Skip to main content
Log in

Cascading failures in complex networks caused by overload attacks

  • Published:
Journal of Heuristics Aims and scope Submit manuscript

Abstract

Complex networks are known to be vulnerable to the failure of components in terms of structural robustness. An as yet less researched topic is dynamical robustness, which refers to the ability of a network to maintain its dynamical activity against local disturbances. This paper introduces a new type of attack—the overload attack—to disturb the network’s dynamical activity. The attack is based on the load redistribution model for sequential attacks. The main contribution are heuristics to assess the vulnerability of complex networks with respect to this type of attack. The effectiveness of the heuristics is demonstrated with an application for real power networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Albert, R., Albert, I., Nakarado, G.L.: Structural vulnerability of the north american power grid. Phys. Rev. E 69, 025103 (2004)

    Article  Google Scholar 

  • Bienstock Daniel (2016) Electrical transmission system cascades and vulnerability—an operations research viewpoint, vol. 22 of MOS-SIAM Series on Optimization. SIAM

  • Braess, D., Nagurney, A., Wakolbinger, T.: On a paradox of traffic planning. Transp. Sci. 39(4), 446–450 (2005)

    Article  Google Scholar 

  • Crucitti, P., Latora, V., Marchiori, M.: Model for cascading failures in complex networks. Phys. Rev. E 69, 045104 (2004)

    Article  Google Scholar 

  • Crucitti, P., Latora, V., Marchioori, M.: Locating critical lines in high-voltage electrical power grids. Fluct. Noise Lett. 05(02), L201–L208 (2005)

    Article  Google Scholar 

  • Faramondi, L., Setola, R., Panzieri, S., Pascucci, F., Oliva, G.: Finding critical nodes in infrastructure networks. Int. J. Crit. Infrastruct. Prot. 20, 3–15 (2018)

    Article  Google Scholar 

  • Ghosh, S.: Distributed Systems: An Algorithmic Approach. Chapman and Hall, Boca Raton (2006)

    Book  Google Scholar 

  • Hasan, S., Ghafouri, A., Dubey, A., Karsai, Gabor, K., Xenofon, K: Vulnerability analysis of power systems based on cyber-attack and defense models. In ISGT, Washington DC, 2018. IEEE (2018)

  • Lehmann, J., Bernasconi, J.: Stochastic load-redistribution model for cascading failure propagation. Phys. Rev. E 81, 031129 (2010)

    Article  Google Scholar 

  • Li, B., Lu, R., Choo, K.-K.R., Wang, W., Luo, S.: On reliability analysis of smart grids under topology attacks: a stochastic petri net approach. ACM Trans. Cyber-Phys. Syst. 3(1), 10:1–10:25 (2018)

    Google Scholar 

  • Liu, X., Li, Z., Liu, X., Li, Z.: Masking transmission line outages via false data injection attacks. IEEE Trans. Inf. Forensics Secur. 11(7), 1592–1602 (2016). https://doi.org/10.1109/TIFS.2016.2542061. ISSN 1556-6013

    Article  Google Scholar 

  • Liu, X., Shahidehpour, M., Li, Z., Liu, X., Cao, Y., Li, Z.: Power system risk assessment in cyber attacks considering the role of protection systems. IEEE Trans. Smart Grid 8(2), 572–580 (2017)

    Google Scholar 

  • Lv, D., Eslami, A., Cui, S.: Load-dependent cascading failures in finite-size Erdős-Rényi random networks. IEEE Trans. Netw. Sci. Eng. 4(2), 129–139 (2017)

    Article  Google Scholar 

  • Motter, A.E., Lai, Y.-C.: Cascade-based attacks on complex networks. Phys. Rev. E 66, 065102 (2002)

    Article  Google Scholar 

  • Power flow model of the main continental European transmission network. https://www.powerworld.com/HrBknowledge-base/updated-and-validated-power-flow-model-of-the-main-continental-european-transHrBmission-network. Accessed: 30 Jan 2018

  • Pultarova, T.: Cyber security: Ukraine grid hack is wake-up call for network operators. Eng. Technol. 11(1), 12–13 (2016)

    Article  Google Scholar 

  • Seo, J., Mishra, S., Li, X., Thai, M.: Catastrophic cascading failures in power networks. Theor. Comput. Sci. 607(3), 306–319 (2015)

    Article  MathSciNet  Google Scholar 

  • Sturm, L.D., Williams, C.B., Camelio, J.A., White, J., Parker, R.: Cyber-physical vulnerabilities in additive manufacturing systems: a case study attack on the.STL file with human subjects. J. Manuf. Syst. 44, 154–164 (2017)

    Article  Google Scholar 

  • Taormina, R., Galelli, S., Tippenhauer, N., Salomons, E., Ostfeld, A.: Characterizing cyber-physical attacks on water distribution systems. J. Water Resour. Plan. Manag. 143(5), 04017009 (2017)

    Article  Google Scholar 

  • Thai, M., Pardalos, P. (eds.): Handbook of Optimization in Complex Networks, Volume 57 of Springer Optimization and Its Applications. Springer, New York (2012)

    Google Scholar 

  • Vaiman, M., Bell, K., Chen, Y., Chowdhury, B., Zhang, : Risk assessment of cascading outages: methodologies and challenges. IEEE Trans. Power Syst. 27(2), 631–641 (2012)

    Article  Google Scholar 

  • Wang, W., Cai, Q., Sun, Y., He, H..: Risk-aware attacks and catastrophic cascading failures in US power grid. In: Global Telecommunications Conference, pp. 1–6 (2011)

  • Wang, W.-X., Chen, G.: Universal robustness characteristic of weighted networks against cascading failure. Phys. Rev. E 77, 026101 (2008)

    Article  Google Scholar 

  • Wang, J.-W., Rong, L.-L.: Cascade-based attack vulnerability on the US power grid. Saf. Sci. 47(10), 1332–1336 (2009)

    Article  Google Scholar 

  • Wang, W., Zhuo, L.: Cyber security in the smart grid: survey and challenges. Comput. Netw. 57(5), 1344–1371 (2013). ISSN 1389-1286

    Article  Google Scholar 

  • Warnier, M., Dulman, S., Koç, Y., Pauwels, E.: Distributed monitoring for the prevention of cascading failures in operational power grids. Int. J. Crit. Infrastruct Prot. 17, 15–27 (2017)

    Article  Google Scholar 

  • Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  • Wu, Z., Peng, G., Wang, W.-X., Chan, S., Wong, E.W.-M.: Cascading failure spreading on weighted heterogeneous networks. J. Stat. Mech. Theory Exp. 2008(5), P05013 (2008)

    Article  Google Scholar 

  • Xiang, Y., Ding, Z., Zhang, Y., Wang, L.: Power system reliability evaluation considering load redistribution attacks. IEEE Trans. Smart Grid 8(2), 889–901 (2017)

    Google Scholar 

  • Zhang, J., Dai, Y., Zou, K., Song, B., Zhang, Z.: Vulnerability analysis of the US power grid based on local load-redistribution. Saf. Sci. 80, 156–162 (2015)

    Article  Google Scholar 

  • Zhu, Y., Yan, J., Tang, Y., Sun, Y.L., He, H.: Resilience analysis of power grids under the sequential attack. IEEE Trans. Inf. Forensics Secur. 9(12), 2340–2354 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Turau.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

A preliminary version of this paper was presented at the Joint Workshop on Cyber-Physical Security and Resilience in Smart Grids, April 2016. Vienna, Austria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turau, V., Weyer, C. Cascading failures in complex networks caused by overload attacks. J Heuristics 25, 837–859 (2019). https://doi.org/10.1007/s10732-019-09413-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10732-019-09413-0

Keywords

Navigation