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Abstract We consider a project scheduling problem where a number of tasks
need to be scheduled. The tasks share resources, satisfy precedences, and all
tasks must be completed by a common deadline. Each task is associated with
a cash flow (positive or negative value) from which a “net present value” is
computed dependent upon its completion time. The objective is to maximize
the cumulative net present value of all tasks. We investigate (1) Lagrangian
relaxation methods based on list scheduling, (2) ant colony optimization and
hybrids of (1) and (2) on benchmark datasets consisting of up to 120 tasks.
Considering lower bounds, i.e., maximizing the net present value, the individ-
ual methods prove to be effective but are outperformed by the hybrid method.
This difference is accentuated when the integrality gaps are large.

1 Introduction

Project scheduling has been a topic of interest for several decades. Typically,
a project consists of a number of tasks and the aim is to optimize an objective
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related to the completion time/value of the tasks. In previous research, the
objective has mainly been to minimize a project duration but more recently
there has also been interest in maximizing a net present value (NPV) of the
project, which is a cash flow dependent on the task completion date (Chen
et al, 2010; Vanhoucke, 2010; Show, 2006).

Project scheduling has been formulated in various ways (Brucker et al,
1999; Demeulemeester and Herroelen, 2002; Neumann et al, 2003). Brucker
et al (1999) provides an overview of a number of variants. They focus on
projects consisting of tasks, shared (renewable) resources, precedences between
tasks and deadlines. Amongst methods, they discuss branch & bound, heuris-
tic and local search approaches. Demeulemeester and Herroelen (2002) also
describes a variety of problems from this class and detail ways in which these
problems have been tackled. These include various exact methods, heuristic
schemes and meta-heuristics including genetic algorithms, simulated annealing
and tabu search. Neumann et al (2003) examine project scheduling with time
windows also detailing various exact and heuristic methods.

Project scheduling is closely related to resource constrained job schedul-
ing (Singh and Ernst, 2011; Thiruvady et al, 2012, 2014). The problem consid-
ered by these studies have similar characteristics (e.g. precedences and resource
constraints between jobs, deadlines, etc.) with the main difference being the
objective which is to minimise the total weighted tardiness. Singh and Ernst
(2011) examine a Lagrangian relaxation based heuristic which proves to be
more effective than heuristics on their own. Thiruvady et al (2012, 2014) ex-
plore ant colony optimisation and hybrids with constraint programming for a
similar problem with hard deadlines.

Various studies have investigated methods (heuristic and exact) for the
NPV problem (Chen et al, 2010; Vanhoucke, 2010; Show, 2006; Kimms, 2001;
Gu et al, 2013). Chen et al (2010) investigate an ant colony optimization ap-
proach and show that their method outperforms other heuristic methods based
on genetic algorithms, simulated annealing and tabu search for instances with
up to 98 tasks. Vanhoucke (2010) also considers a heuristic scatter search
approach and shows that this method is more effective than a previously sug-
gested branch & bound approach for the same problem (Vanhoucke et al,
2001). Gu et al (2013) investigate a Lagrangian relaxation and constraint pro-
gramming hybrid for the same problem and show that improved good feasible
solution can be obtained with this approach. Show (2006) also investigate ant
colony optimization for a similar problem with up to 50 tasks.

Lagrangian relaxation (LR) is a well-known technique applied to integer
programming problems (Fisher, 2004). Many computationally hard problems
can be tackled by considering a simpler version of the problem which omits
(or ‘relaxes’) some complicating constraints. The solution to the relaxed prob-
lem can provide useful information about the original problem. In particular,
Lagrangian relaxation methods provide an alternative way to obtain upper
bounds (for maximization problems) providing performance guarantees. This
is done by adding a cost term to the objective which is negative when any
of the relaxed constraints would have been violated. Since the objective is
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to maximize, this cost drives the solution towards satisfying the constraints.
In the context of a NPV-based problem, Kimms (2001) showed how such a
scheme could be successful.

Ant colony optimization (ACO) is a reinforcement-based meta-heuristic
based on the foraging behavior of real ants which has been successfully ap-
plied to various combinatorial optimization problems (Dorigo and Stűtzle,
2004). This includes variants project scheduling problems (Merkle et al, 2000;
Chen et al, 2010; Show, 2006). Merkle et al (2000) investigate the resource
constrained project scheduling using makespan as the objective. Chen et al
(2010) consider a problem where tasks can be executed in multiple modes.
Show (2006) also consider a similar problem to Vanhoucke (2010).

We investigate the resource constrained project (RCP) scheduling problem
suggested by Kimms (2001). The problem consists of maximizing the NPV
of all the tasks subject to precedences between some tasks and a common
deadline for all the tasks. Furthermore, all the tasks may require a number
of renewable resources. There is a maximum availability on each of these re-
sources for every time point. The previous study by Kimms (2001) develops
a Lagrangian relaxation based heuristic and show that this approach is effec-
tive at obtaining tight upper bounds. We further extend these results here to
show that lower bounds can be improved with the assistance of ACO. LR and
ACO can effectively be applied to the RCP problem independently. However,
here we show that the hybrid of these methods, LR-ACO, proves to be the
most effective method to obtain lower bounds outperforming LR and ACO
individually.

This paper is organized as follows. The RCP problem is stated formally
in Section 2. Section 4 describes ACO and how it has been tailored for the
current problem. In Section 5, the experimental details and an analysis of the
results are provided. Section 7 concludes the paper.

2 Problem Formulation

The RCP scheduling problem can formally be stated as follows. There are
a number of tasks T = {o1, . . . , on} with each task consisting of a duration
di, i ∈ T . During the execution of a task, there are associated cash flows. Let
cfit be the cash flow of task i in period t. The total cash flow of a task ci can be
computed as

∑di

t=1 cfite
α(di−t) where α is a discount rate. The discounted value

of the task at the beginning of the project can be computed as cie−α(si+di)

where si is the start time of the task. Precedences between tasks may exist
and are denoted by the set P = {(i1, j1), . . . , (im, jm)}, i, j ∈ T .

The constraints to be satisfied include resource and deadline constraints.
Given k resources R = {R1, . . . , Rk} with constant availability, each task re-
quires rik units of the kth resource. Additionally, every task must be completed
by a pre-defined deadline δ.

The objective is to maximize the NPV
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max.

n∑
i=1

cie
−α(si+di) (1)

s.t. si + di ≤ sj ∀(i, j) ∈ P (2)∑
i∈S(t)

rik ≤ Rk k = {1, . . . ,m}, t = {1, . . . , δ} (3)

si + di ≤ δ i ∈ T (4)

where S(t) is the set of tasks executing at time t. The objective, Equation 1,
is the net present value which is to be maximized. Constraint 2 specifies all
tasks must start after their predecessors have completed. Constraint 3 requires
that all the resources are satisfied and the final constraint requires that all the
deadlines are satisfied.

An alternative way to view a solution is by considering permutation of
tasks π. Now, a scheduling scheme can take π and map it to a resource-
feasible schedule and let σ(π) be such a mapping. Then, a feasible schedule is
one that assigns start times to all tasks by satisfying precedence and resource
constraints. This schedule has a NPV associated which each task and the cu-
mulative NPV can be determined trivially and is represented as f(σ(π)). The
precedences may be accounted for within a permutation, i.e., if a task i pre-
cedes task j then i appears earlier in the permutation then j. An alternative
is to allow a preceding task to appear later than its successor in the permu-
tation and modify the scheduling scheme σ to nevertheless generate a feasible
schedule from it in which task i precedes task j. We found the latter scheme
more effective and we therefore use this scheme in this study.

Permutations may not necessarily map to feasible schedules in terms of
satisfying the deadlines. However, this situation is avoided by specifying suf-
ficiently large deadlines such that feasible solutions are easily found. Hence,
constraint (4) is redundant. Since the aim in this study is not to minimize
makespan there is no issue with specifying large deadlines except in the situ-
ation with negative-valued cash flow tasks which may be scheduled later with
larger deadlines.

3 Lagrangian Relaxation

In this study we consider two integer programming (IP) models to implement
the LR method. The first is the one proposed by (Kimms, 2001) and the
second is an adaptation of a similar model used by Singh and Ernst (2011)
which was originally used for a resource constrained job scheduling problem.1

The motivation for using the latter model is that it is a stronger formulation
providing improved run-time scalability.

1 This problem consists of a single renewable resource, tasks with release, processing and
due times and the objective is to minimize the total weighted tardiness. See Singh and Ernst
(2011) for further details.
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3.1 LR-Kimms

We provide the IP model suggested by Kimms (2001) and briefly describe the
Lagrangian function.2 Binary variables xjt are defined such that xjt = 1 if
task j completes at time t and 0 otherwise. The problem can be specified as
follows.

max.

n∑
i=1

δ∑
t=1

cie
−αtxit (5)

s.t.

δ∑
t=1

xit = 1 i ∈ T (6)

δ∑
t=1

txjt −
δ∑
t=1

txit ≥ dj ∀(i, j) ∈ P (7)

n∑
i=1

t+di−1∑
t̂=t

rikxit̂ ≤ Rkt k ∈ R, t ∈ {1, . . . , δ} (8)

xit ∈ {0, 1} i ∈ T, t ∈ {1, . . . , δ} (9)

Equation 6 requires that all tasks complete. The precedences are incorpo-
rated via Equation 7 and the resource constraints via Equation 8.

The Lagrangian relaxation of the above problem can be obtained by re-
laxing the resource constraints and introducing multipliers λkt, k ∈ R, t ∈
{1, . . . , δ}. An upper bound can be obtained by solving the Lagrangian dual

LRR(λ) = max.

n∑
i=1

δ∑
t=1

cie
−αtxit+

∑
k∈R

δ∑
t=1

λkt

Rkt − n∑
i=1

t+dj−1∑
t̂=t

rit̂xit̂


(10)

Subject to Equations 6,7 and 9. The above objective can be rearranged to
obtain

LRR(λ) = max.

n∑
i=1

δ∑
t=1

xit

cie−αt − n∑
i=1

t∑
t̂=t−dj+1

λkt̂rit̂

+

(∑
k∈R

δ∑
t=1

λktRkt

)
(11)

where the last term is a constant and can be ignored when optimizing.

2 For complete details please refer to Kimms (2001).



6 Dhananjay Thiruvady et al.

3.2 LR-SE

The second model is adapted from the one suggested by Singh and Ernst (2011)
for multiple resources. As above, binary variables xit represent the completion
time of a task. However, unlike LR-Kimms, once a task completes it stays
completed (see Equation 13 below).

max.

n∑
i=1

δ∑
t=2

cie
−αt(xit − xit−1) (12)

s.t. xit ≥ xit−1 i ∈ T, t ∈ {1, . . . , δ} (13)
xiδ = 1 i ∈ T (14)
xjt ≤ xit−dj

(i, j) ∈ P, t ∈ {1, . . . , δ} (15)
n∑
i=1

rit(xit − xit−di
) ≤ Rkt k ∈ R, t ∈ {1, . . . , δ} (16)

xit ∈ {0, 1} i ∈ T, t ∈ {1, . . . , δ} (17)

Equation 13 enforces that a task stays completed once it has finished and
Equation 14 requires that all tasks complete. The precedences are enforced via
Equation 15 and the resources constraints are specified by Equation 16.

As above, Lagrangian multipliers λkt, k ∈ R, t ∈ {1, . . . , δ} are introduced
and an upper bound can be obtained by solving the Lagrangian dual

LRR(λ) = max.

n∑
i=1

δ∑
t=2

cie
−αt(xit − xit−1)+

∑
k∈R

δ∑
t=1

λkt

Rkt − n∑
i=1

t+dj−1∑
t̂=t

rit̂(xit̂ − xit̂−di
)

 (18)

which can be rearranged to obtain

LRR(λ) = max.

n∑
i=1

δ∑
t=2

(xit − xit−1)

cie−αt − n∑
i=1

t∑
t̂=t−dj+1

λktrit̂

+

(∑
k∈R

δ∑
t=1

λktRkt

)
(19)

with the last term being constant.
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Algorithm 1 LR for the RCP problem
1: input: An RCP instance
2: πbs := null (best solution)
3: initialize λ0

kt = 0, ∀k ∈ R, ∀t ∈ {1, . . . , δ}
4: γ := 2.0, k := 0, gap :=∞, UB∗ :=∞, LB∗ := −∞
5: while γ > 0.01 & gap > 0.01 & i < 1000 do
6: ST = Solve(λi, UB)
7: π = GenerateList(ST )
8: ImproveLB(π)
9: UpdateBest(πbs,π,γ)

10: LB∗ = NPV (πbs)
11: UpdateMult(λi, LB∗, UB∗, ST , γ)

12: gap = |UB∗|−|LB∗|
|UB∗|

13: i ← i + 1
14: end while
15: output: πbs

3.3 The Lagrangian Relaxation Heuristic

Given both models, the high-level LR algorithm is presented in Algo-
rithm 1. To begin with, various parameters and the multipliers are initialized.
The main loop starts at line 5 and executes for 1000 iterations. The gap is
above a specified threshold and γ = 2.0 is a scaling factor.3 Each procedure is
described in detail below.

Solve(λi, UB): The relaxed problem is solved within this procedure. This in-
volves solving Lagrangian function, i.e., Equation 11 or Equation 20 depending
on the model being used. The upper bound UB is set to

UB = LLR(λi) (20)

which is minimized to provide tight upper bounds. The procedure returns a
set of start times for the tasks (ST ) representing the optimal relaxed solution.

GenerateList(ST ): The start times obtained are transformed into a list of
tasks. This is done by selecting the earliest start time, appending the corre-
sponding task to π and continuing in the same way with the remaining tasks.
In case of ties, tasks with higher NPV values are chosen first. The procedure
returns a complete list of tasks (π).

ImproveLB(π): π can be mapped to a feasible schedule as will be seen in Sec-
tion 4.1. This provides a lower bound to the optimal NPV. However, this lower
bound may be improved further with the assistance of an alternative method
resulting in a modified permutation π. The hybrid method is obtained by us-
ing ACO here.

3 γ is progressively decreased to ensure the algorithm converges.
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UpdateBest(πbs,π,γ): πbs = π if f(σ(π)) > f(σ(πbs)). Additionally, if πbs has
not been updated in the last five iterations, γ ← γ ÷ 2.

UpdateMult(λi, LB∗, UB∗, ST , γ): The multipliers are updated for all time
periods t ∈ {1, . . . , δ}, k ∈ R

λi+1
k,t = max

(
0, λik,t +

γ(UB∗ − LB∗)∆kt∑
k∈R

∑δ
t̂=1∆

2
kt̂

)
(21)

where in the case of LR-Kimms

∆kt =
n∑
i=1

t+dj−1∑
t̄=t

rikxit̄ −Rkt (22)

The above equation can be modified for the LR-SE model as follows

∆kt =
n∑
i=1

t+dj−1∑
t̄=t

rit̄(xit̄ − xit̄−di
)−Rkt (23)

4 Ant Colony Optimization

ACO was first suggested by Dorigo (1992) for combinatorial optimization.
When looking for food, ants will leave their nests and mark the paths that
they use to a food source with pheromone. Other ants looking for food will
follow these trails based on the amount of pheromone deposits on the paths.
They, in turn, deposit pheromones on these paths. Thus, paths with more
pheromone receive more ants which in turn deposit more pheromone leading
to a positive feedback loop. This mechanism leads the colony to converge on
better food sources over time (Camazine et al, 2001).

In the context of the RCP problem, we consider a pheromone model that
is based on learning an ideal permutation of the tasks. Here, the aim is to
learn permutations of the tasks which are then mapped to a schedule using a
scheduling scheme (discussed later). We consider the model suggested by den
Besten et al (2000) who examine an ACO algorithm for the single machine
problem with the total weight tardiness objective. The pheromones T consist
of pheromone values τij for each task j and variable i or position in the se-
quence. The motivation to use this model is that in the absence of any obvious
dependencies4 selecting a task for a variable is the simplest model.

Two popular variants of ACO are ant colony system (Dorigo and Gam-
bardella, 1997) (ACS) and Max-Min ant system (Stűtzle and Hoos, 2000).
Initial experiments with both variants showed that ACS was better suited to
this problem. Thus, for all experiments in this study we used ACS.

4 For example, in the travelling salesman problem selecting a city based on the next one
is important (Dorigo and Gambardella, 1997) and hence tij represents the desirability of
selecting city j given that city i was the previously selected city.
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Algorithm 2 ACS for the RCP problem
1: input: An RCP instance
2: πbs := null (global best)
3: initialize T
4: πbs = ACSImproveLb(T )
5: output: πbs

Algorithm 3 ACSImproveLb
1: input: T
2: πbs := null (best)
3: while termination conditions not satisfied do
4: Siter := ∅
5: for j = 1 to na do
6: πj := ConstructSolution(T )
7: ScheduleTasks(πj)
8: Siter := Siter ∪ {πj}
9: end for

10: πib := argmin{f(π)|π ∈ Siter}
11: Update(πib,πbs)
12: PheromoneUpdate(T ,πbs)
13: cf := ComputeConvergence(πib)
14: if cf = true then initialize T end if
15: end while
16: output: πbs

The ACS algorithm is presented in Algorithm 2 and Algorithm 3. In Al-
gorithm 2 we see the high level ACO procedure. The global best ant (πbs)
and the pheromone trails T (τij = 1/n, ∀i, j) are first initialised. Now algo-
rithm 3 is called with T as the input. A best solution (πbs) is also maintained
by this algorithm and runs until some terminating criteria is met (line 3) such
as number of iterations or time limit. Within each iteration, na ants construct
permutations (line 6) which are mapped to schedules (line 7).

ConstructSolution(T ): A permutation π of tasks is constructed by selecting a
task for each variable5 starting at π1. A complete solution obtains a permuta-
tion where all variables have unique tasks assigned to them. A task is selected
with one of two schemes, either deterministic or probabilistic. First, a random
number q ∈ (0, 1] is generated and compared with a pre-defined parameter
q0 in order to select a task at πi. If q < q0, k is deterministically selected
according to

k = maxk∈J\{π1,...,πi−1}{τikη
β
k } (24)

5 π consists of n variables where each variable is to be assigned to a task. We also tested
the sum rule often used in scheduling applications (Dorigo and Stűtzle, 2004) but found no
advantage using this method but was slightly worse overall (see Appendix A).
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otherwise, k is probabilistically selected from the following distribution

P(πi = k) =
τikη

β
k∑

j∈J\{π1,...,πi−1}

(
τijη

β
j

) (25)

where ηk is heuristic information that may be used to bias the search and
β is a factor that determines the contribution of the heuristic information. We
attempted various heuristics, such as favouring positive-valued cash flow tasks
to be placed early in the sequence, but found no obvious advantage with any of
them. Hence, β = 0 was used which effectively rules out heuristic information.

When a task j at variable i is selected, the pheromones are updated as
follows:

τij = τij × ρ+ τmin (26)

which is called a local pheromone update, where ρ is a learning rate param-
eter which is chosen to gradually reduce the levels of pheromone associated
with task j at variable i. This favours diversity by allowing other tasks to be as-
signed to the same variable during future solution constructions. τmin = 0.001
is a lower limit which does not allow the probability of selection of a task to
reduce to 0.

ScheduleTasks(): Once a sequence for the current solution has been specified
the schedule σ(π) is determined. This is done using a scheduling scheme (see
Section 4.1) and depending on whether the permutation is precedence feasible
the scheduling scheme satisfies precedences and resource constraints or only
resource constraints. This scheme always generates resource feasible schedules
given infinite time.

Update(πib,πbs): The procedure sets πbs to πib if f(σ(πib)) > f(σ(πbs)) where
f(σ(πib)) is the NPV of the iteration best solution.

PheromoneUpdate(T ,πbs): All components (i, j) appearing in πbs are used to
update the corresponding components in the pheromone matrix:

τij = τij × ρ+∆ (27)

where ∆ = 0.01 is a reward amount set to be a constant value. While different
reward factors may be used here it was found that reward amount based on
the NPV did not provide any improvements over this constant reward on a
subset of the instances. Hence, for the sake of simplicity, a constant reward
was used. ρ is the learning rate as specified earlier and is defined to be 0.1 for
this study.

ComputeConvergence(πib): As a convergence measure we use the iteration
best solution and a history of the past θ iteration best solutions to determine
if the pheromones have converged. If sampling the pheromones repeatedly
produces the same solution, the pheromones are considered to have converged.
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A list of the past θ solutions, lπib , in the form of a queue is maintained.
Every time a new iteration best is generated it is appended to the end of this
list while the first solution in the list is removed. The quality of the current
iteration best πib is compared to the quality of all the solutions in the list.
If they all have the same objective value the pheromones are re-initialized:
f(πib) = f(k), k ∈ lπib ⇒ τij = 1/n ∀i, j. The list is also re-initialized where
all previous solutions are removed.

4.1 Scheduling Schemes

5316 4 2 7

(a)

26 3 4

45

1

3 7

(b)

26 3 4
1

5 7

5 7

(c)

Fig. 1 This figure demonstrates how a permutation of tasks (without precedences) may be
mapped to a schedule. There are 7 tasks requiring a single resource and task 3 precedes task
4. Additionally, tasks 5 and 7 have negative-valued cash flows. There are R units of resource
available and the height of a task is the amount of resource needed. The time horizon starts
at t0 and finishes at td which is the deadline for the tasks. (a) This is a permutation of
the 7 tasks. Note that although task 3 must start before task 4, task 4 is allowed to appear
ahead of task 3 in the permutation. (b) The positive-valued cash flow tasks are placed as
early as possible given the available resource. (c) The negative valued cash flow tasks are
placed starting at the end of the schedule. Tasks are successively chosen from the end of the
permutation.
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Given a permutation, the tasks are scheduled using a serial scheduling
scheme. The scheme is similar to the one used by Li and Willis (1992) and a
similar modified scheme by Kimms (2001). The permutation is split into two
sets, N = N+ ∪ N−. N+ consists of all tasks with positive cash flows which
are independent of other tasks or those tasks whose cash flow is positive and
greater than the cumulative cash flow of its dependent tasks:

N+ =

t : cf(t)−
∑

t′∈S(t)

cf(t′) > 0

 (28)

where S(t) is the set of direct and indirect successors of t. N− is the remaining
set of tasks, i.e. N \N+.

We consider two ways of scheduling tasks given a permutation (see Fig-
ure 1). Consider the permutation π in Figure 1 (a) where the problem consists
of 7 tasks with precedences between two of them (task 3 must finish before
task 4 commences). N− consists of tasks 5 and 7 have negative-valued cash
flows. There is a single resource R and the heights of the tasks specify the
amount of resource needed. As the permutation shows, precedences are not
maintained when constructing the permutation. Figure 1 (b) shows the place-
ment scheme. Here, positive-valued tasks are placed as early as possible, satis-
fying the resource constraints. If a task appears which has a predecessor that
is not scheduled, it is placed on a waiting list π̂. Once the predecessor is placed
(task 3) the task on the waiting list is also immediately placed.

Figure 1 (c) demonstrates how negative-valued cash flow tasks are sched-
uled. Here, tasks are considered from the end of the permutation and starting
at the deadline, tasks are placed in a greedy fashion similar to how the positive-
valued cash flows are placed at the beginning of the schedule. Note that the
negative valued cash flow tasks do not have to appear at the end of the se-
quence. If they happen to be in-between positive-valued tasks they are still
placed starting at the deadline.

Precedences are not considered when constructing permutations in the
above scheme, however, this is trivially accounted for at the scheduling stage.
We have attempted to ensure precedences are satisfied within the permutation
but found improved results when we ignore them in the permutations.

4.2 LR-ACO

ACO can be incorporated in a straightforward manner into Algorithm 1. In
Algorithm 1, ImproveLB(π) can be replaced with Algorithm 3. The basic idea
is to seed ACO with π to improve the lower bound. π is used as the global
best solution for the ACO procedure which biases the search towards this
solution. Note that there are no changes with respect to the manner in which
schedules are generated. Lagrangian relaxation with or without ACO uses the
same scheme described in the previous section. There are two variants of LR-
ACO that we consider. LR-Kimms-ACO is the LR model originally suggested
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by Kimms (2001) with ACO and LR-SE-ACO is the more efficient LR model
also combined with ACO.

5 Experiments and Results

5.1 Algorithm Settings

Experiments were conducted with LR, ACO, LR-ACO where the LR compo-
nents make use of the model of Kimms 3.1. The following parameter settings
were chosen by conducting tests on a subset of the instances. To choose the
number of solutions per iteration, na, {5, 10, 20, 30} solutions were tested and
it was found that 10 was the most effective. Similarly, q0 = 0.9 was deter-
mined from {0.3, 0.5, 0.7, 0.9, 1.0}. This amounts to high deterministic selec-
tion. ρ = 0.1 was selected from {0.1, 0.01} and while this is a relatively high
learning rate it is justified given that the pheromones are re-initialized when
ACO converges to a single solution. Note that the same settings were used
for ACO or all algorithms using an ACO component. In the case where LR is
combined with ACO, we have allowed the ACO search 500 iterations. This was
not determined in any systematic way but rather selected based on conducted
as few “meaningful” iterations as possible. Thus 500 iterations provides a rea-
sonable number of updates to the pheromones in a relatively short time-frame.

The LR algorithm of Kimms (2001) is deterministic and was run once for
every instance. All the runs were given at most 15 minutes of execution time.
The thresholds were set to gap < 0.01 or λ < 0.01 below any of which the
algorithm will terminate. The experiments were conducted on the Monash Sun
Grid and the Enterprisegrid with Nimrod/G (Abramson et al, 2000).

5.2 Benchmark Sets

The first set of instances were obtained from the project scheduling prob-
lem library (Kolisch and Sprecher, 1997) which were also the instances used
by Kimms (2001). These include a large number of instances with varying de-
grees of network complexities, resource factors and resource strengths. We first
conduct a number of experiments on all the problems instances with 120 tasks
to confirm that similar results are being achieved to Kimms (2001) and also
to show that LR-Kimms-ACO provides improved results compared to LR and
ACO independently. Additionally, we conduct a number of experiments with
a subset of the instances (60 and 120 tasks) which are detailed in Section 6.

These instances are categorized in terms of three measures. Firstly, net-
work complexities indicate the proportion of precedences incorporated in the
instance with a larger value implying a larger number of precedences. The
second measure is the resource factor which specifies how many resources are
required by an activity in proportion to the total number of resources avail-
able. Finally, the resource strengths measure scarceness of resources with low
values implying that resource constraints are tight.
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The deadlines δ were determined in a similar manner to Kimms (2001) so
that feasible solutions are found easily. Note that in this study we do not aim to
minimize makespan so the deadlines chosen here are larger than the previous
study. For a task j, a latest start time (lsj) is determined by recursively
considering all preceding tasks, i.e., lsj ≥ lsi + di ∀(i, j) ∈ P . Then, δ =
3.5 ×maxj lsj . The cash flows are determined exactly like Kimms (2001) by
selecting ci = [−500, 1000] uniformly randomly. We examine two discount rates
α. The first is determined like Kimms (2001) where α = 52

√
1 + 0.05 − 1 and

the second is α = 0.01.
Vanhoucke (2010) also had a number of project scheduling instances with

similar characteristics as those tested by Kimms (2001). We consider all the
instances with 100 tasks. The major difference between these two studies is
that Vanhoucke (2010) uses tight deadlines whereas the schedules generated by
Kimms (2001) are always deadline feasible. We use similar settings as those
used by Vanhoucke (2010) in terms of deadlines and these experiments are
discussed in more detail in Section 5.4.

5.3 Results for Kimms’ Instances with 120 Tasks

We consider the datasets from the project scheduling problem library with all
instances consisting of 120 tasks. Figure 2(a) shows the average results across
all instances with 120 tasks. The gap is defined as (ub− lb)/ub. For ACO, we
have used the LR upper bound to determine its gap. We see that the average
gap of 2% for LR is similar to what was seen by Kimms (2001). The average
gap obtained by LR-Kimms-ACO is significantly lower than LR and ACO and
proves to be the best option. ACO is effective, but repairing solutions provided
by LR are slightly more effective.

We now examine the results by resource strength (RS), resource factor
(RF) and network complexity (NC). See Figure 2 (b),(c) and (d). The first
observation is that LR-Kimms-ACO is always the best performing algorithm
always providing average lower gaps than any of the two methods on their
own. For the more tightly constrained problems, LR is superior to ACO (large
resource factors and low resource strength). This is expected since LR is de-
signed to deal with constraints effectively, whereas ACO and meta-heuristics in
general often struggle to deal with hard constraints (Meyer and Ernst, 2004).
The resource factor shows that as far as network complexity is concerned,
ACO is always marginally worse than LR which, in turn, is worse than LR-
Kimms-ACO.

Table 1 shows the breakdown of the results discussed in Figure 2. The table
shows lower and upper bounds for each algorithm broken down by resource
factors, network complexity and resource strengths. The row Mean shows the
average across all instances. The following rows show the averages for each
measure. The LR-based algorithms are always superior to ACO concerning
the lower bounds. Here, LR-ACO is generally superior to LR whereas LR
is more effective on 4 out of the 12 measures. Interestingly, ACO assists to
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Fig. 2 The average results of each algorithm for all the problem instances with 120 tasks
split by (a) resource strength, (b) resource factor and (c) network complexity

improve the upper bounds quite significantly by outperforming LR across all
measures.
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5.4 Results for Vanhoucke’s Instances with 100 Tasks

For this experiment, we consider the instances from Vanhoucke (2010) who also
used tight deadlines. We consider the largest instances of 100 tasks or more.
Gu et al (2013) examine a Lagrangian relaxation and constraint programming
(CP-LR) hybrid for the same set of instances, however they do not extend
deadline to allow feasible solutions. Similar to our results, the CP-LR provides
feasibility on more than 99% of the instances with 100 tasks. More interest-
ingly however, the CP-LR algorithm focuses on project scheduling whereas
the proposed LR-ACO is applicable to domains beyond scheduling.6

Firstly, we examine deadlines of 20% beyond the minimum project dead-
line. The results are presented in Table 2 and Figure 3 for instances with all
tasks having positive cash flows (100-0), 20%, 40%, 60%, 80% negative cash
flows to 100% negative cash flows. The figure shows the gaps whereas the ta-
ble shows a breakdown into lower and upper bounds. Since the deadlines are
hard, feasible solutions may not always be found and in this case we extend
the deadlines to allow feasibility. Note that this was required for less that 1%
of the instances.

We see that for mainly positive cash flows (0% and 20% negative cash
flows), LR-ACO is the best algorithm. This is mainly sure to the upper bounds
being very tight. For these instances, LR is most effective in finding lower
bounds. Beyond 40% negative cash flows, the scatter search is the best lower
bounding method. While the tight deadlines can be attributed for this effect,
we looked more closely at the individual runs of these methods. We find that
even the relaxed problems of the LR require significant solving time which
increase with negative cash flow tasks. Thus, in the presence of very tight
deadlines, much larger run-times are needed to provide a reasonable number
of iterations for the algorithm to converge. Hence, the scatter search is more
effective since it is able to generate a large number of solutions (lower bounds)
in reduced time-frames.

The conclusion above shows that when there are a large number of negative
cash flows (≥ 40%) and tight deadlines, the scatter search is a more effective
algorithm. Hence, we investigated tighter deadlines to see if the scatter search
will eventually be effective on the 0% and 20% instances. These results are
also present in Table 2. We see that with increasing tightness of deadlines, the
scatter search is more effective even for the positive cash flow instances.

6 Both CP and ACO have the potential to improve solutions from LR, however, ACO is
more straight-forward to customize and implement.
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Fig. 3 A comparison of Scatter search Vanhoucke (2010), ACO, LR-ACO and LR+ACO.
The x-axis represents the proportion of negative cash flow tasks. 100-0 consists of only
positive cash flow tasks whereas 100-100 consist of only negative cash flow tasks.

6 Investigating Algorithms

From among the problem instances of Kimms (2001), we selected 12 instances
with 60 and 120 activities with a total of 24 instances.7 Our aim is to measure
the performance of the algorithms on tightly constrained problems and the
instances we have chosen reflect this. Thirty runs per instance were conducted
for ACO and LR-ACO and each algorithm was given 15 minutes of execution
time.

All of the selected instances have a network complexity value of 2.1. Re-
source factors were chosen from 0.5 and 1.00 where, in the first case, the tasks
require half the number of resources available. In the second case the tasks
require all the resources available. Resource strengths with values 0.2 or 0.5
were chosen reflect a wide range of resource strengths.

We present the results of the algorithms on the 24 selected instances (see
Table 3). There are four categories of instances, each category consisting of 3
instances, with 60 and 120 tasks each. The table specifies network complexities
(NC), resource factors (RF) and resource strengths (RS). The tables to follow
highlight statistically significant results (p = 0.05) with italics and boldface.

7 We only chose to select a subset of the instances since ACO is stochastic and hence
requires several runs on the same instance in order to obtain statistically valid results.
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Table 3 Instances selected for comparing the algorithms.

NC RF RS Tasks

37 2.1 0.5 0.2 60
38 2.1 0.5 0.5 60
45 2.1 1.0 0.2 60
46 2.1 1.0 0.5 60

47 2.1 0.5 0.2 120
50 2.1 0.5 0.5 120
57 2.1 1.0 0.2 120
60 2.1 1.0 0.5 120

Additionally, the best result achieved on any instance is marked only in bold-
face. The best, mean and standard deviations (sd) for lower bounds (lb) and
upper bounds (ub) including gaps where applicable are also reported. In the
case of ACO, the gap is reported to the upper bound obtained by LR-SE-ACO.

6.1 Comparing LR-SE-ACO and LR-Kimms-ACO

The first set of results are presented in Table 4 with the aim of determining
which of the two models (LR-SE-ACO or LR-Kimms-ACO) is more effective.
This table clearly shows that for several instances LR-SE-ACO is more effective
considering the lower bound. This is mainly due to the LR-SE model being a
stronger formulation, thus solving the relaxed problem more quickly leading
to improved results. Thus LR-SE-ACO proves to be the superior model and
we therefore make use of this model for further comparisons.
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6.2 Comparing ACO, LR-SE and LR-SE-ACO

The second comparison is between ACO, LR-SE and LR-SE-ACO. The results
are shown in Table 5. Considering the lower bounds, we see that LR-SE-
ACO is the best performing method across most instances, especially for the
instances with 60 tasks. ACO is also effective and in some cases obtains the
best results (e.g. for instance 50 - 5). LR-SE is generally worse, however, by
small margins. For the instances with 120 tasks, a select number of instances
in categories 57 and 60 shows that LR-SE is as good or better than the other
algorithms on average. However, the best results of LR-SE-ACO and ACO are
still superior, with LR-SE-ACO performing best. Additionally, there are no
significant differences with the upper bounds and gaps obtained are also of
similar levels.

We explain LR-SE-ACO’s improved performance by the following. The LR
algorithm obtains optimal start times for the tasks given the relaxed problem.
The relaxed problem approaches the original problem overtime through the
penalties, leading to start times for the tasks close to that of the optimal. ACO
is able to use these start times to further explore surrounding regions of the
search space effectively through the use of high learning rates. This leads to
improvements on most occasions. Where there are no improvements or worse
performance by LR-SE-ACO compared to LR-SE, the ACO component has
not effective. Here the time spent on the ACO component has not been as
useful but where LR iterations may have been.

Table 6 show results for two other variants of LR-SE with ACO. The first
one is where the LR solution information is used to bias the ACO selection
via the heuristic information (η) referred to as LR-ACO (heur). The second
scheme is one where ACO is run with a partially converged pheromone matrix
after LR has completed (LR+ACO). These results are presented in Table 6.
LR-ACO (heur) is almost always more effective. Comparing with LR-ACO,
LR-ACO (heur) performs worse on the small problems while it is slightly
more effective on larger instances.
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Now we compare the algorithms with a discount rate of α = 0.01. The
results are shown in Table 7. As a result of this new discount rate, the gaps
obtained are not as close as before in the previous comparisons. In this situa-
tion, the advantage gained by LR-SE-ACO is accentuated, providing the best
lower bounds across all instances with 60 tasks. For the problems with 120
tasks LR-SE-ACO is still the best performing method, however, its advantage
is reduced. Here, ACO is able to outperform LR-SE-ACO occasionally. It is
worth noting that even when this is the case, LR-SE-ACO always performs
better on average.

The upper bounds obtained by both algorithms are closely matched with
LR-SE having a slight advantage. However, observing the gaps shows us that
in all cases LR-SE-ACO is superior except for two instances 50-3 and 60-5.
This is easily explained by the advantage LR-SE-ACO obtains from ACO
improvement to the lower bounds.

To summarize the results presented above, LR-SE-ACO is the most effec-
tive algorithm to obtain lower bounds. Specifically, the LR component provides
a very good seed for the ACO component which is quick to improve the solu-
tions found. Clearly either algorithm, ACO or LR-SE, on their own are not as
effective, whereas the hybrid method is best suited for this problem.
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6.3 Convergence of Lower Bounds

We further analyze the performance of the algorithms concerning lower bounds.8

We consider the instances with 120 tasks and report results by averaging their
performance across the categories and across all instances. As we have done
earlier, 30 runs per instance for ACO and LR-SE-ACO have been conducted
the results are mean normalized so that we can compare across instances. The
first comparison is of the lower bounds obtained by all the algorithms over 15
minutes and seen in Figure 4. Here, the results for every instance and for all
30 runs per instance are first mean normalized. The mean normalized results
are averaged and the difference of each algorithm to the average is reported.

Figure 4 shows that LR-SE-ACO overall is the best performing algorithm.
ACO and LR-SE-ACO have a significant advantage at the initial stages. LR-
SE improves gradually until 100 seconds, however, at this stage it outperforms
ACO. The trend shows that ACO and LR-SE-ACO continue to improve over
time whereas LR-SE and LR-SE-ACO (heur) reach a point after which its
performance stagnates. These results split by category are shown in Figure 5.
Here a similar picture as that of the overall average performance can be seen.
However, we note that when the resource factor is less (instances 47 and 50)
LR-SE-ACO has an advantage early. LR-SE-ACO always has the initial advan-
tage, but with large resource factors (instances 57 and 60) the algorithms are
more closely matched until 200 seconds. From this point LR-SE-ACO re-gains
its advantage.

The initial difference is attributable to ACO’s ability to improve a starting
solution effectively. However, overtime ACO’s influence is reduced but still
assists LR-SE-ACO. This leads to the divergence of LR-SE-ACO and LR-SE
curves gradually. ACO’s initial result is very good and it gradually improves
but not enough to keep pace with the LR-base algorithms.

Interestingly LR-SE-ACO (heur) follows LR-SE despite using heuristic in-
formation. For these runs with α = 0.01, the heuristic information seems to
make no significant difference unlike the results seen in Table 6. In contrast,
LR-SE-ACO is always more effective. Thus, depending on the learning rate,
providing a bias via a solution (LR-SE-ACO) which is a stronger form of bias,
is more effective than a subtle bias through the heuristic information. Larger
discount rates require a stronger bias.

The next comparison of interest is to consider iterations as opposed to
time. Since a single iteration of LR-SE-ACO is more expensive than that of
LR-SE, the aim here is to identify if it converges more quickly compared
to LR-SE given the same number of relaxed problems solved. We consider
100 iterations and comparisons made based on mean normalized data (see
Figure 6). LR-SE-ACO is overall the best performing algorithm. This is not
surprising given the results previously seen, however, we find that both LR
algorithms converge to a point (about 50 iterations) after which they diverge

8 Note that there were not many significant differences with the upper bounds obtained
by the LR algorithms and are hence not analyzed here.
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Fig. 4 A comparison of mean normalized lower bounds (NPV) of four algorithms over
15 minutes. The results across the 30 runs are first mean normalized by instance. These
results are averaged across all algorithms and the difference to the average is shown for each
algorithm.

gradually. This explanation is similar to the one provided earlier where ACO
provides large improvements initially but its influence eventually reduces. ACO
is the least expensive method per iteration and, not surprisingly, this can be
seen across the iterations where ACO is significantly worse. Over 100 iterations
we also see that LR-SE-ACO (heur) does not provide significant improvements
over LR-SE-ACO which follows a similar trend to what was seen in the long
runs.

A break down by category (Figure 7) shows a similar trend. However,
category 57 with high resource factor and low resource strength shows that the
initial advantage provided by ACO is lost, but gained again across iterations.
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Fig. 5 A comparison of mean normalized lower bounds (NPV) of four algorithms by cate-
gory over 15 minutes. Left-right and top-bottom we have the results for instance categories
47, 50, 57, 60. The results across the 30 runs are first mean normalized by instance. These
results are then averaged across all algorithms in a category. The difference to the average
by category is shown for each algorithm.

7 Conclusion

In this study we have shown that hybrids of a Lagrangian relaxation based
heuristic with ACO can be effectively applied to a resource constrained project
scheduling problem. We show through comparisons based on CPU time that
LR-SE-ACO outperforms LR-SE (Lagrangian relaxation with list scheduling)
and ACO on their own when maximizing NPV. The complementary advan-
tages of each algorithm assist the hybrid to improve upon either on their
own. This study shows that improvements can be made with respect to lower
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Fig. 6 A comparison of mean normalized lower bounds (NPV) of four algorithms over
100 iterations. The results across the 30 runs are first mean normalized by instance. These
results are averaged across all algorithms and the difference to the average is shown for each
algorithm.

bounds. While the upper bounds may already be very good, improving them
still warrants further research and is currently being addressed.

We find that if the project deadlines are tight, the hybrid LR-ACO is not
as effective. This is mainly due to the increased solve time of the sub-problems.
In this direction, improvements in the original formulation could potentially
help to allow the algorithm to execute more quickly in reduced time-frames
thereby allowing more iterations and improvements to the lower and upper
bounds.

ACO has been shown to assist the LR algorithm, however, other methods
may be substituted for ACO effectively. In particular, local search methods
may prove effective here to essentially explore the surrounding regions of the
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Fig. 7 A comparison of mean normalized lower bounds (NPV) of four algorithms by cate-
gory over 100 iterations. Left-right and top-bottom we have the results for instance categories
47, 50, 57, 60. The results across the 30 runs are first mean normalized by instance. These
results are then averaged across all algorithms in a category. The difference to the average
by category is shown for each algorithm.

search space suggested by the start times provided by the LR algorithm. Addi-
tionally, further feedback from ACO to the LR components can provide more
effective bounds and also help the algorithm converge more quickly.

Given these results, extending all of these algorithms to significantly larger
problems should provide interesting results. In fact, we are currently exploring
data for a problem obtained from the Australian mining industry with up to
11,000 tasks with promising initial results.
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Table 8 ACO using default model and ACO using sum rule. The best, mean and standard
deviations for the lower bound (lb) for each algorithm reported. Statistically significant
results at p = 0.05 are italicized and marked in boldface. The best results obtained for any
instance are marked in boldface.

ACO ACO - sum rule

lb-best lb-mean sd gap lb-best lb-mean sd gap

37-3 11236.00 11114.76 56.43 0.12 11209.70 11116.43 51.05 0.12
37-5 10149.20 10132.05 16.02 0.10 10149.20 10122.62 22.50 0.10
37-8 8948.59 8880.20 29.65 0.08 8918.20 8873.02 39.60 0.08
38-3 8251.25 8247.52 15.58 0.11 8251.25 8242.17 25.69 0.11
38-5 4851.04 4848.58 2.58 0.07 4851.04 4847.78 3.06 0.07
38-8 13779.30 13760.38 23.07 0.04 13779.20 13758.29 26.13 0.04
45-3 10451.40 10372.40 39.09 0.11 10499.50 10370.21 48.60 0.11
45-5 11754.20 11693.75 77.16 0.08 11750.30 11678.64 85.16 0.08
45-8 8747.83 8658.62 68.23 0.08 8747.83 8664.89 62.50 0.08
46-3 12838.40 12810.09 21.14 0.02 12834.50 12810.6 13.69 0.02
46-5 11454.50 11402.72 42.68 0.08 11454.50 11406.23 38.54 0.08
46-8 9825.68 9766.61 34.43 0.07 9814.29 9767.94 33.81 0.07

47-3 19092.00 18878.74 137.40 0.12 19094.80 18850.93 152.27 0.12
47-5 21419.90 20860.28 209.92 0.12 21158.00 20830.91 177.95 0.12
47-8 14315.90 13953.90 179.18 0.16 14082.10 13775.73 185.72 0.17
50-3 19688.90 19590.18 66.58 0.07 19735.80 19571.53 73.26 0.07
50-5 17192.20 16916.95 116.15 0.04 17052.40 16873.05 122.04 0.05
50-8 21729.20 21644.96 48.25 0.05 21709.00 21602.4 56.39 0.05
57-3 13647.40 13398.09 192.22 0.17 13732.70 13398.8 183.47 0.17
57-5 14376.70 13992.62 179.85 0.14 14239.10 13929.36 190.91 0.14
57-8 15093.40 14871.42 152.32 0.14 15162.00 14797.14 174.33 0.14
60-3 26169.50 25993.54 117.81 0.04 26221.70 25919.52 128.21 0.04
60-5 15903.30 15674.06 133.58 0.06 15941.00 15698.72 113.42 0.06
60-8 20933.20 20819.81 80.76 0.06 20910.50 20774.98 66.73 0.06

Mean 0.09 0.09

A ACO using Sum Rule

Table 8 shows ACO with the default model compared with ACO with the sum rule. The
default model consists of a distribution for each position or variable from which a task is
selected. In the sum rule, a task is selected by summing over the pheromone values of that
task over the preceding positions:

P(πi = k) =
[
∑i
l=1 τlk]ηβk∑

j∈J\{π1,...,πi−1}

(
[
∑i
l=1 τlj ]η

β
j

) (29)
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