to each feasible network a measure to be optimized

such as total travel time, trip coverage, etc. Therefore, when the objective is to be maximized

(like trip coverage) our problem reduces to

max
r∈R

K(r).

In previous papers issues such as computational complexity or robustness of the RND

problem were addressed, but efficient algorithms were not proposed. Although some attempts

have been devoted for designing exact algorithms to solve similar problems, see for instance

Maŕın and Jaramillo [10] who apply Benders decomposition techniques, there is no exact

2 A RAILWAY NETWORK DESIGN PROBLEM 3

algorithm that can deal with real instances of our RND problem with the technology available.

Therefore, heuristics are needed in order to provide solutions in a reasonable amount of time.

As an example, the Route Generation Algorithm of Baaj and Mahmassani [1] is used by

Mauttone and Urquhart [12] in a certain transportation network design problem. Other

heuristics for similar problems are due to Nesmachnow et al. [14], who propose evolutionary

algorithms for certain communication network design problems.

In this paper we propose Greedy Randomized Adaptive Search Procedure (GRASP) al-

gorithms for our RND problem. GRASP algorithms have been widely used for solving large

scale optimization problems since the pioneering work by Feo and Resende [4]. An example

within the network design field is Cancela et al. [2], who propose a GRASP algorithm for

a telecommunication network design problem. In other fields, [13] successfully applied them

to Multi-Target Multi-Sensor Tracking problems and more recently, [3] proposed a GRASP

algorithm in order to obtain lower bounds for the manufacturing cell formation problem.

As a second step, in this paper we also address the robustness property of the RND

problem. We assume that any of the links can fail, and that the utility of the network

is adversely affected by such link failures. Let K(r, e) be the utility function of network

r ∈ R when link e ∈ r fails. Any link can fail but no more than one link can fail at the

same time. If the probability that link e fails is known and equal to γe, the construction

of a robust network is a probabilistic problem, named probabilistic railway network design

(PRND) problem, and can be solved by optimizing the expected utility under all possible

scenarios (no failure scenario and single link failure scenarios). This problem was originally

introduced in [8] and reduces to

max
r∈R

{(1 −
∑

e∈r

γe)K(r) +
∑

e∈r

γeK(r, e)} . (PRND) (1)

Despite the substantial computational time reduction thanks to the models we propose in

this paper, both RND and PRND problems are impossible to handle for realistic instances.

The rest of the paper is structured as follows. Section 2 introduces the Integer Linear

Programming (ILP) model that yields an optimal infrastructure network, and the GRASP to

be used is presented. Also the extension to the PRND model and the corresponding GRASP

algorithm are introduced. The results of some experiments are commented in Section 3. The

paper ends with some conclusions and a list of references.

2 A Railway Network Design problem

We begin this section by describing our railway network design problem in the presence of a

competing mode, which maximizes ridership assuming the whole network works as planned.

In our RND problem it is assumed that the mobility patterns in a metropolitan area

2 A RAILWAY NETWORK DESIGN PROBLEM 4

are known. This implies that the number of potential passengers traveling from each origin

to each destination is given. It is also assumed that the locations of potential stations are

known. In addition, there already exists a different mode of transportation (for example a

bus network) competing with the railway to be built. To decide which mode each demand

is allocated to, the travel times for both systems are compared in an all-or-nothing way:

a potential passenger will use the RN if and only if he/she finds the RN faster than the

competing transportation mode. The aim of the model is to design a network (i.e. to decide

at which nodes stations are to be located and which edges must be constructed) covering

as many passengers as possible, that is, a RN such that the number of passengers for which

using the RN is faster than the alternative competing mode is maximized. Since the resources

are limited there is also a budget constraint on the construction costs. The model uses the

following data and notation:

1. A set N = {1, 2, . . . , n} of potential sites for stations is given.

2. A set E = {e1, ..., em} ⊆ N × N of feasible (bidirectional) edges linking the elements

in N is known. Therefore, we consider the undirected graph G = (N,E), from which

edges are to be selected to form railway lines. For convenience, we sometimes use the

set of arcs of E, denoted by A = {a1, ..., a2m} ⊆ N ×N , and the corresponding directed

graph (N,A). For notation purposes we denote by as, at, es and et the origin and end

nodes of arc a ∈ A and edge e ∈ E, respectively. For the sake of notation, for any a ∈ A

and e ∈ E we define a′ = (at, as) and e′ = (et, es), respectively. The following relations

follow from these definitions:

(a) E = {a ∈ A : as < at},

(b) if e ∈ E then e′ /∈ E,

(c) A = E ∪ {e′ : e ∈ E}.

3. Every feasible arc a ∈ A has an associated length da which can typically be approxi-

mated by its Euclidean distance. However, forbidden regions between two stations such

as high mountains, rivers, natural parks, etc. may not allow the railway to take the

straight line between two points, and therefore distances may increase as a result. To

avoid this problem, da can also be interpreted as the time needed to traverse arc a ∈ A.

Note that, in general, da 6= da′ .

4. For each node i ∈ N and each edge e ∈ E there exists an associated cost of constructing

the corresponding infrastructures: ci is the cost of building a station at node i, ce is

the cost of building link e. A bound Cmax on the available budget is also given.

2 A RAILWAY NETWORK DESIGN PROBLEM 5

5. The ordered O/D pair set, also referred to as the set of demands, is W = {w1, ..., wν} ⊂

N ×N . For notation purposes, ws and wt denote the origin node and destination node

of O/D pair w, and w′ = (wt, ws) for each w ∈ W . The mobility pattern is given by

a matrix G = (gw)w∈W , where gw denotes the number of passengers going from ws to

wt, ∀ w = (ws, wt) ∈ W . The time needed to go from ws ∈ N to wt ∈ N by the

complementary mode is uCOM
w .

A typical example for our experiments is the following.

Example 2.1 Consider 9 possible stations and the set

E = {(1, 2), (1, 5), (2, 3), (2, 4), (2, 5), (3, 5), (4, 5),

(4, 7), (4, 8), (5, 6), (5, 7), (5, 9), (6, 8), (6, 9), (8, 9)},

as depicted in Figure 1. The construction costs associated to the stations are shown by the

1 2.686

2 2.534

3 3.078

42.785

5 3.027

6 2.753

72.497

8

2.508

9 3.958

Figure 1: Test Network.

corresponding node. The maximum budget was set to Cmax = 25.394.

The mobility patterns (number of trips between potential stations) are shown in matrix G.

2 A RAILWAY NETWORK DESIGN PROBLEM 6

G =




− 35 6 7 41 18 22 11 8

38 − 40 40 26 46 7 45 37

31 23 − 45 42 23 14 23 16

23 12 47 − 48 36 11 35 49

44 33 31 30 − 22 32 45 9

37 36 32 21 37 − 17 45 18

32 26 27 6 21 15 0 9 40

37 13 5 13 37 38 47 − 32

13 28 46 40 29 21 40 10 −




.

For this example, the travel times between nodes by the complementary mode (uCOM
w)

were set proportional to their Euclidean distances, whereas the travel times to traverse the

railway links were supposed to be half of the corresponding times by the complementary mode,

that is, da = uCOM
asat /2 ∀ a = (as, at) ∈ A (note that (as, at) can also be considered as an O/D

pair). This resulted in

uCOM
w =




0 1.506 2.544 3.226 2.722 3.902 5.278 5.002 6.482

1.506 0 1.04 3.364 1.602 2.748 5.484 4.23 5.386

2.544 1.04 0 3.866 1.42 2.264 5.902 4.006 4.806

3.226 3.364 3.866 0 2.652 3.06 2.128 2.764 4.7

2.722 1.602 1.42 2.652 0 1.186 4.572 2.666 3.812

3.902 2.748 2.264 3.06 1.186 0 4.586 1.838 2.638

5.278 5.484 5.902 2.128 4.572 4.586 0 3.396 5.212

5.002 4.23 4.006 2.764 2.666 1.838 3.396 0 1.956

6.482 5.386 4.806 4.7 3.812 2.638 5.212 1.956 0




and

{ d1,2 = 0.753, d1,5 = 1.361, d2,3 = 0.520, d2,4 = 1.682,

d2,5 = 0.801, d3,5 = 0.710, d4,5 = 1.326, d4,7 = 1.064,

d4,8 = 1.382, d5,6 = 0.593, d5,7 = 2.286, d5,9 = 1.906,

d6,8 = 0.919, d6,9 = 1.319, d8,9 = 0.978},

with da = da′ ∀ a ∈ A. Although in this example uCOM
w = uCOM

w′ ∀ w ∈ W : ws < wt, this is

not needed in our formulation.

The construction cost of each possible link is supposed to be equal to their Euclidean length.

A maximum budget according to the construction costs was chosen so that not all possible

links can be constructed (note that if we have a large enough budget the solution is trivial:

2 A RAILWAY NETWORK DESIGN PROBLEM 7

build the complete network). In this example Cmax = 25.394.

The variables of our RND model are:

• xa = 1 if arc a ∈ A is included in the RN, zero otherwise. We sometimes make use of

xe if we refer to an edge instead of an arc (note that E ⊂ A).

• yi = 1 if station i ∈ N is included in the RN, zero otherwise.

• fw
a = 1 if O/D pair w is assigned to the RN and use arc a ∈ A, zero otherwise.

• rw = 1, if O/D pair w is allocated to the RN, that is, if its fastest route in the RN takes

less time than the alternative mode uCOM
w ; zero otherwise.

• znf denotes the demand captured by the network. The subindex nf stands for no

failure, and is necessary to distinguish between this variable and those that will be

used when modeling the PRND problem.

The objective is to maximize the RN trip coverage (in the absence of failures), i.e., max-

imize

znf =
∑

w∈W

gwrw. (2)

The constraints of our model are grouped according to their aims. Note that for some of

them we make use of the standard big M technique in linear programming, where M is a

sufficiently large real number.

• Budget constraints ∑

e∈E

ce xe +
∑

i∈N

ciyi ≤ Cmax. (3)

• Alignment location constraints

xe ≤ yi, e ∈ E, i ∈ {es, et} (4)

xe = xe′ , e ∈ E. (5)

• Routing demand conservation constraints

∑

a∈A:ws=at

fw
a = 0, w ∈ W, (6)

∑

a∈A:ws=as

fw
a = rw, w ∈ W, (7)

∑

a∈A:wt=at

fw
a = rw, w ∈ W, (8)

2 A RAILWAY NETWORK DESIGN PROBLEM 8

∑

a∈A:wt=as

fw
a = 0, w ∈ W, (9)

∑

a∈A:k=at

fw
a −

∑

a∈A:k=as

fw
a = 0, ∀ k /∈ {ws, wt}, w ∈ W. (10)

• Location-Allocation constraints

fw
a + rw − 1 ≤ xa, a ∈ A, w ∈ W. (11)

• Splitting demand constraints

ε + uw − uCOM
w − M (1 − rw) ≤ 0, w ∈ W, (12)

where uw =
∑

a∈A daf
w
a + uCOM

w (1− rw) and ε > 0 is a small tolerance. Note that uw

is not a variable in our model, and is here defined for simplicity in writing constraints

(12) only.

• Binary constraints

xa, yi, fw
a , rw ∈ {0, 1}. (13)

Constraint (3) states that construction costs cannot exceed the budget, Cmax. Constraints (4)

ensure that an edge is included in the RN only if its endnodes are also selected. Constraints

(5) allow the constructed edges to be used in both directions. Constraints (6) to (10) are

flow conservation constraints for variables f . Constraints (11) make xa = 1 if a demand pair

assigned to the RN uses arc a. Note that, without those constraints, variables xa would not

be forced to be 1 if a passenger is to use the corresponding link in the railway network, and

nor would variables yi. Constraints (12) force variables rw to be zero if the travel time of the

demand pair w equals uCOM
w (note the importance of parameter ε to break ties). Note that

variable uw, the travel time of passengers going from ws to wt, is

uw =





∑
a∈A daf

w
a , if rw = 1 (the time via the RN)

uCOM
w , if rw = 0 (the time via the complementary mode)

Note that, in case the travel time by the railway is less than the travel time by the comple-

mentary mode, we automatically have that rw = 1, because of the objective function (2).

Also note that, if the objective function varies, we may have to complement constraints (12)

by adding a constraint that makes rw = 1 if the travel times via the RN are shorter than the

2 A RAILWAY NETWORK DESIGN PROBLEM 9

complementary mode uCOM , like:

−uw + uCOM
w − Mrw ≤ 0, w ∈ W.

For computational purposes, we have added the following cut to our model:

fw
a ≤ rw, ∀ w ∈ W, a ∈ A.

This cut showed a significant improvement in the computational times.

The total number of variables and constraints of this ILP problem is O(mν) and O(nν +

mν), respectively. This model can be used to optimize other utility functions, such as total

travel time or construction costs, by slightly changing it.

Example 2.2 The solution to the problem in Example 2.1 is shown in Figure 2. This network

maximizes the trip coverage, that is, maximizes the number of passengers that find the RN

more attractive than the complementary mode in terms of travel time. In this example znf =

1249. Note that nodes 7 and 9 remain isolated. This is due to the budget constraint.

1

2

3

4

5

6

7

8

9

Figure 2: Test Network.

Although the previous example was solved to optimality in around 2 seconds, such a compu-

tational time may grow to to 900 seconds when it comes to a 15-node toy example, and it is

2 A RAILWAY NETWORK DESIGN PROBLEM 10

untractable for realistic sizes (up to 100 possible stations and 200 possible links). In [8] it is

proven that the RND is NP-hard. Therefore the search for heuristics to find (good) feasible

solutions to real instances in an affordable amount of time applies. In the next section we

present the heuristic chosen in this paper: a GRASP algorithm.

2.1 GRASP for RND problems

GRASP is a methaheuristic algorithm applied to large combinatorial problems, which consists

of randomly adding elements to the problem’s solution set out of the set of k ∈ N elements

that individually yield the largest improvement in the objective function when added to the

previous solution. This procedure is repeated, and each of the (possibly) different obtained

solutions form a set of feasible solutions. The final solution chosen by GRASP is the best

out of the feasible solution set previously obtained.

It is common to try to improve the solutions generated by GRASP by means of a local

search procedure, in which the neighborhood of each such feasible solution is explored.

Our GRASP algorithm is divided into two phases, which are repeated imax times. At

each iteration i, we first construct a feasible solution in the construction phase. Such a phase

begins with a randomly chosen edge e0 ∈ E. In the next step, we find the k edges such that

when they are individually added to e0 the trip coverage is maximized and the cost of the

resulting network does not exceed Cmax. Out of those k edges, we randomly pick one, which

will be added to e0. Next we add one more edge to the previously chosen two edges in the

same manner. We keep doing this until no more edges can be added without violating the

budget constraint. Let FN i be the network obtained. After this, the improvement phase

begins. Such a phase, which is a local search algorithm, aims at finding a feasible network

in the neighborhood of FN i with a higher trip coverage. To do this, pick one edge of FN i,

say ẽ, and remove it. Choose the edge not in FN i such that when it is added to FN i − {ẽ}

the trip coverage of the resulting network is maximized. Keep doing this for all edges in

FN i. Then, pick the resulting network with the highest trip coverage, say FN ′. If such trip

coverage exceeds that of FN , set FN i = FN ′. These two phases are repeated imax times. A

flow chart for this GRASP algorithm is depicted in Figure 3. We now give pseudocodes for

both phases, for which the following notation is needed:

Let E be a set of edges, let N(E) be the set of endnodes of the edges in E, let k ∈

N be the number of possible edges to be included in each iteration, and let imax be the

maximum number of times that the construction phase and the improvement phase will be

repeated. For each t, let FNt be the set of edges that constitute the feasible network, not

necessarily optimal, obtained in the tth iteration of the construction phase. In this iteration

t, edge et ∈ E is said to be feasible if et /∈ FNt−1 and the construction cost of network

Gt(N(FNt−1 ∪ {et}), FNt−1 ∪ {et}) is not larger than Cmax. Let FEt denote the set of

2 A RAILWAY NETWORK DESIGN PROBLEM 11

i = 1

Construction Phase
FN i

Improvement Phase
Update FN i i = imax?

STOP

i = i + 1

yes

no

Figure 3: Flow chart for our GRASP algorithm

feasible edges at iteration t.

The construction phase of our GRASP algorithm builds a feasible solution as follows:

CONSTRUCTION PHASE(E,G, uCOM , d, Cmax, k):

Randomly choose a feasible edge e0 ∈ E.

1. Initialize FN0 = {e0}, t = 0.

2. Set t = t + 1 and determine the set FEt. If |FEt| = 0, go to step 5.

3. If |FEt| > k, determine a set SEk
t = {et1 , . . . , etk} consisting of the k edges of FEt

that generate the largest trip coverage when they are individually added to FNt−1.

Otherwise, that is if |FEt| ≤ k, set SEk
t = FEt.

4. Randomly choose one edge et ∈ SEk
t . Set FNt = FNt−1 ∪ {et} and go to 2.

2 A RAILWAY NETWORK DESIGN PROBLEM 12

t = 0
FN0 = e0

t = t + 1
Calculate FEt

|FEt| = 0?

FN i = FNt−1

CP i

Pick et ∈ SEk
t

RANDOMLY

FNt = FNt−1 ∪ {et}

yes

no

Figure 4: Flow chart for the construction phase

5. FN i = FNt−2∪{e∗t−2} is the final solution in this iteration, where {e∗t−2} is the edge in

SEk
t−2 that generates the largest trip coverage when it is individually added to FNt−2.

Let CP i be the trip coverage of network FN i.

END CONSTRUCTION PHASE

We note that, from step 5, this algorithm chooses its final edge in a greedy manner, re-

gardless the value of k, since it would be useless to pick in this final step the second, or third,

or forth, ..., or k-th best edge. In Figure 4 a flow chart summarizes the construction phase.

After a feasible solution FN i has been found, an improvement phase is designed to (try to)

find a better solution in the neighborhood of FN i.

2 A RAILWAY NETWORK DESIGN PROBLEM 13

IMPROVEMENT PHASE(E,G, uCOM , d, Cmax, FN i = {ei
1, ..., e

i
q})

Define FN i as E \ FN i.

For j from 1 to q do:

1. Let FN i(j) = FN i \ {ei
j}.

2. Let ẽ ∈ FN i the edge that gives the largest improvement in the objective function when

added to FN i(j) among all edges in FN i that satisfy the budget constraint. If there is

no such ẽ, store FN i(j), set j = j+1 and go to 1. Otherwise, set FN i(j) = FN i(j)∪{ẽ}

and go to 2.

End For

Let j∗ be such that FN i(j∗) is not worse than FN i(j), ∀ j 6= j∗. If FN i(j∗) improves

FN i, then we set FN i = FN i(j∗). Otherwise we remain with FN i. Let IP i be the trip

coverage of network FN i.

END IMPROVEMENT PHASE

In Figure 5 a flow chart summarizes the improvement phase. Both phases are repeated

imax times. Let i∗ = arg maxi IP i. The final solution is FN i∗ . One of the objectives in

our computational experiments will be to check whether the improvement phase actually

improves the construction phase or not.

2.2 Robust railway network design

In this section we model the probabilistic version of the RND problem, in which link failures

can occur (named probabilistic railway network design, PRND). The deterministic RND

problem yields a network that optimizes a certain utility function when no failures occur.

We now assume that in the event of link disruption, an alternative transportation mode is

provided to passengers, e.g., a bus service, which transports passengers of the RN between

the stations adjacent to the failing link. This generates extra cost for the network operator

and extra travel time for passengers.

In order to write PRND problem as a mixed integer linear programming problem, we

need to add the following parameters (plus those defined for the RND problem):

1. αa is the time needed to go from the railway station to the departure point of the

alternative mode at station as plus the time needed to go from the arrival point of the

alternative mode at station at, ∀ a ∈ A.

2. γe is the probability of edge e ∈ E to fail.

2 A RAILWAY NETWORK DESIGN PROBLEM 14

j = 1
FN i =

{ei
1, ..., e

i
q}

FN i(j) =
FN i − {ei

j}

Add edges
Update FN i(j)

FN i ≺
FN i(j)?

FN i = FN i(j)

j = q? FN i

IP i

j = j + 1

yes

no yes

no

Figure 5: Flow chart for the improvement phase

2 A RAILWAY NETWORK DESIGN PROBLEM 15

We also need to add the following variables:

• φw
a (e) = 1 if demand w ∈ W uses arc a ∈ A when link e ∈ E fails, and zero otherwise.

• ρw(e) = 1 if demand w is allocated to the RN when link e ∈ E fails, and zero otherwise.

• Variable zf (e) denotes the demand captured by the RN if edge e fails. Note that

zf (e) =
∑

w∈W ρw(e)gw.

The objective function of the ILP model that describes PRND problem is:

(1 −
∑

e∈E

γe)znf +
∑

e∈E

γezf (e). (14)

Note the equivalence between (1) and (14) when link failures are not considered in the latter,

that is, when γe = 0 ∀ e ∈ E. Note as well that, if edge e does not belong to the RN, then

zf (e) = znf . Therefore, (14) is equivalent to

(1 −
∑

e∈RN

γe)znf +
∑

e∈RN

γezf (e),

where the notation e ∈ RN means that edge e is part of the network RN .

In addition to constraints (3) - (12), our PRND model also includes the following con-

straints:

• Routing demand conservation constraints when edge e fails

∑

a∈A:at=ws

φw
a (e) = 0, w ∈ W, e ∈ E,

∑

a∈A:as=ws

φw
a (e) = ρw(e), w ∈ W, e ∈ E,

∑

a∈A:at=wt

φw
a (e) = ρw(e), w ∈ W, e ∈ E,

∑

a∈A:as=wt

φw
a (e) = 0, w ∈ W, e ∈ E,

∑

a∈A:at=k

φw
a (e) −

∑

a∈A:as=k

φw
a (e) = 0, k /∈ {ws, wt}, w ∈ W, e ∈ E.

• Location-Allocation constraints when edge e fails

φw
a (e) + ρw(e) − 1 ≤ xa, a ∈ A, w ∈ W, e ∈ E.

3 EXPERIMENTS 16

• Splitting demand constraints when edge e fails

ε + υw(e) − uCOM
w − M (1 − ρw(e)) ≤ 0, w ∈ W, e ∈ E,

where
υw(e) =

∑
a∈A\{(es,et),(et,es)} daφ

w
a (e) + (uCOM

e + αe)φ
w
e (e)

+(uCOM
e′ + αe′)φ

w
e′(e) + uCOM

w (1 − ρw(e)),

M is a large enough real number and ε > 0 is a small tolerance.

• Binary constraints

φw
a (e), ρw(e) ∈ {0, 1}.

These constraints have an analogous interpretation to that of constraints (3) - (12), with the

only difference that now we consider that edge e ∈ E fails, and therefore the necessary time

to traverse it changes from de to uCOM
e + αe (the necessary time to traverse the edge by

the complementary mode plus the necessary time to change from one mode to another), and

from de′ to uCOM
e′ + αe′ . Note that υw(e) is





∑

a∈A\{e,e′}

daφ
w
a (e) + (uCOM

e + αe)φ
w
e (e) + (uCOM

e′ + αe′)φ
w
e′(e) if ρw(e) = 1

uCOM
w if ρw(e) = 0.

Now the number of variables and constraints increases to O(νm2) and O(mνn + m2ν),

respectively. The complexity of the PRND problem (much higher than the already complex

RND) makes it necessary for us to propose heuristics for its resolution.

For computational purposes, we have added the same cut as in the RND problem plus

φw
a (e) ≤ ρw(e), ∀ w ∈ W, a ∈ A, e ∈ E.

This cut showed a significant improvement in the computational times.

An adaptation of the previously presented GRASP algorithm to problem PRND is trivial

just by changing the objective function in the algorithm presented in Section 2.1.

3 Experiments

In order to test the validity of our GRASP algorithms, we performed some computational ex-

periments. 10 random instances were generated for different values of n, n ∈ {10, 12, 13, 14, 15, 16, 18},

having this way 70 different instances. For each value of n, a grid with n cells was built.

3 EXPERIMENTS 17

Figure 6: Table of results.

3 EXPERIMENTS 18

Depending on the value of n, different types of grids were built. Other than n = 13, all grids

could be built in the n1 ×n2 form, with n1n2 = n. The different types are shown in Table 1.

Once the cells were drawn, each potential station i was randomly located in the ith cell. The

n 10 12 13 14 15 16 18
Type of grid 5 × 2 6 × 2 (6 × 2) + 1 7 × 2 3 × 5 4 × 4 3 × 6

Table 1: Different types of grids for different values of n.

set E was generated as follows. There is a possible link joining a node i with its neighbor

node j with probability 0.8 (the probability of joining not-neighboring nodes was set to zero).

We consider that two cells are neighbors if their borders share at least one point. Therefore,

given a cell, its neighbors are in the N, NE, E, SE, S, SW, S, NW cells (where N, S, E and

W stand for North, South, East and West, respectively), provided that such cells exist. Two

nodes are neighbors if the cells they are into are neighbors.

We considered all n(n−1) possible O/D pairs. The time needed to traverse the generated

links by the RN (da) was set proportional to their Euclidean lengths, and the time by the

complementary mode, (uCOM
a) was set to twice da. The cost for building station i was set

randomly in the interval [2, 4], and the cost for building link e was set equal to its Euclidean

distance. The number of passengers going from the potential station ws to the potential

station wt (gw) was randomly generated in the interval [5, 50]. One instance with n = 9 of

this is Example 2.1. In Table 6, the first and the second column denote the number of nodes

and edges of each instance, respectively.

3.1 Solving instances to optimality

Our experiments begun with solving each instance to optimality by using GAMS 23 and

CPLEX in an Intel(R) Core(TM)2 CPU computer, with 2.13 GHz and 1.97 GB of RAM

memory. The optimal solution to each instance and the necessary time for CPLEX to find

and guarantee such a value are shown in columns Opt value and CPLEX time, respectively,

of the table in Figure 6. We checked the correlation between the computational time needed

by CPLEX and the number of nodes and edges (individually) in four different models: lin-

ear, logarithmic, potential and exponential, by means of Microsoft EXCEL. The correlation

coefficient R2 of each model and each independent variable (nodes or edges) are shown in

Table 2. This showed that the variable that best explains the computational times to find

an optimal solution by CPLEX is the number of edges, and that such a computational times

exponentially depends on the number of edges. More specifically, if y denotes the compu-

tational time and x denotes the number of edges, we have that the corresponding tendency

curve is y = 0.191e(0.2366x). This means that, for a 50 edge instance the estimated time

needed by CPLEX would be 0.3 days, for a 60 edge instance this time would be 3.2 days and

3 EXPERIMENTS 19

Model Linear Logarithmic Potential Exponential
R2, Nodes 0.3995 0.3460 0.7400 0.7534
R2, Edges 0.3706 0.3090 0.7857 0.7955

Table 2: Values of R2 for the different models and different factors.

n k = 1 k = 2 k = 3 k = 4

Average improvement 2.5 5.5 8.7 10.9

Table 3: Actual improvement of the improvement phase with respect to the construction
phase in RND problems.

for a 80 edge instance this time would grow to 367.2 days. This simple analysis, together

with the theoretical proof that this model is NP-hard, supports the need of heuristics for this

problem.

3.2 Solving instances with GRASP

In order to check whether the improvement phase actually improved the construction phase,

in previous experiments we also compared the performance of the algorithm in both phases.

Table 3 shows the average improvement for each problem size, which was calculated as 100×
∑imax

i=1 (IPi

CPi
− 1); CPi and IPi being the values of after construction phase and after the

improvement phase of each iteration, respectively. Note that the improvement is significant.

From these results, we concluded that the improvement phase gives significant extra value to

the GRASP algorithm.

AHORA VENDRÍAN LOS EXPERIMENTOS CON LAS INSTANCIAS NUEVAS

EN FORTRAN!

3.3 GRASP in PRND problems

ESTO HAY QUE ACTUALIZARLO!! We also performed our experiments for PRND

problems, where the probability of failure of each edge (s, t) ∈ E was set proportional to

their length, γe = de/(16
∑

e∈E de). Due to its extremely high complexity, only the instances

for n ∈ {6, 9, 10} were solved to optimality with CPLEX, where our GRASP algorithms

obtained the optimal solution in all instances. On the other hand, the Greedy algorithm

failed in finding the optimal solution in more than 80% of the instances, and the average

objective function value achieved by the Greedy solution was around 90%.

Regarding computational times, see Table 4, the GRASP algorithms found the optimal

solutions in a much more reasonable amount of time. Note that times diminish when k passes

from 3 to 4. This may be due to the fact that when k = 4 the part of solution space

4 CONCLUSIONS 20

n
CPLEX k = 1 k = 2 k = 3 k = 4

t t i∗ t i∗ t i∗ t

6 10 0,1 10 0,7 3 0,4 5 0,5
9 8952 1,1 45 53 25 32 36 44
10 29033 1,4 65 36 58 117 36 73

Average 12665 0,9 40 30 29 50 26 39

Table 4: Number of iterations and running times in seconds of each algorithm in PRND
problems.

n k=1 k = 2 k = 3 k = 4

6 3 9 10 19
9 2 5 6 10
10 2 5 7 15

Average 2,7 6,3 7,7 14,7

Table 5: Actual improvement of the improvement phase with respect to the construction
phase in PRND problems.

explored is wider than when k = 3, and therefore sometimes GRASP finds the

optimal solution sooner.

We also compared the performance of the algorithm in its construction phase and in its

improvement phase. Table 5 shows the average improvement for each problem size.

The results obtained make us conclude that, for the PRND problem,

1. the Greedy algorithm is not accurate, even for small size instances.

2. our GRASP algorithms for k ∈ {2, 3, 4} seem to be a good alternative to find good

feasible solutions in a reasonable amount of time.

3. the improvement phase proposed actually improves the construction phase of the GRASP

algorithm by 6% to 14%, on average.

Comparing both problems, note that the average computational times to calculate the

optimal solution to PRND problems by CPLEX were 1170 times those needed to calculate

the optimal solution to RND problems. In the GRASP algorithms those times also increased,

but only by a factor between 13 and 19, see Table 6.

4 Conclusions

AMPLIAR LAS CONCLUSIONES!!! In this paper we have introduced a new model

for the railway network design problem, and a model for the same problem assuming that

REFERENCES 21

Algorithm CPLEX k = 1 k = 2 k = 3 k = 4

RND time 10,82 0,07 30 50 39
PRND time 12665 0,9 1,67 2,67 2,67

Increase factor 1170 13 18 19 15

Table 6: Average computation time for RND and PRND problems, for n ∈ {6, 9, 10}

links can fail. Due to their NP-hardness, it is necessary to find approximation algorithms that

provide “good” feasible solutions in a reasonable amount of time. The algorithms proposed

in this paper are GRASP algorithms, which proved to be a good and fast alternative

for our railway network design problems. Computational experiments showed that, in a

reasonable CPU time, GRASP algorithms find good feasible network designs, in many cases

even the optimal one.

acknowledgements

We would like to thank the Spanish Ministerio de Fomento under grant PT-2007-003, Min-

isterio de Ciencia y Educación under grant MTM2009-14243 and the Junta de Andalućıa

under grant P09-TEP-5022 for supporting this research. Special thanks are due to two

anonymous referees for their valuable comments.

References

[1] Baaj, M., Mahmassani, H.: An ai-based approach for transit route system planning and

design. Journal of Advanced Transportation 25(2), 187–210 (1991)

[2] Cancela, H., Robledo, F., Rubino, G.: A grasp algorithm with tree based local search

for designing a survivable wide area network backbone. Journal of Computer Science &

Technology 4(1), 52–58 (2004)

[3] D́ıaz, J.A., Luna, D., Luna, R.: A grasp heuristic for the manufacturing cell formation

problem. TOP In Press (2011)

[4] Feo, T., Resende, M.: A probabilistic heuristic for a computationally difficult set covering

problem. Operations Research Letters 8, 67–71 (1989)

[5] Goossens, J., van Hoesel, C., Kroon, L.: A branch-and-cut approach for solving railway

line-planning problems. Transportation Science 38, 379–393 (2004)

[6] Institute of Electrical and Electronics Engineers: IEEE Standard Computer Dictionary:

A Compilation of IEEE Standard Computer Glossaries (1990)

REFERENCES 22

[7] Laporte, G., Maŕın, A., Mesa, J., Perea, F.: Designing robust rapid transit networks

with alternative routes. Journal of Advanced Transportation 45, 54–65 (2011)

[8] Laporte, G., Mesa, J., Perea, F.: A game theoretic framework for the robust railway

transit network design problem. Transportation Research Part B 44, 447–459 (2010)

[9] Maŕın, A., Garćıa-Ródenas, R.: Location of infrastructure in urban railway networks.

Computers and Operations Research 36, 1461–1477 (2009)

[10] Maŕın, A., Jaramillo, P.: Urban rapid transit network design: accelerated Benders de-

composition. Annals of Operations Research 169(1), 35–53 (2009)

[11] Maŕın, A., Mesa, J.A., Perea, F.: Integrating robust railway network design and line

planning under failures. Lecture Notes in Computer Science 5868, 273–292 (2009)

[12] Mauttone, A., Urquhart, M.E.: A route set construction algorithm for the transit net-

work design problem. Computers & Operations Research 36, 2440–2449 (2009)

[13] Murphey, R., Pardalos, P., Pitsoulis, L.: A GRASP for the multitarget multisensor track-

ing problem. In: Networks, Discrete Mathematics and Theoretical Computer Science

Series, vol. 40, pp. 277–302 (1998). American Mathematical Society

[14] Nesmachnow, S., Cancela, H., Alba, E.: Evolutionary algorithms applied to reliable

communication network design. Engineering Optimization 39(7), 831–855 (2007)

[15] Schöbel, A., Scholl, S.: Line planning with minimal transfers. In 5th Workshop on Algo-

rithmic Methods and Models for Optimization of Railways, Number 06901 in Dagstuhl

Seminar Proceedings, 2006

