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Abstract

Many real-world problems are composed of several interacting compo-
nents. In order to facilitate research on such interactions, the Traveling
Thief Problem (TTP) was created in 2013 as the combination of two well-
understood combinatorial optimization problems.

With this article, we contribute in four ways. First, we create a com-
prehensive dataset that comprises the performance data of 21 TTP algo-
rithms on the full original set of 9720 TTP instances. Second, we define 55
characteristics for all TPP instances that can be used to select the best
algorithm on a per-instance basis. Third, we use these algorithms and
features to construct the first algorithm portfolios for TTP, clearly out-
performing the single best algorithm. Finally, we study which algorithms
contribute most to this portfolio.

Keywords: Combinatorial optimization, instance analysis, algorithm
portfolio

1 Introduction

The complexity of operations is increasing in most companies, with several
interacting components having to be addressed at once. For example, the issue
of scheduling production lines (e.g., maximizing the efficiency or minimizing the
cost) has direct relationship with inventory costs, transportation costs, delivery-
in-full-on-time to customers, and hence should not be considered in isolation.
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In addition, optimizing one component of the operation may negatively impact
activities in other components.

The academic traveling thief problem (TTP) [6] is quickly gaining attention
as an NP-hard combinatorial optimization problem that combines two well-
known subproblems: the traveling salesperson problem (TSP) and the knapsack
problem (KP). These two components have been merged in such a way that
the optimal solution for each single one does not necessarily correspond to an
optimal TTP solution. The motivation for the TTP is to allow the systematic
investigation of interactions between two hard component problems, to gain
insights that eventually help solve real-world problems more efficiently [8].

Since the introduction of the TTP, many algorithms have been introduced
for solving it. While the initial approaches were rather generic hill-climbers,
researchers incorporated more and more domain knowledge into the algorithms.
For example, this resulted in deterministic, constructive heuristics, in restart
strategies, and also in problem-specific hill-climbers that try to solve the TTP
holistically. While the use of insights typically resulted in an increase in the
objective scores, the computational complexity also increased. Consequently,
which one of the algorithms performs best is highly dependent on the TTP
instance at hand. To exploit this complementarity of existing algorithms, here
we study the applicability of algorithm selection [44] to this problem.

Specifically, after describing the TTP (Section 2) and the algorithm selection
problem (Section 3), we make the following contributions:

• We analyze the performance of 21 TTP algorithms on the original set of
9720 instances created by Polyakovskiy, Bonyadi, Wagner, Michalewicz,
and Neumann [41] (Section 4);

• We describe characteristics of TTP instances that can be used as “fea-
tures” for determining the best algorithm for the instance (Section 5);

• We create the first algorithm portfolios for TTP, substantially improving
performance over the best single TTP algorithm (Section 6); and

• We analyze how complementary the algorithms in the portfolio are and
which algorithms are most important for achieving good performance (Sec-
tion 7).

2 The travelling thief problem (TTP)

The traveling thief problem (TTP) [6] is a recent attempt to provide an ab-
straction of multicomponent problems with dependency among components. It
combines two problems and generates a new problem with two components. In
particular, it combines the traveling salesperson problem (TSP) and the knap-
sack problem (KP), as both problems are well known and have been studied for
many years in the field of optimization.

In this section, we motivate the TTP as an academic problem that addresses
an important gap in research and then define it formally.
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2.1 Motivation

In contemporary business enterprises the complexity of real-world problems has
to be perceived as one of the greatest obstacles in achieving effectiveness. Even
relatively small companies are frequently confronted with problems of very high
complexity. Some researchers investigated features of real-world problems that
served to explain difficulties that Evolutionary Algorithms (EAs) experience in
solving them. For example, Weise, Zapf, Chiong, and Nebro [48] discussed pre-
mature convergence, ruggedness, causality, deceptiveness, neutrality, epistasis,
and robustness, which make optimization problems hard to solve. However,
it seems that these reasons are either related to the landscape of the prob-
lem (such as ruggedness and deceptiveness) or to the optimizer itself (such as
premature convergence and robustness) and do not focus on the nature of the
problem. Michalewicz and Fogel [35] discussed a few different reasons behind
the hardness of real-world problems, including problem size, presence of noise,
multi-objectivity, and presence of constraints. Most of these features have been
captured in different optimization benchmark sets, such as TSPlib [43], MI-
Plib [22] and OR-library [2].

Despite decades of research efforts and many articles written on Evolution-
ary Computation (EC) in dedicated conferences and journals, still it is not
that easy to find applications of EC in the real-world. Michalewicz [34] iden-
tified several reasons for this mismatch between academia and the real world.
One of these reasons is that academic experiments focused on single compo-
nent (single silo) benchmark problems, whereas real-world problems are often
multi-component problems. In order to guide the community towards this in-
creasingly important aspect of real-world optimization [8], the traveling thief
problem was introduced [6] in order to illustrate the complexities that arise by
having multiple interacting components.

A related problem is the vehicle routing problem (VRP, for an overview see
[3, 45]). The VRP is concerned with finding optimal routes for a fleet of vehicles
delivering or collecting items from different locations [11, 24]. Over the years,
a number of VRP variants have been proposed, such as variants with multiple
depots or with capacity constraints. However, the insights gained there do not
easily carry over to the academic TTP, as we consider in addition to the routing
problem not only a load-dependent feature, but also the NP-hard optimisation
problem of deciding which items are to be stolen by the thieves. For discussions
on how the TTP differs from the VRP, we refer the interested reader to [6, 7].

Despite being a challenging problem, it is often disputed whether the TTP is
realistic enough because it only allows a single thief to travel across hundreds or
thousands of cities to collect (steal) items. In addition, the thief is required to
visit all cities, regardless of whether an item is stolen there or not. Chand and
Wagner [10] discussed the shortcomings of the current formulation and presented
a relaxed version of the problem which allows multiple thieves to travel across
different cities with the aim of maximizing the group’s collective profit. A
number of fast heuristics were also proposed for solving the newly proposed
multiple travelling thieves problem (MTTP). It was observed that having a
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small number of additional thieves could yield significant improvements of the
objective scores in many cases.

2.2 Formal Definition

We use the definition of the TTP by [41]. Given is a set of cities N = {1, . . . , n}
and a set of items M = {1, . . . ,m} distributed among the cities. For any pair
of cities i, j ∈ N , we know the distance dij between them. Every city i, except
the first one, contains a set of items Mi = {1, . . . ,mi}, M = ∪

i∈N
Mi. Each item

k positioned in city i is characterized by its profit pik and weight wik, thus the
item Iik ∼ (pik, wik). The thief must visit all cities exactly once starting from
the first city and returning back to it in the end. Any item may be selected
in any city as long as the total weight of collected items does not exceed the
specified capacity W . A renting rate R is to be paid per each time unit taken
to complete the tour. υmax and υmin denote the maximal and minimum speeds
that the thief can move. The goal is to find a tour, along with a packing plan,
that results in the maximal profit.

The objective function uses a binary variable yik ∈ {0, 1} that is equal to
one when the item k is selected in the city i, and zero otherwise. Also, let Wi

denote the total weight of collected items when the thief leaves the city i. Then,
the objective function for a tour Π = (x1, . . . , xn), xi ∈ N and a packing plan
P = (y21, . . . , ynmi

) has the following form:

Z(Π, P ) =

n∑
i=1

mi∑
k=1

pikyik −R

(
dxnx1

υmax − νWxn

+

n−1∑
i=1

dxixi+1

υmax − νWxi

)

where ν = υmax−υmin

W is a constant value defined by input parameters. The first
term is the sum of all packed items’ profits and the second term is the amount
that the thief pays for the knapsack’s rent (equal to the total traveling time
along Π multiplied by R).

Note that different values of the renting rate R result in different TTP in-
stances that might be “harder” or “easier” to solve. For example, for small
values of R (relative to the profits), the overall rent contributes little to the
final objective score. In the extreme case R = 0, the best solution for a given
TTP instance is equivalent to the best solution of the KP component, which
means that there is no need to solve the TSP component at all. Similarly, high
renting rates reduce the effect of the profits, and in the extreme case the best
solution of the TTP is the optimum solution for the given TSP component.

We provide a brief example in the following (see Figure 1); full details are
given by Polyakovskiy et al [41]. Each city but the first has an assigned set
of items, e.g., city 2 is associated with item I21 of profit p21 = 20 and weight
w21 = 2, and with item I22 of profit p22 = 30 and weight w22 = 3. Let us
assume that the maximum weight W = 3, the renting rate R = 1 and υmax and
υmin are set as 1 and 0.1, respectively. Then the optimum objective value is
Z(Π, P ) = 50 when to tour is Π = (1, 2, 4, 3, 1) and when items I32 and I33 are
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Figure 1: Illustrative example for a TTP instance (taken from [41], with per-
mission)

picked up (total profit of 80). As the thief’s knapsack has a weight of 2 on the
way from city 3 back to city 1, this reduces the speed and results in an increased
cost of 15. Consequently, the final objective value is Z(Π, P ) = 80−15−15 = 50.

2.3 Algorithms for TTP

In the following, we provide a historical overview of approaches to the TTP. As
we shall later see, none of these algorithms dominates all others.

In the original article in which the TTP is defined, Bonyadi et al [6] used
exhaustive enumeration on instances with four cities and six items in order to
demonstrate the interconnected components. A year later, Polyakovskiy et al
[41] created a set of instances with up to almost 100,000 cities and 1,000,000
items, rendering exhaustive enumeration no longer feasible.

It were also Polyakovskiy et al [41] who proposed the first set of heuristics
for solving the TTP. Their general approach was to solve the problem using two
steps. The first step involved generating a good TSP tour by using the classical
Chained Lin-Kernighan heuristic [1]. The second step involved keeping the tour
fixed and applying a packing heuristic for improving the solution. Their first
approach was a simple heuristic (SH) which constructed a solution by processing
and picking items that maximized the objective value according to a given tour.
Items were picked based on a score value that was calculated for each item to
estimate how good it is according to the given tour. They also proposed two
iterative heuristics, namely the Random Local Search (RLS) and (1+1)-EA,
which probabilistically flipped a number of packing bits. After each iteration
the solution was evaluated and if an improvement was noted, the changes were
kept; otherwise they were ignored.

Bonyadi et al [7] experimentally investigated the interdependency between
the TSP and knapsack components of the TTP. They proposed two heuristic
approaches named Density-based Heuristic (DH) and CoSolver. DH is again
a two-phased approach similar to SH from Polyakovskiy et al [41], and it also
ignores any dependencies between the TSP and Knapsack components. In con-
trast to this, CoSolver is a method inspired by coevolution based approaches.
It divides the problem into sub-problems where each sub-problem is solved by
a different module of the CoSolver. The algorithm revises the solution through
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negotiation between its modules. The communication between the different
modules and sub-problems allows for the TTP interdependencies to be consid-
ered. A comparison across several benchmark problems showed the superiority
of CoSolver over DH. This was especially evident for larger instances.

Mei, Li, and Yao [31] also investigated the interdependencies between the
TSP and knapsack components. They analysed the mathematical formulation
to show that the TTP problem is not additively separable. Since the objectives
of the TSP and knapsack components are not fully correlated, one cannot ex-
pect to achieve competitive results by solving each component in isolation. The
authors used two separate approaches for solving the TTP: a cooperative co-
evolution based approach similar to CoSolver, and a memetic algorithm called
MATLS which attempts to solve the problem as a whole. The memetic al-
gorithm, which considered the interdependencies in more depth, outperformed
cooperative coevolution. Both works by Bonyadi et al [7] and Mei et al [31]
highlight the importance of considering interdependencies between the TTP
components as this will allow for the generation of more competitive solutions.

Faulkner, Polyakovskiy, Schultz, and Wagner [12] investigated multiple op-
erators and did a comprehensive comparison with existing approaches. They
proposed a number of operators, such as Bitflip and PackIterative, for op-
timising the packing plan given a particular tour. They also proposed Insertion
for iteratively optimising the tour given a particular packing. They combined
these operators in a number of simple (S1–S5) and complex (C1–C6) heuristics
that outperformed existing approaches. The main observation was that there
does not yet seem to be a single best algorithmic paradigm for the TTP. Their
individual operators, however, were quite beneficial in improving the quality of
results. While the proposed operators seem to have certain benefits, the simple
and complex heuristics did not consider the interdependencies between the TTP
components, since all of these approaches were multi-step heuristics. Surpris-
ingly, their best approach was a rather simple restart approach name S5 that
combines good TSP tours with the fast PackIterative.

Wagner [47] recently investigated the use of swarm intelligence approaches
with the so-called Max-Min Ant System (MMAS, by Stützle and Hoos [46]).
Wagner investigated the impact of two different TSP-specific local search (ls)
operators and of “boosting” TTP solutions using TTP-specific local search.
The resulting approaches focus less on short TSP tours, but more on good TTP
tours, which can be longer. This allowed them to outperform the previous best
approaches MATLS and S5 on relatively small instances with up to 250 cities
and 2000 items.

Yafrani and Ahiod [52] studied and compared different approaches for solv-
ing the TTP from a metaheuristics perspective. Two heuristic algorithms were
proposed, including a memetic algorithm (MA2B) and one using simulated an-
nealing (CS2SA). The results show that the new algorithms were competitive
to S5 and MATLS on a range of larger TTP instances.

Lastly, we would like to mention that no efficient complete solver for the
TTP is known. One of the reasons for this appears to be the fact that even
when the tour is kept fixed, packing is NP-hard [40].
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3 Algorithm Selection

As we shall see in Section 4, no algorithm dominates all other algorithms on
all instances. One way to exploit this complementarity of the algorithms is
to use algorithm selection [16, 44] to select a well-performing algorithm on a
per-instance base.

3.1 Problem Statement

The algorithm selection problem is to find a mapping from problem instances
to algorithms. This is realized by computing numerical characteristics – so-
called instance features – that describe a problem instance, and then learning
a mapping from the resulting feature space to algorithms. Figure 2 shows the
general workflow of algorithm selection.

We will describe instance features for the TTP later (in Section 5), but a
simple feature is, e.g., the number of cities. Based on these instance features, we
will select an algorithm from a portfolio of the 21 TTP algorithms we described
in Section 4.2 to solve the instance at hand.

The selection step is typically realized with machine learning methods. Based
on gathered training data (i.e., instance features and performance data on train-
ing instances), we learn a machine learning model that maps from instance
features to a well-performing algorithm.

3.2 Popular Algorithm Selection Approaches

One of the first successful algorithm selection procedures for satisfiability prob-
lems [4] was SATzilla [49]. It mainly used two concepts: (i) Learning an em-
pirical performance model [19, 25] to predict the performance of an algorithm
for a given instance and select the algorithm with the best predicted perfor-
mance; and (ii) Static algorithm schedules [15, 21, 49], which run a sequence of
algorithms with a runtime budget each. SATzilla uses such a static schedule
for “pre-solving”, to solve easy instances without the overhead of computing
features.

Other approaches include
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• classification models (e.g., ME-ASP by [28], 3S by [21], and CSHC by [27])
that directly learn a mapping from instance features to good algorithms;

• pairwise classification models (e.g., the more recent version of SATzilla [50]),
which learns a binary classifier for each pair of algorithms, weighting each
training instance by the performance difference between the two algo-
rithms (and thereby emphasizing instances for which the two algorithms’
performances differ a lot);

• unsupervised clustering (e.g., ISAC by [20]) to partition instances in
the feature space into homogeneous subsets and then select the best-
performing algorithm of the cluster a new instance is closest to; and

• recommender systems (e.g., [36]) to recommend an algorithm given only
partial training data.

For a thorough overview on algorithm selection procedures, we refer the inter-
ested reader to [23].

As was shown in the 2015 ICON challenge on algorithm selection1, there
currently exist two state-of-the-art algorithm selection approaches. The first is
the pairwise classification version of SATzilla [50], which won the ICON Chal-
lenge. The second is the automatic algorithm selection method AutoFolio sys-
tem [26]. AutoFolio uses the flexible FlexFolio framework [14], which combines
several different algorithm selection methods, and searches for the best suited
algorithm selection approach (and its hyperparameter settings) for a given algo-
rithm selection scenario using algorithm configuration [17] via the model-based
configurator SMAC [18]. For example, AutoFolio determines whether classifi-
cation or a regression approach will perform better and in case of classification,
how to set the hyperparameters of a random forest classifier [9]. As shown by
[26], AutoFolio often chooses the pair-wise classification approach of SATzilla,
but it is more robust than other algorithm selection approaches since it can
also switch to other approaches if necessary. As a result, AutoFolio established
state-of-the-art performance on several different domains in the algorithm se-
lection library [5] and performed best on two out of three tracks of the ICON
challenge.

4 Benchmarking of TTP Algorithms

An important step toward the creation of algorithm portfolios is the conduct of
experiments where one determines the performance of algorithms on the avail-
able problem instances. To this end, we introduce in this section the originally
defined set of TTP instances, and we outline the experimental setup and the
results.

1http://challenge.icon-fet.eu/
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4.1 Introduction of Benchmark Instances

For our investigations, we use the set of TTP instances defined by Polyakovskiy
et al [41].2 In these instances, the two components of the problem have been
balanced in such a way that the near-optimal solution of one sub-problem does
not dominate over the optimal solution of another sub-problem.

The characteristics of the original 9,720 instances vary widely. We outline
the most important ones in the following:3

• The instances have 51 to 85,900 cities, based on instances from the TSPlib
by [43];

• For each TSP instance, there are three different types of knapsack prob-
lems: uncorrelated, uncorrelated with similar weights and bounded strongly
correlated types, where the last type has been shown to be difficult for dif-
ferent types of knapsack solvers by [29, 41];

• For each TSP and KP combination, the number of items per city (referred
to as an item factor) is F ∈ {1, 3, 5, 10}. Note that all cities of a single
TTP instance have the same number of items, except for the first city
(which is also the last city), where no items are available;

• For each instance, the renting rate R that links both subproblems is chosen
in such a way that at least one TTP solution with an objective value of
zero exists;

• Lastly, for each TTP configuration of the above-mentioned characteristics
10 different instances exist where the knapsack capacity is varied.

The sheer size of this original TTP instance set makes comprehensive exper-
imental evaluations computationally expensive and the high-dimensional space
of characteristics further complicates comparisons. For this reason, different re-
searchers have selected different subsets, with each subset having (intentionally
or unintentionally) a particular bias. For example, only the very first article by
Polyakovskiy et al [41] considered the entire set of 9720 instances. Mei, Li, and
Yao [30] focused on 30 larger instances with 11849 to 33810 cities. Faulkner
et al [12] covered a wider range using 72 instances with 195 to 85900 cities, and
Wagner [47] used 108 instances with 51 to 1000 cities. Based on these individual
and incomplete glimpses at algorithm performance, it is difficult to grasp the
full picture.

4.2 Benchmark Results

In order to establish a reliable data set for the subsequent analyses, we run
existing TTP algorithms on all 9720 instances. This has the benefit of creating

2As available at the TTP project page: http://cs.adelaide.edu.au/~optlog/research/

ttp.php
3For a more detailed description, we refer the interested reader to [41, 42].
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the complete picture using the same hardware and other conditions for the
experiments.

As code for most of the TTP algorithms outlined in Section 2.3 is available
online, we can consider a wide range of different algorithms, which include con-
structive heuristics, hill-climbers, problem-agnostic and problem-specific heuris-
tics, single-solution heuristics and cooperative coevolutionary approaches. In
the following, we briefly list (in chronological order) the 21 considered algo-
rithms with their original names (and, where applicable, abbreviated names in
parentheses):

• [41]: SH, RLS, EA

• [7]: DH

• [31]: MATLS

• [12]: S1, S2, S3, S4, S5, C1, C2, C3, C4, C5, C6

• [52]: CS2SA

• [47]: MMASls3 (M3), MMASls4 (M4), MMASls3boost (M3B),
MMASls4boost (M4B).

We run all algorithms for a maximum of 10 minutes per instance. All com-
putations are performed on machines with Intel Xeon E5430 CPUs (2.66GHz)
and Java 1.8.

As the encountered objective scores cover several orders of magnitude, as
well as positive and negative scores, we assess the quality of the algorithms
using the following approach. For each TTP instance, we determine the best
and the worst objective scores; these two values define the boundaries of the
interval of observed objective scores for each instance. We then map actual
scores from this interval linearly to [0, 1], where the highest score is equivalent
to 1. In case an algorithm did not produce a score for a particular instance, e.g.
due to a time-out or crash, we assign to it the score of -1.

We report a performance overview across all 9720 instances in Figure 3. At
first sight, it appears that many algorithms perform comparably, since 19 of 21
algorithms achieve an average scaled performance of > 0.8. However, this is
largely because DH and SH often performed rather poorly and thus skew the
scale. Figure 4 zooms into the remaining 19 algorithms’ performance, showing
that, on average, S5 and the algorithms starting with C and M perform well.

These figures provide only a first indication, since the instance set they
are based on contains many small instances (which biases this performance
comparison such that algorithms performing well on small instances are favored),
and some algorithms do not finish (which reduces their average scores). In
particular, the following algorithms did not always produce solutions given the
time limit: MATLS (204 unsolved instances), M3 (721), M4 (720), M3B (1342),
M4B (1316), and CS2SA (6284). To the best of our knowledge, the first five
of these suffer from long subroutines that keep them from stopping after the
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Figure 3: Scaled performance of all 21 algorithms on all 9720 instances.
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Figure 4: Scaled performance of all algorithms (except SH and DH) on all 9720
instances. Algorithms with average scores > 0.93 (dashed line) are S5, C3, C4,
C6, MATLS, M3, M4, M3B, and M4B.

time limit is reached, while CS2SA crashes on these instances. We also note
that the algorithms starting with M dominate on smaller instances, and that
S5 performs well on larger instances. More detailed analyses will be presented
later.

We have made the performance data set publicly available: CSV format at
http://cs.adelaide.edu.au/~optlog/research/ttp.php.

5 Instance Features for the TTP

For our approach to algorithm portfolio generation, we need in addition to algo-
rithm performance data (see previous section) also data that describes problem
instances. In total we consider 55 TTP instance features. Of these, 47 are
TSP features from previous studies on TSP [32, 33, 37–39]. These fall into
seven groups, which we outline in the following, with the number of features in
parentheses.

Distance Features (11). These are based on summary statistics of the edge
cost distribution. Here, we consider the lowest, highest, mean and median edge
costs, as well as the proportion of edges with distances shorter than the mean
distance, the fraction of distinct distances (i.e. different distance levels), and
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the standard deviation of the distance matrix. Also, we consider the mode
frequency, quantity and mean. Finally, we used the expected tour length for a
random tour, given by the sum of all edge costs multiplied by 2/(N-1).

Mode Features (1). As an additional feature characterizing the distribution
of edge costs, we also include its number of modes as a feature.

Cluster Features (6). GDBSCAN is used for clustering where reachability
distances of 0.01, 0.05 and 0.1 are chosen. Derived features are the number of
clusters and the mean distances to the cluster centroids for each clusterization.

Nearest Neighbor Distance Features (6). Uniformity of an instance is
reflected by the minimum, maximum, mean, median, standard deviation and
the coefficient of variation of the normalized nearest-neighbor distances (nnd)
of each node.

Centroid Features (5). The x- and y-coordinates of the instance centroid
together with the minimum, mean and maximum distance of the nodes from
the centroid.

MST Features (11). Statistics which characterize the depth and the dis-
tances of the minimum spanning tree (MST). The minimum, mean, median,
maximum and the standard deviation of the depth and distance values of the
MST as well as the sum of the distances on the MST (which we normalize by
diving it by the sum of all pairwise distances).

Angle Features (5). This feature group comprises statistics of the distribu-
tion of angles between a node and its two nearest neighbor nodes: the minimum,
mean, median, maximum and standard deviation.

Convex Hull Features (2). The area of the convex hull of the instance
reflects the “spread” of the instance in the plane. Additionally, we compute the
fraction of nodes which define the convex hull.

In addition to these known TSP-specific features, we considered the following
eight features. The first four are features of the knapsack component and they
include the capacity of the knapsack, the knapsack type, the total number of
items, and the number of items per city. Next, we consider the number of
cities as a feature. Lastly, as TTP-specific features we have the renting ratio,
the minimum travel speed, and the maximum travel speed. It is important to
note that these last eight do not require any processing, as they are part of the
definition of the instances.

Future investigations should include additional TTP-specific features. A
first step towards this has been taken by Polyakovskiy and Neumann [40] with
their concept of “profitable/unprofitable” items for the special case when tours
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Simulated System Approach Performance

Single Best (S5) Baseline 0.959
Oracle Theoretical Optimum 1.0

SATzilla’09 -like Regression (Lasso-
Regression)

0.966

SATzilla’11 -like Pairwise Classification
(RF)

0.993

ISAC -like Clustering (k-means) 0.989
3S -like Classification (k-NN) 0.992

Table 1: Comparing different algorithm selection approaches on TTP

are fixed. Since we are not considering this restriction, their concept does not
easily carry over.

6 Experimental Study of Algorithm Selection
on TTP

We follow the approach of [14] by studying the performance of different, well-
known algorithm selection approaches. In detail, we ran FlexFolio4 (using
Python 2.7.6 and sklearn 0.14.1) with various approaches which simulate the
behavior of existing systems: SATzilla’09 (regression approach), SATzilla’11
(cost-sensitive pairwise-classification), ISAC (clustering) and 3S (direct clas-
sification with k = 32 nearest neighbors). Since we do not optimize the run-
time of our TTP algorithms but an objective score, we cannot directly apply
(pre-solving) algorithm schedules for TTP and hence, we focus on the classical
algorithm selection approach by selecting one algorithm per instance.

To this end, we created an algorithm selection benchmark scenario in the
format of the algorithm selection library (ASlib; [5]) from our TTP benchmark
data.5 It includes the performance values for all our algorithms and the instance
features for each instance. Furthermore, our ASlib scenario also provides the
splits for a 10-fold cross validation to obtain an unbiased performance estimate
(i.e., the instances are randomly split into 10 equally sized sets and in each
iteration, one of the splits is used as a test set to validate our algorithm selection
procedure and all others are used to train the algorithm selector; the overall
performance of an algorithm selection procedure is then the average performance
across all iterations). With all this information saved, our ASlib scenario allows
for hardware-independent reproducibility of our experiments.

Table 1 shows the performance of the different approaches on TTP. Our
baseline is the performance of the single best algorithm, i.e., always using the

4http://www.ml4aad.org/flexfolio/
5Our TTP-2016 ASlib scenario is in the “not verified” branch of http://www.aslib.net.
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algorithm that performs best across all instances. The single best algorithm
with a performance of 0.958 is S5 (as previously shown in Section 4). Due
to the scaling of the objective scores, the best possible score on each instance
is 1. Therefore, the theoretical optimal performance of a perfect algorithm
selection procedure (so-called oracle or virtual-best solver) is also 1 here, i.e.,
the algorithm selector would always select best performing algorithm for each
instances.

The best-performing algorithm selection approaches are the ones of SATzilla’11
and 3S with a nearly optimal performance of above 0.99. This closes the per-
formance gap between the single best solver and the oracle by almost 90%.
SATzilla’09 and ISAC also outperformed the single best. One possible reason
for the good performance of algorithm selection for this application is the large
instance set. Most other instance sets studied in algorithm selection only con-
sist of hundreds or a few thousand instances (cf. ASlib by [5]). The resulting
availability of more data makes the machine learning problem easier.

We also ran the fully automated AutoFolio approach for a day of wallclock
time on 4 cores to automatically determine a good portfolio. Since the best
FlexFolio approach (i.e., SATzilla’11 ) already performed well, AutoFolio was
only able to improve performance further by a very small margin in the 4th
decimal. In fact, AutoFolio also decided for the SATzilla’11 approach and only
changed the hyperparameters of the underlying random forest slightly.

7 Analysis of Algorithm Complementarity with
Shapley Values

A necessary requirement for algorithm selection to perform well is that the
portfolio of algorithms is complementary on the used instances. A first indicator
for the complementarity of the portfolio is the difference between the single best
algorithm and the oralce performance (see Section 6). This difference of 0.041
in our benchmarks appears to be small, but we have to remember that 19 of 21
algorithms achieved average scaled objective scores of > 0.8.

Figure 5 shows the performance correlation across instances (based on Spear-
man’s rank coefficients) between all pairs of algorithms. This figure shows that
the algorithms form clusters that reflect their historical development. For ex-
ample, C* and S* fall into one cluster (all use the same fast packing heuristic),
the ant-colony approaches M* form one cluster, and early hill-climbers EA with
RLS in another one. The algorithms CS2SA, SH, DH and MATLS are com-
plementary to all other algorithms. We note that this analysis only provides
insights about similarity of algorithms, but it is not a sufficient indicator about
the applicability of algorithm selection since one of the algorithms could still
dominate all other algorithms.

Another approach of assessing complementarity of algorithms is the marginal
contribution to the oracle performance [51], i.e., how much the oracle perfor-
mance of an existing portfolio will be improved by adding a new algorithm to
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Figure 5: Spearman rank coefficients in a heatmap (dark fields correspond to
large correlation). The algorithms are sorted by hierarchical clustering using
Ward’s method.

S5 19038.091
C4 18975.841
C3 18959.998
C6 18802.206
C5 18751.375

MATLS 18593.291
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S3 18090.325
EA 17610.045

RLS 17547.679
M3 17480.118
M4 17444.665

M4B 16248.037
M3B 16227.732

Dh 14226.355
SH 10356.043

CS2SA 6517.236

1089.157
1057.732

1055.155
1027.216
1023.032

1056.274

972.92
970.558

967.737

969.797
968.651

966.755
928.937
925.898

981.636
982.51

919.483
903.344
729.913
529.018
414.268

18.68

2.117
1.53

0.437
0.456

19.717

0.173

0.263

0.107

0.213
0.227

0.15

0
0

6.41
4.613

12.521

2.849

0
0

58.396

Standalone performanceShapley valueMarginal contribution

Figure 6: Standalone performance, Shapley values and contributions to the
oracle for all 9720 instances.

it. This approach has the disadvantage of being strongly dependent on a fixed
portfolio. To get a broader overview of an algorithm’s contribution, an exten-
sion of the marginal contribution analysis consists of using Shapley values [13],
i.e., the marginal contribution of an algorithm to any subset of the algorithm
portfolio.

Figure 6 shows the ranking of the different algorithms based on their stan-
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dalone performance (i.e., running only one algorithm on all instances), the Shap-
ley values, and the marginal contribution to the oracle performance.6 S5 has
the highest standalone performance and the highest Shapley value, but surpris-
ingly it is only ranked third on the marginal contribution. Hence, S5 is a very
important algorithm as a standalone and in smaller portfolios, but does not con-
tribute as much on top of the combination of the other algorithms as algorithm
CS2SA (which has the lowest standalone performance and Shapley value but
the highest marginal contribution). This demonstrates that CS2SA, despite its
poor average performance, performs very well on a subset of instances – and
reliably enough so for the algorithm portfolio to exploit. Once the algorithmic
issues of CS2SA are fixed we expect to see significantly better average perfor-
mances by this algorithm. The ant-colony approaches M* do not perform too
well on average, but they can make useful contributions to algorithm portfo-
lios since they perform very well on small instances. Lastly, on the low end of
the performance spectrum are two constructive heuristics DH/SH and the two
uninformed hill-climbers RLS/EA. While they performed reasonably well when
they were introduced, they have since then been outclassed by more informed
approaches. But even the slightly informed approaches S1/S2/S3/S4, which
use good TSP tours and TTP-specific packing operators, are not competitive
anymore when being compared to more recent developments.

In summary, we can see that well-performing algorithm portfolios include
problem-solving approaches of different complexities in order to deal with the
wide range of existing TTP instances: there are swarm-intelligence approaches
for small instances, memetic and multi-step heuristics for mid-size instances, and
the large instances the relatively simple restart approach S5 is a good choice.

8 Analysis of Feature Importance and Their Cal-
culation Time

As the calculation of instance features forms an important step in the applica-
tion of algorithm portfolios, we review the necessary calculation times in the
following. In addition, we analyze which features are the most important ones
for algorithm selection and we investigate how subsets of features impact com-
putation time and portfolio performance.

To date, the established computation budget for TTP benchmarking is 10
minutes single-core CPU time per instance. For algorithm selection to be ef-
fective, and if only a single algorithm is to be run once, the calculation time of
the instance features should not take up a large proportion of these 10 minutes.
However, several of the features are computationally costly, for example, be-
cause of complete distance matrix has to be generated, or because a clustering
algorithm needs to be run. As a consequence, the calculation time of all 55
features for a single given instance ranges from a few seconds for the smallest

6The shown scores in Figure 6 are sums across all instances, plus an offset of “+1” to
accommodate negative performance averages.
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Figure 7: Average feature importances of the top 15 features based on Gini
importance across all pair-wise random forest models. The error-bars indicate
the 25th and 75th percentile.

TTP instances to hours for the largest ones; for example, the calculations for
the eil51* instances take about 2 seconds, those for the pla7397* instances are
approaching 10 minutes, and the calculations for the pla33810* instances even
exceed 20 hours.

To investigate which features are actually needed, as this has the potential
to save significant amounts of time that then becomes available for the op-
timizaiton algorithm, we compute for each of the 55 features the average Gini
importance [9] across all pair-wise random forests models. The results are shown
in Figure 7, revealing that only a small portion of the TTP features actually
matter. Interestingly, these are mostly basic knapsack features:

1. CAPACITYOFKNAPSACK: the KP feature defining the knapsack capac-
ity.

2. RENTINGRATIO: the TTP feature that connects the KP and the TSP.

3. NUMBEROFITEMS: the KP feature stating the total number of available
items.

4. KNAPSACKDATATYPE: the KP feature stating the knapsack type.

5. DIMENSION: the TSP feature stating the total number of cities.

As the previous portfolio investigations in Section 6 were done using all 55
features, we now repeat the algorithm selection experiment using only the most
important features and our best-performing approach from SATzilla’11. The
resulting performances are 0.977, 0.980, 0.986, 0.988, and 0.992 (going from
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using only the most important feature to using the five most important ones).
The results show that with just a small subset of the features we can achieve a
portfolio performance comparable to the best one from Section 6 (0.993).

Remarkably, all five features are given in the instance file’s header, and are
thus “computable” in constant time. Out of these five, CAPACITYOFKNAP-
SACK and RENTINGRATIO need to be defined by the instance. If NUM-
BEROFITEMS or DIMENSION are missing, then they can be computed by
going through the instance file once and counting the total numbers of items
or cities. KNAPSACKDATATYPE is not a computable feature, as it is a pa-
rameter that was used in the generation of the instance; for our considered
instance set, however, this field is always provided. Even if it is not considered,
for example when using only the three most important features, we still achieve
a performance of 0.986, which is a substantial improvement over the baseline
approach S5 (0.959).

From these experiments we see that the exploitation of immediately avail-
able instance features results in a substantial average performance increase that
is comparable to a significantly more time-consuming one that requires the cal-
culation of all 55 features.

The question now is whether we can learn even more from these outcomes.
The visualization and interpretation of the raw outputs of the portfolios is chal-
lenging due to the large numbers of instances, features, and randomized algo-
rithms. Nevertheless, let us briefly consider as an example the portfolio when
only the feature CAPACITYOFKNAPSACK is used. Let us sort the 9720 in-
stances according to their CAPACITYOFKNAPSACK values, and let us now
consider the list of algorithms as they are selected. As expected, this list con-
tains long (but not always continuous) stretches where the same algorithms are
selected; in particular, the M* algortihms dominate on the tiny instances, and
S5 dominates on mid-sized and large instances. If we do the same ordering
for the algorithm selector that uses the five most important features, then the
overall picture changes slightly. On the smallest ∼3000 instances, different com-
plex algorithms dominate, and for the tiniest these are often the M* approaches
which tend to generate the longest tours. The largest ∼3000 instances are typ-
ically assigned to either CS2SA (a fast implementation of search operators) or
S5 (resampling solutions), which are two very different approaches.

9 Concluding Remarks

In this article, we presented the first study of algorithm portfolios for the TTP.
We first studied the performance of 21 existing TTP algorithms on the full orig-
inal set of 9720 TTP instances created by Polyakovskiy et al [41] and defined 55
instance features for TTP. Then, we studied various different approaches for the
resulting algorithm selection problem, showing very substantial improvements
over the single best algorithm and closing the gap between it and an omni-
scient oracle by 90%. Finally, we studied which algorithms contribute most to
the portfolio, finding that the algorithms with best average performance (e.g.
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the complex ones C3–C6 and MATLS, and the swarm-intelligence approaches
that start with M) were quite important for the portfolio because of their per-
formance on small and mid-sized TTP instances. Interestingly, the relatively
simple heuristic S5 continues to dominate in particular on the large TTP in-
stances and thus is one of the most important contributors to well-performing
portfolios. Despite this general trend, the algorithm with the worst average per-
formance, CS2SA, added substantial benefit on top of all other algorithms. An
analysis of the feature importance revealed that the values for the five most im-
portant features can be extracted from the instance definition in constant time.
The resulting portfolio that uses only this subset has a performance comparable
to the one that uses all 55 features that can take hours to compute.

In future work, we aim to study which features make TTP instances hard for
which algorithm and why, and whether we can identify a smaller representative
subset of TTP instances to speed up future benchmarking studies.
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matic algorithm configuration framework. Journal of Artificial Intelligence
Research 36:267–306

[18] Hutter F, Hoos H, Leyton-Brown K (2011) Sequential model-based opti-
mization for general algorithm configuration. In: Coello C (ed) Proceedings
of the Fifth International Conference on Learning and Intelligent Optimiza-
tion (LION’11), Springer-Verlag, Lecture Notes in Computer Science, vol
6683, pp 507–523

[19] Hutter F, Xu L, Hoos H, Leyton-Brown K (2014) Algorithm runtime pre-
diction: Methods and evaluation. Artificial Intelligence 206:79–111

[20] Kadioglu S, Malitsky Y, Sellmann M, Tierney K (2010) ISAC - instance-
specific algorithm configuration. In: Coelho H, Studer R, Wooldridge M
(eds) Proceedings of the Nineteenth European Conference on Artificial In-
telligence (ECAI’10), IOS Press, pp 751–756

[21] Kadioglu S, Malitsky Y, Sabharwal A, Samulowitz H, Sellmann M (2011)
Algorithm selection and scheduling. In: Lee J (ed) Proceedings of the Sev-
enteenth International Conference on Principles and Practice of Constraint
Programming (CP’11), Springer-Verlag, Lecture Notes in Computer Sci-
ence, vol 6876, pp 454–469

20



[22] Koch T, Achterberg T, Andersen E, Bastert O, Berthold T, Bixby RE,
Danna E, Gamrath G, Gleixner AM, Heinz S, Lodi A, Mittelmann H,
Ralphs T, Salvagnin D, Steffy DE, Wolter K (2011) MIPLIB 2010. Math-
ematical Programming Computation 3(2):103–163

[23] Kotthoff L (2014) Algorithm selection for combinatorial search problems:
A survey. AI Magazine pp 48–60

[24] Laporte G (1992) The vehicle routing problem: An overview of exact
and approximate algorithms. European Journal of Operational Research
59(3):345 – 358

[25] Leyton-Brown K, Nudelman E, Shoham Y (2002) Learning the empirical
hardness of optimization problems: The case of combinatorial auctions. In:
Hentenryck PV (ed) Principles and Practice of Constraint Programming
- CP 2002, Springer, Lecture Notes in Computer Science, vol 2470, pp
556–572

[26] Lindauer M, Hoos H, Hutter F, Schaub T (2015) Autofolio: An auto-
matically configured algorithm selector. Journal of Artificial Intelligence
53:745–778

[27] Malitsky Y, Sabharwal A, Samulowitz H, Sellmann M (2013) Algorithm
portfolios based on cost-sensitive hierarchical clustering. In: Rossi F (ed)
Proceedings of the 23rd International Joint Conference on Artificial Intel-
ligence (IJCAI’13), pp 608–614

[28] Maratea M, Pulina L, Ricca F (2014) A multi-engine approach to answer-
set programming. Theory and Practice of Logic Programming 14:841–868

[29] Martello S, Pisinger D, Toth P (1999) Dynamic programming and strong
bounds for the 0-1 knapsack problem. Management Science 45(3):414–424

[30] Mei Y, Li X, Yao X (2014) Improving efficiency of heuristics for the large
scale traveling thief problem. In: Simulated Evolution and Learning, LNCS,
vol 8886, Springer, pp 631–643

[31] Mei Y, Li X, Yao X (2014) On investigation of interdependence between
sub-problems of the TTP. Soft Computing 20(1):157–172

[32] Mersmann O, Bischl B, Bossek J, Trautmann H, Wagner M, Neumann
F (2012) Local search and the traveling salesman problem: A feature-
based characterization of problem hardness. In: Hamadi Y, Schoenauer M
(eds) Learning and Intelligent Optimization: 6th International Conference
(LION 6), Springer, pp 115–129

[33] Mersmann O, Bischl B, Trautmann H, Wagner M, Bossek J, Neumann F
(2013) A novel feature-based approach to characterize algorithm perfor-
mance for the traveling salesperson problem. Annals of Mathematics and
Artificial Intelligence 69(2):151–182

21



[34] Michalewicz Z (2012) Ubiquity symposium: Evolutionary computation and
the processes of life: The emperor is naked: Evolutionary algorithms for
real-world applications. Ubiquity 2012(November):3:1–3:13

[35] Michalewicz Z, Fogel DB (2004) How to solve it - modern heuristics: second,
revised and extended edition (2. ed.). Springer

[36] Mısır M, Sebag M (2013) Algorithm selection as a collaborative fil-
tering problem. Tech. rep., INRIA-Saclay, URL http://hal.inria.fr/

hal-00922840

[37] Nallaperuma S, Wagner M, Neumann F (2013) Ant colony optimisation
and the traveling salesperson problem: Hardness, features and parameter
settings. In: Proceedings of the 15th Annual Conference Companion on Ge-
netic and Evolutionary Computation, ACM, New York, NY, USA, GECCO
’13 Companion, pp 13–14

[38] Nallaperuma S, Wagner M, Neumann F, Bischl B, Mersmann O, Traut-
mann H (2013) A feature-based comparison of local search and the
christofides algorithm for the travelling salesperson problem. In: Proceed-
ings of the Twelfth Workshop on Foundations of Genetic Algorithms XII,
ACM, New York, NY, USA, FOGA XII ’13, pp 147–160

[39] Nallaperuma S, Wagner M, Neumann F (2014) Parameter prediction based
on features of evolved instances for ant colony optimization and the travel-
ing salesperson problem. In: Parallel Problem Solving from Nature PPSN
XIII, LNCS, vol 8672, Springer, pp 100–109

[40] Polyakovskiy S, Neumann F (2015) Packing while traveling: Mixed integer
programming for a class of nonlinear knapsack problems. In: Integration
of AI and OR Techniques in Constraint Programming, LNCS, vol 9075,
Springer, pp 330–344

[41] Polyakovskiy S, Bonyadi MR, Wagner M, Michalewicz Z, Neumann F
(2014) A comprehensive benchmark set and heuristics for the traveling thief
problem. In: Genetic and Evolutionary Computation Conference, ACM, pp
477–484

[42] Polyakovskiy S, Bonyadi MR, Wagner M, Michalewicz Z, Neumann
F (2014) TTP Test Data. See http://cs.adelaide.edu.au/~optlog/

research/ttp.php

[43] Reinelt G (1991) TSPLIB - A Traveling Salesman Problem Library. ORSA
Journal on Computing 3(4):376–384

[44] Rice J (1976) The algorithm selection problem. Advances in Computers
15:65–118

22

http://hal.inria.fr/hal-00922840
http://hal.inria.fr/hal-00922840
http://cs.adelaide.edu.au/~optlog/research/ttp.php
http://cs.adelaide.edu.au/~optlog/research/ttp.php


[45] Rizzoli AE, Montemanni R, Lucibello E, Gambardella LM (2007) Ant
colony optimization for real-world vehicle routing problems. Swarm Intel-
ligence 1(2):135–151
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