Skip to main content
Log in

A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Adaptive large neighborhood search (ALNS) is a useful framework for solving difficult combinatorial optimisation problems. As a metaheuristic, it consists of some components that must be tailored to the specific optimisation problem that is being solved, while other components are problem independent. The literature is sparse with respect to studies that aim to evaluate the relative merit of different alternatives for specific problem independent components. This paper investigates one such component, the move acceptance criterion in ALNS, and compares a range of alternatives. Through extensive computational testing, the alternative move acceptance criteria are ranked in three groups, depending on the performance of the resulting ALNS implementations. Among the best variants, we find versions of criteria based on simulated annealing, threshold acceptance, and record-to-record travel, with a version of the latter being consistently undominated by the others. Additional analyses focus on the search behavior, and multiple linear regression is used to identify characteristics of search behavior that are associated with good search performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beasley, J.: Or-library: distributing test problems by electronic mail. J. Oper. Res. Soc. 41(11), 1069–1072 (1990)

    Article  Google Scholar 

  • Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-race and iterated f-race: an overview. In: Bartz-Beielstein, T., Chiarandini, M., Paquete, L., Preuss, M. (eds.) Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Berlin (2010)

    Chapter  Google Scholar 

  • Burak, B., Özcan, E., Korkmaz, E.E.: An experimental study on hyper-heuristics and exam timetabling. In: International Conference on the Practice and Theory of Automated Timetabling, pp 394–412. Springer, Berlin (2006)

  • Burkard, R.E., Karisch, S.E., Rendl, F.: QAPLIB—a quadratic assignment problem library. J. Global Optim. 10(4), 391–403 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  • Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam timetabling problems. In: PATAT 2008 Conference, Montreal, Canada (2008)

  • Burke, E.K., Bykov, Y.: The late acceptance hill-climbing heuristic. Technical Report CSM-192, University of Stirling, Technical Report (2012)

  • Burke, E.K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., Qu, R.: Hyper-heuristics: a survey of the state of the art. J. Oper. Res. Soc. 64(12), 1695–1724 (2013)

    Article  Google Scholar 

  • Christofides, N., Mingozzi, A., Toth, P.: The vehicle routing problem. In: Mingozzi, A., Toth, P., Sandi, C., Christofides, N. (eds.) Combinatorial Optimization, pp. 315–338. Wiley, New York (1979)

    Google Scholar 

  • Connolly, D.: General purpose simulated annealing. J. Oper. Res. Soc. 43(5), 495–505 (1992)

    Article  MATH  Google Scholar 

  • Demir, E., Bektaş, T., Laporte, G.: An adaptive large neighborhood search heuristic for the pollution-routing problem. Eur. J. Oper. Res. 223(2), 346–359 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Dueck, G.: New optimization heuristics: the great deluge algorithm and the record-to-record travel. J. Comput. Phys. 104, 86–92 (1993)

    Article  MATH  Google Scholar 

  • Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing. J. Comput. Phys. 90, 161–175 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  • Furini, F., Malaguti, E., Santini, A.: An exact algorithm for the Partition Coloring Problem. Comput. Oper. Res. 1–17 (2017) (submitted)

  • Glover, F.: Multi-start and strategic oscillation methods principles to exploit adaptive memory. In: Laguna, M., Velarde, J.L.G. (eds.) Computing Tools for Modeling, Optimization and Simulation, Operations Research/Computer Science Interfaces Series, vol. 12, pp. 1–24. Springer, Boston, MA (2000)

    Chapter  Google Scholar 

  • Glover, F., Laguna, M.: Tabu Search. Kluwer Academic Publisher, Dordrecht (1997)

    Book  MATH  Google Scholar 

  • Golden, B.L., Wasil, E.A., Kelly, J.P., Chao, I.M., Crainic, T.: The impact of metaheuristics on solving the vehicle routing problem: algorithms, problem sets, and computational results. In: Laporte, G. (ed.) Fleet Management and Logistics, pp. 33–56. Springer, Berlin (1998)

    Chapter  Google Scholar 

  • Grangier, P., Gendreau, M., Lehuédé, F., Rousseau, L.M.: An adaptive large neighborhood search for the two-echelon multiple-trip vehicle routing problem with satellite synchronization. Eur. J. Oper. Res. 254(1), 80–91 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  • Gullhav, A., Cordeau, J.F., Hvattum, L.M., Nygreen, B.: Adaptive large neighborhood search heuristics for multi-tier service deployment problems in clouds. Eur. J. Oper. Res. 259, 829–846 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hansen, P., Mladenović, N.: Variable neighborhood search: principles and applications. Eur. J. Oper. Res. 130, 449–467 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  • Hemmati, A., Hvattum, L.: Evaluating the importance of randomization in adaptive large neighborhood search. Int. Trans. Oper. Res. 24, 929–942 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  • Hemmelmayr, V., Cordeau, J.F., Crainic, T.: An adaptive large neighborhood search heuristic for two-echelon vehicle routing problems arising in city logistics. Comput. Oper. Res. 39(12), 3215–3228 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Hutter, F., Hoos, H., Leyton-Brown, K., Stützle, T.: Paramils: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36(1), 267–306 (2009)

    Article  MATH  Google Scholar 

  • Irnich, S., Toth, P., Vigo, D.: The family of vehicle routing problems. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, Chap 1, 2nd edn, pp. 1–33. SIAM, Philadelphia (2014)

    Google Scholar 

  • James, T., Rego, C., Glover, F.: Multistart tabu search and diversification strategies for the quadratic assignment problem. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 39(3), 579–596 (2009)

    Article  Google Scholar 

  • Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  • Landa-Silva, D., Obit, J.: Great deluge with non-linear decay rate for solving course timetabling problems. In: 4th International IEEE Conference on Intelligent Systems, 2008. IS’08, vol. 1, pp. 8–11. IEEE (2008)

  • Laporte, G., Ropke, S., Vidal, T.: Heuristics for the vehicle routing problem. In: Toth, P., Vigo, D. (eds.) Vehicle Routing: Problems, Methods, and Applications, Chap 4, 2nd edn, pp. 87–116. SIAM, Philadelphia (2014)

    Chapter  Google Scholar 

  • Lawler, E.L.: The quadratic assignment problem. Manag. Sci. 9(4), 586–599 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  • Lei, H., Laporte, G., Guo, B.: The capacitated vehicle routing problem with stochastic demands and time windows. Comput. Oper. Res. 38(12), 1775–1783 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  • Li, F., Golden, B., Wasil, E.: Very large-scale vehicle routing: new test problems, algorithms, and results. Comput. Oper. Res. 32(5), 1165–1179 (2005)

    Article  MATH  Google Scholar 

  • Li, Y., Pardalos, P., Resende, M.: A greedy randomized adaptive search procedure for the quadratic assignment problem. Quadratic Assign. Relat. Problems DIMACS Ser. Discrete Math. Theor. Comput. Sci. 16, 237–261 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  • Merz, P., Freisleben, B.: Fitness landscape analysis and memetic algorithms for the quadratic assignment problem. IEEE Trans. Evol. Comput. 4(4), 337–352 (2000)

    Article  Google Scholar 

  • Muller, L., Spoorendonk, S., Pisinger, D.: A hybrid adaptive large neighborhood search heuristic for lot-sizing with setup times. Eur. J. Oper. Res. 218(3), 614–623 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Parragh, S.N., Schmid, V.: Hybrid column generation and large neighborhood search for the dial-a-ride problem. Comput. Oper. Res. 40, 490–497 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Pisinger, D., Ropke, S.: A general heuristic for vehicle routing problems. Comput. Oper. Res. 34(8), 2403–2435 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  • Potvin, J.Y., Rousseau, J.M.: A parallel route building algorithm for the vehicle routing and scheduling problem with time windows. Eur. J. Oper. Res. 66(3), 331–340 (1993)

    Article  MATH  Google Scholar 

  • Ribeiro, G., Laporte, G.: An adaptive large neighborhood search heuristic for the cumulative capacitated vehicle routing problem. Comput. Oper. Res. 39(3), 728–735 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Rochat, Y., Taillard, É.D.: Probabilistic diversification and intensification in local search for vehicle routing. J. Heuristics 1(1), 147–167 (1995)

    Article  MATH  Google Scholar 

  • Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006a)

    Article  Google Scholar 

  • Ropke, S., Pisinger, D.: A unified heuristic for a large class of vehicle routing problems with backhauls. Eur. J. Oper. Res. 171(3), 750–775 (2006b)

    Article  MathSciNet  MATH  Google Scholar 

  • Ropke, S., Santini, A.: Parallel adaptive large neighbourhood search. OR-16-11, DEI University of Bologna (2016)

  • Ruiz, R., Stützle, T.: A simple and effective iterated greedy algorithm for the permutation flowshop scheduling problem. Eur. J. Oper. Res. 177(3), 2033–2049 (2007)

    Article  MATH  Google Scholar 

  • Schmid, V.: Hybrid large neighborhood search for the bus rapid transit route design problem. Eur. J. Oper. Res. 238, 427–437 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  • Schrimpf, G., Schneider, J., Stamm-Wilbrandt, H., Dueck, G.: Record breaking optimization results using the ruin and recreate principle. J. Comput. Phys. 159(2), 139–171 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  • Shaw, P.: Using constraint programming and local search methods to solve vehicle routing problems. In: CP-98 (Fourth International Conference on Principles and Practice of Constraint Programming), Lecture Notes in Computer Science, vol. 1520, pp. 417–431 (1998)

  • Stützle, T.: Iterated local search for the quadratic assignment problem. Eur. J. Oper. Res. 174(3), 1519–1539 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Uchoa, E., Fukasawa, R., Lysgaard, J., Pessoa, A., De Aragao, M., Andrade, D.: Robust branch-cut-and-price for the capacitated minimum spanning tree problem over a large extended formulation. Math. Program. 112(2), 443–472 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  • Uchoa, E., Pecin, D., Pessoa, A., Poggi, M., Subramanian, A., Vidal, T.: New benchmark instances for the capacitated vehicle routing problem. Technical Report, UFF, Rio de Janeiro, Brazil. http://www.optimization-online.org/DB_HTML/2014/10/4597.html (2014)

Download references

Acknowledgements

The authors thank two anonymous referees for their helpful comments that led to several improvements of the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Santini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santini, A., Ropke, S. & Hvattum, L.M. A comparison of acceptance criteria for the adaptive large neighbourhood search metaheuristic. J Heuristics 24, 783–815 (2018). https://doi.org/10.1007/s10732-018-9377-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-018-9377-x

Keywords

Navigation