Skip to main content
Log in

Scaling-up many-objective combinatorial optimization with Cartesian products of scalarization functions

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

The trade-off between the exploration of large size neighborhoods and the exploitation of Pareto fronts with high cardinality is a challenging task for the metaheuristics for many-objective combinatorial optimization problems. Cartesian products of scalarization functions, or simpler, Cartesian scalarization, is a novel technique that simplifies the search by reducing the number of objectives using sets of scalarization functions. Cartesian scalarization is an alternative to scalarization functions that scales up the local search for many-objective spaces. We introduce a method that automatically generates Cartesian scalarization functions; we use combinatorics to analyze the properties of Cartesian scalarization functions. Cartesian scalarization local search (CsLs) uses a set of Cartesian scalarization functions to generate a quality Pareto local front. We show that CsLs is a well-defined local search algorithm that converges to a Pareto local solution set in finite time. Cartesian scalarization outperforms other Pareto and scalarization local search methods on many-objective combinatorial optimization instances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre, H.E., Tanaka, K.: Working principles, behavior, and performance of MOEAs on MNK-landscapes. Eur. J. Oper. Res. 181(3), 1670–1690 (2007)

    Article  MATH  Google Scholar 

  • Angel, E., Bampis, E., Gourvès, L.: Approximating the pareto curve with local search for the bicriteria TSP(1, 2) problem. Theor. Comput. Sci. 310(1–3), 135–146 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  • Bader, J., Zitzler, E.: Hype: an algorithm for fast hypervolume-based many-objective optimization. Evol. Comput. 19(1), 45–76 (2011)

    Article  Google Scholar 

  • Basseur, M., Seynhaeve, F., Talbi, E.-G.: Path relinking in pareto multi-objective genetic algorithms. In: Evolutionary Multi-Criterion Optimization EMO, pp. 120–134 (2005)

  • Bleuler, S., Laumanns, M., Thiele, L., Zitzler, E.: PISA: a platform and programming language independent interface for search algorithms. In: Evolutionary Multi-criterion Optimization (EMO), pp. 494–508 (2003)

  • Blot, A., Pernet, A., Jourdan, L., Kessaci-Marmion, M.-É., Hoos, H.H.: Automatically configuring multi-objective local search using multi-objective optimisation. In: Evolutionary Multi-Criterion Optimization (EMO), pp. 61–76 (2017)

  • Chiarandini, M.: Stochastic local search methods for highly constrained combinatorial optimisation problems: graph colouring, generalisations, and applications. PhD thesis, Darmstadt University of Technology, Germany (2005)

  • Coelho, V.N., Oliveira, T.A., Coelho, I.M., Coelho, B.N., Fleming, P.J., Guimarães, F.G., Lourenço, H.R.D., Souza, M.J.F., Talbi, E.-G., Lust, T.: Generic pareto local search metaheuristic for optimization of targeted offers in a bi-objective direct marketing campaign. Comput. Oper. Res. 78, 578–587 (2017)

    Article  MathSciNet  Google Scholar 

  • Daolio, F., Liefooghe, A., Vérel, S., Aguirre, H.E., Tanaka, K.: Global versus local search on multi-objective NK-landscapes: contrasting the impact of problem features. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 369–376 (2015)

  • Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Drugan, M.M.: Cartesian product of scalarization functions for many-objective QAP instances with correlated flow matrices. In: Genetic and Evolutionary Computation Conference, (GECCO), pp. 527–534 (2013)

  • Drugan, M.M.: Sets of interacting scalarization functions in local search for multi-objective combinatorial optimization problems. In: 2013 IEEE Symposium on Computational Intelligence in Multi-criteria Decision-Making, (MCDM), pp. 41–47 (2013)

  • Drugan, M.M., Thierens, D.: Stochastic pareto local search: Pareto neighbourhood exploration and perturbation strategies. J. Heuristics 18(5), 727–766 (2012)

    Article  Google Scholar 

  • Dubois-Lacoste, J., López-Ibáñez, M., Stützle, T.: Improving the anytime behavior of two-phase local search. Ann. Math. Artif. Intell. 61(2), 125–154 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrgott, M.: Multicriteria Optimization. Springer, London (2005)

    MATH  Google Scholar 

  • Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer, Berlin (2008)

    Book  MATH  Google Scholar 

  • Hansen, P.: Bicriterion Path Problems, pp. 109–127. Springer, London (1980)

    MATH  Google Scholar 

  • Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier/Morgan Kaufmann (2004)

  • Ishibuchi, H., Sakane, Y., Tsukamoto, N., Nojima, Y.: Simultaneous use of different scalarizing functions in MOEA/D. In: Genetic and Evolutionary Computation Conference, (GECCO), pp. 519–526 (2010)

  • Jaszkiewicz, A., Lust, T.: Nd-tree: a fast online algorithm for updating a pareto archive and its application in many-objective pareto local search. CoRR abs/1603.04798 (2016)

  • Knowles, J.D., Corne, D.: Properties of an adaptive archiving algorithm for storing nondominated vectors. IEEE Trans. Evolut. Comput. 7(2), 100–116 (2003)

    Article  Google Scholar 

  • Li, H., Zhang, Q., Deng, J.: Biased multiobjective optimization and decomposition algorithm. IEEE Trans. Cybern. 47(1), 52–66 (2017)

    Article  Google Scholar 

  • Liefooghe, A., Humeau, J., Mesmoudi, S., Jourdan, L., Talbi, E.-G.: On dominance-based multiobjective local search: design, implementation and experimental analysis on scheduling and traveling salesman problems. J. Heuristics 18(2), 317–352 (2012)

    Article  MATH  Google Scholar 

  • Lust, T., Teghem, J.: Two-phase pareto local search for the biobjective traveling salesman problem. J. Heuristics 16(3), 475–510 (2010)

    Article  MATH  Google Scholar 

  • Miettienen, K.: Nonlinear Multiobjective Optimization. Springer, US (1998)

    Book  Google Scholar 

  • Paquete, L.: Stochastic Local Search Algorithms for Multiobjective Combinatorial Optimization: Methods and Analysis. IOS Press (2006)

  • Paquete, L., Chiarandini, M., Stutzle, T.: Pareto local optimum sets in the biobjective traveling salesman problem: an experimental study. In: Metaheuristics for Multiobjective Optimization, pp. 177–200. Springer, Berlin (2004)

  • Paquete, L., Schiavinotto, T., Stützle, T.: On local optima in multiobjective combinatorial optimization problems. Ann. Oper. Res. 156(1), 83–97 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Paquete, L., Stützle, T.: A study of stochastic local search algorithms for the biobjective QAP with correlated flow matrices. Eur. J. Oper. Res. 169(3), 943–959 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Pasia, J.M., Aguirre, H.E., Tanaka, K.: Path relinking on many-objective nk-landscapes. In: Parallel Problem Solving from Nature—PPSN, pp. 677–686 (2010)

  • Saxena, D.K., Duro, J.A., Tiwari, A., Deb, K., Zhang, Q.: Objective reduction in many-objective optimization: linear and nonlinear algorithms. IEEE Trans. Evolut. Comput. 17(1), 77–99 (2013)

    Article  Google Scholar 

  • Talbi, E.-G., Basseur, M., Nebro, A.J., Alba, E.: Multi-objective optimization using metaheuristics: non-standard algorithms. Int. Trans. Oper. Res. 19(1–2), 283–305 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • While, R.L., Bradstreet, L., Barone, L.: A fast way of calculating exact hypervolumes. IEEE Trans. Evolut. Comput. 16(1), 86–95 (2012)

    Article  Google Scholar 

  • Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evolut. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach. IEEE Trans. Evolut. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

  • Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca, V.G.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

  • Zydallis, J.B., van Veldhuizen, D.A., Lamont, G.B.: A statistical comparison of multiobjective evolutionary algorithms including the MOMGA-II. In: Evolutionary Multi-criterion Optimization (EMO), pp. 226–240 (2001)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mădălina M. Drugan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drugan, M.M. Scaling-up many-objective combinatorial optimization with Cartesian products of scalarization functions. J Heuristics 24, 135–172 (2018). https://doi.org/10.1007/s10732-017-9361-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-017-9361-x

Keywords

Navigation