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Abstract

Hybrid flow shops can be encountered in various industrial settings. In this paper we develop

methods for scheduling hybrid flow shops with hard time windows. Specifically, we study

a two-stage hybrid flow shop scheduling problem with time windows to minimize the total

weighted completion times. Each stage consists of one or more identical parallel machines,

and each job visits two processing stages in series. Finding a feasible schedule with hard time

windows is a challenging task in this setting, because it is NP-complete in the strong sense even

for a single machine in a single stage. We propose two matheuristics to find an initial feasible

solution by local branching. We also develop two schedule improvement procedures, one based

on stage-by-stage decomposition, and one using adapted local branching. The performance of

our methods is validated via extensive computational experiments.

Keywords: hybrid flow shop, scheduling, time windows, matheuristic, local branching

1 Introduction

A hybrid flow shop consists of two or more processing stages, where each stage contains one or more

machines in parallel. This type of production layout is used very frequently in the manufacturing

industry, especially in process industries, for instance in the production of food, beverages, chem-

icals, textile, glass, pulp, rubber, plastic, and fabricated metal. Due to this wide occurrence, the

optimization of the scheduling of hybrid flow shops has attracted the attention from many scholars

(e.g., for the glass industry (Almada-Lobo et al., 2008; Liu et al., 2017), consumer goods (Baumann

and Trautmann, 2013), potash (Schulze et al., 2016), steel (Pan, 2016), and electronics (Bang and

∗ORCID: 0000-0001-5239-6762.
†Corresponding author. E-mail address: Roel.Leus@kuleuven.be, tel.: +32 16 32 69 67, ORCID: 0000-0002-

9215-3914.

1



Kim, 2011; Shahvari and Logendran, 2018)). Apart from pure manufacturing settings, the two-

stage hybrid flow shop has also been used as a model for other planning environments, such as the

integration of production and delivery (e.g., concrete production (Garcia and Lozano, 2005), food

catering (Chen and Vairaktarakis, 2005), perishable foods (Viergutz and Knust, 2014)), and quay

crane and yard truck scheduling for inbound containers (Kaveshgar and Huynh, 2015). As a result,

hybrid flow shop scheduling occupies an important role in contemporary operations management.

For any company, moreover, the assurance of on-time completion and delivery of customer

orders is a key factor in its daily operations (Garcia and Lozano, 2005; Berghman and Leus, 2015).

During operational scheduling, this assurance can be modelled as a time window constraint for

each order, each with its own release date and deadline. Related studies on scheduling with time

windows are scarce, and most previous literature has focused on a single machine environment (Pan

and Shi, 2005; Jula and Kones, 2013; Davari et al., 2016). Chamnanlor et al. (2014) investigate

a re-entrant hybrid flow shop, where the time window controls the time spent by a job in the

different processing stages. To the best of our knowledge, there is no related work on general

hybrid flow shop scheduling with hard time windows. There are, however, a number of articles

that consider the minimization of tardiness (Garcia and Lozano, 2005; Huang and Yang, 2008;

Berghman and Leus, 2015) instead of the use of hard time windows, which is an understandable

choice as obtaining even simply a feasible solution is difficult with hard time windows, especially

for large-sized instances.

In this paper, we study the minimization of the total weighted completion times in a two-stage

hybrid flow shop, where each job must be processed between its ready time and deadline. Following

the standard three-field notation of Graham et al. (1979), with additions by Haouari et al. (2006)

and Pinedo (2016), our problem can be denoted as F2(P )|ri, d̄i|
∑
wiCi. Our main contributions

are twofold: firstly, two matheuristics are developed to produce an initial feasible solution; both are

based on the concept of local branching. Secondly, we propose two schedule improvement proce-

dures, one based on stage-by-stage decomposition, and one using local branching. The performance

of our methods is validated via extensive computational experiments.

The remainder of this paper is structured as follows. Section 2 summarizes the related literature.

In Section 3 we provide a formal problem statement and a time-indexed formulation. Section 4
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introduces local branching, which is essential to most of the algorithms proposed. In Section 5

we present two matheuristics to obtain an initial feasible solution, and in Section 6 we describe

two improvement methods. Section 7 contains the computational results, and Section 8 provides

a summary and conclusions.

2 Literature review

Comprehensive surveys of hybrid flow shop scheduling can be found in Quadt and Kuhn (2007),

Ribas et al. (2010) and Ruiz and Vazquez-Rodriguez (2010). In this section we first review the

complexity of scheduling hybrid flow shops and of scheduling with time windows. Subsequently,

we provide an overview of the solution methods that have been used to date for hybrid flow shop

scheduling.

Hybrid flow shop scheduling is NP-hard in the strong sense for most objective functions, since

it directly generalizes the classic flow shop and the parallel machine setting. For instance, problems

F3||Cmax and F2||
∑
Ci are both NP-hard in strong sense (Garey et al., 1976). Yet, there also

exist specific variants that can be addressed in polynomial time (Hall et al., 2000; Guirchoun et al.,

2005). Moreover, almost every scheduling problem with hard time windows (with release dates

or deadlines) seems to be difficult. Lenstra et al. (1977), for instance, show that 1|ri|
∑
wiCi is

strongly NP-hard, and finding a feasible solution for 1|ri, d̄i|− is strongly NP-complete (Garey

et al., 1976). From these results, we conclude that problem F2(P )|ri, d̄i|
∑
wiCi is also NP-hard

in the strong sense.

Probably due to the inherent complexity of hybrid flow shops, only few articles work with

exact methods. The earliest branch-and-bound (B&B) algorithm was introduced by Brah and

Hunsucker (1991) for the problem F (P )||Cmax, where the schedule for each machine at every stage

is a sequence of jobs; the overall problem is tackled stage by stage. The B&B method solves

instances with up to eight jobs and two stages. Azizoglu et al. (2001) propose a novel branching

scheme, where the schedule of each stage is represented by a sequence of jobs and the jobs are

assigned to the earliest available machine by sequence order. The performance of their scheme is

better than Brah and Hunsucker’s, but the instance size that can be solved is still very limited (up

to 15 jobs). Haouari et al. (2006) design a specific B&B algorithm for the problem F2(P )||Cmax,
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including tight lower and upper bounding procedures at each node and a feasibility and adjustment

procedure. The algorithm can solve rather large instances (with up to 1000 jobs) in reasonable

runtimes. Wang et al. (2015) propose a B&B algorithm for a two-stage hybrid flow shop with

no-wait constraints, capable of handling up to 20 jobs. Other B&B approaches can also be found

in the literature (see, for instance, Néron et al., 2001; Lee and Kim, 2004; Allaoui and Artiba, 2006;

Hadda et al., 2014). The instance size that B&B methods can solve is typically quite small, but the

methods can also serve as the basis for other algorithms, such as beam search and A-star search.

A notable exception is the work by Haouari et al. (2006), who also solve larger instances, but we

cannot equal their performance in this paper because the weighted completion time objective does

not allow for equally strong lower bounds, and since finding a feasible solution is NP-hard, it is

almost impossible to compute an upper bound by a fast heuristic at each node.

Mixed-integer programming (MIP) is another way to obtain exact solutions, especially in real-

world environments, since a variety of hard and complicated constraints often arise in practical

settings, which are typically easily incorporated in a MIP formulation. Sawik (2001) investigates

an assembly line of printed wiring board with finite buffers and job blocking. He describes a

MIP formulation for makespan minimization, which can handle jobs with different product types.

Berghman et al. (2014) examine a practical case of dock assignment, where trailers park at a parking

zone and are assigned to warehouse gates during a given time period for loading or unloading. The

transportation between gates and the parking zone is performed by tractors. They model this

setting as a three-stage hybrid flow shop, and various MIP formulations are examined. The best

performance is achieved by a time-indexed formulation, which can solve medium-sized instances

to optimality. Further practical studies can be found in Gicquel et al. (2012) and Simpson and

Abakarov (2013).

In light of the difficulty of scheduling hybrid flow shops, heuristic methods are typically a

convenient and efficient choice. Heuristics can be classified into two categories (Quadt and Kuhn,

2007): “while holistic approaches consider the complete scheduling problem in an integrated way,

decomposition approaches divide the problem with respect to the production stages, the individual

jobs, or the sub-problems to be solved (batching, loading, and sequencing).” Most holistic heuristics

are based on local search and meta-heuristics. Pan et al. (2017), for instance, present an iterated
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search with greedy and local search to minimize earliness and tardiness in a hybrid flow shop. Belaid

et al. (2012) use a greedy algorithm, a novel ant colony optimization with features of simulated

annealing (taken from T’kindt et al. (2002)) and a dedicated heuristic to solve a practical case

in the shampoo industry. For further examples of holistic heuristics, we refer to Komaki et al.

(2016), Lei and Guo (2016) and Liu et al. (2017). Decomposition strategies have also been used to

break up the scheduling of a hybrid flow shop into independent stages. Bang and Kim (2011), for

instance, study a semiconductor wafer probing problem. To minimize total tardiness, they employ

a bottleneck-focused technique, which first constructs a schedule on the bottleneck workstation and

subsequently considers the other stages. Similar strategies can be found in Shahvari and Logendran

(2018) and Tan et al. (2018).

Hybrid flow shops occur widely in current-day manufacturing, and are often enriched with

complex and practical constraints such as limited buffers (Baumann and Trautmann, 2013; Liu

et al., 2017), no buffers (Grabowski and Pempera, 2000; Gicquel et al., 2012), limited-waiting

restrictions (Gicquel et al., 2012), no-wait constraints (Grabowski and Pempera, 2000; Berghman

et al., 2014; Berghman and Leus, 2015), machine eligibility constraints (Liu et al., 2017; Shahvari

and Logendran, 2018), re-entrant flows (Chamnanlor et al., 2014; Schulze et al., 2016), batch

processing (Liu et al., 2017; Tan et al., 2018), release dates (Shahvari and Logendran, 2018),

sequence-dependent setup times (Bang and Kim, 2011), dedicated machines (Hadda et al., 2014),

and so on. These technical constraints often arise with multiple stages (Almada-Lobo et al., 2008;

Gicquel et al., 2012; Baumann and Trautmann, 2013; Chamnanlor et al., 2014) and large-scale

instances (Almada-Lobo et al., 2008; Baumann and Trautmann, 2013; Schulze et al., 2016; Liu et al.,

2017), resulting in a complicated and difficult problem. Chamnanlor et al. (2014), for example,

solve a case of hard-disk production with 17 stages. Baumann and Trautmann (2013) study a

case of consumer goods with four stages, 59 intermediates and 203 final products. Almada-Lobo

et al. (2008) handle the mass production of glass containers, where each production line outputs

thousands of products per minute. We conclude that the development of efficient approaches for

finding high-quality solutions to large hybrid flow shop instances is a valuable area of study.
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3 Problem description

We schedule a set N = {1, . . . , n} of n independent jobs in a two-stage hybrid flow shop, where m1

and m2 identical parallel machines constitute stages 1 and 2, respectively. The machines in each

stage are gathered in sets M1 = {1, . . . ,m1} and M2 = {1, . . . ,m2}. Each job i has associated

processing times at each stage denoted by pi1 and pi2, a release date ri, a deadline d̄i, and a

weight wi. Each job is assigned to a machine at each stage, while each machine can handle at most

one job at a time. Each processing stage for each job is executed without preemption, machine

breakdowns are not considered, and the buffer capacity between the two stages is infinite. The

scheduling objective is to minimize the total weighted completion time of the final processing stage,

which is a criterion that often occurs in industrial scheduling (Panwalkar et al., 1973; Tang and

Wang, 2010; Simpson and Abakarov, 2013).

Below, we provide a mathematical programming model M0 to describe the problem more

clearly. Berghman et al. (2014) test and compare an assignment-based formulation, a flow for-

mulation and a time-indexed formulation for the problem Pm||
∑
wiCi. They observe that the

time-indexed formulation has the best performance by far; for instances with 15 jobs and five

machines, for example, the time-indexed formulation only needs an average of around one sec-

ond, while the other two formulations spend more than one hour per instance. Based on this

result, we propose a time-indexed formulation for our problem, where time is divided into pe-

riods, with period t starting at time t − 1 and ending at time t. The planning horizon is

H =
{

mini∈N{ri}, . . . ,maxi∈N{d̄i − pi2 + 1}
}

. We also define ri1 = ri, ri2 = ri + pi1, τi1 =

d̄i − pi2 − pi1 + 1 and τi2 = d̄i − pi2 + 1. Let Hij be the set of potential start periods of each job i

at stage j, i.e., Hi1 = {ri1, ri1 + 1, . . . , τi1} and Hi2 = {ri2, . . . , τi2}. The formulation uses binary

decision variables xijt ∈ {0, 1}, for i ∈ N , j = 1, 2 and t ∈ Hij , where xijt = 1 if job i starts at

period t in stage j, and xijt = 0 otherwise. The time-indexed model M0 is as follows:

min
∑
i∈N

wi
∑
t∈Hi2

xi2t(t+ pi2 − 1) (1)

subject to

∑
i∈N

min{t,τij}∑
k=max{t−pij+1,rij}

xijk ≤ mj , ∀j = 1, 2, ∀t ∈ H (2)
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∑
t∈Hij

xijt = 1, ∀i ∈ N, ∀j = 1, 2 (3)

∑
t∈Hi2

txi2t −
∑
t∈Hi1

txi1t ≥ pi1, ∀i ∈ N (4)

Constraints (2) state that the number of jobs processed in any period cannot exceed the ma-

chine capacity, constraints (3) imply that each job is scheduled exactly once in every stage, and

constraints (4) ensure precedence constraints between two stages. The latter constraints can be

replaced by the following set of stronger constraints (Christofides et al., 1987):

τi1∑
k=t

xi1k +

min{τi2,t+pi1−1}∑
k=ri2

xi2k ≤ 1, ∀i ∈ N, ∀t ∈ Hi1. (5)

Constraint set (5) also increases the size of the formulation, and it therefore does not automatically

improve the computational performance; its application should depend on the specific environment

(see Berghman et al., 2014; Berghman and Leus, 2015). In preliminary computational experiments,

we have found that the equation set (5) tends to lead to models that are so large that the solver

can simply not handle them anymore, and so we will use the inequalities (4) throughout the text.

Example 1 Consider an example instance with the job data in Table 1.

Table 1: Job data
Job i pi1 pi2 wi ri d̄i

1 7 9 4 20 44

2 13 67 8 5 140

3 52 21 2 4 170

4 72 58 5 24 194

5 56 62 6 0 223

6 53 20 1 1 157

Table 2: An optimal schedule

Job S1 C1 S2 C2

1 20 26 27 35

2 5 17 18 84

3 27 78 85 105

4 56 127 128 185

5 0 55 56 117

6 79 131 132 151

We let m1 = m2 = 2. An optimal schedule is described in Table 2, where the columns Si and Ci

contain the starting and completion period in stage i for each job (i = 1, 2). The model M0 for this

instance contains 792 binary variables and 344 constraints; the optimal objective value is 2800.

The corresponding Gantt chart is shown in Figure 1.

4 Local branching

The model M0 in Section 3 is a 0-1 integer programming model with many binary variables xijt,

and the bottleneck to its solution is the efficient search of this large feasible set of binary variables.

In this section we briefly introduce local branching (Fischetti and Lodi, 2003), which is a search
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Figure 1: Gantt chart of the optimal schedule for Example 1

method that uses a regular solver to improve a given solution locally and iteratively. In Sections 5

and 6, local branching will prove to be a useful tool in the development of a number of matheuristics

for the scheduling problem at hand.

The basic idea of local branching is to employ a regular solver as a black-box “tactical” tool to

explore the proper solution subspaces that are defined and controlled at a “strategic” level by an

external branching structure. Unlike a “standard” branching scheme, local branching considers an

imbalanced tree where one branch has a small feasible set and can be solved by the solver, whereas

the other branch has a considerably larger feasible set that is difficult to explore completely. After

solving the small branch, the larger one is branched into two imbalanced descendants again. The

basic scheme is illustrated in Figure 2. As usual, the incumbent solution is updated each time a

better solution is encountered.

We denote a feasible solution to model M0 by x. Let x(0) be an initial solution and S̄ =

{xijt|x(0)
ijt = 1}. Then we can confine the search space to contain only solutions x that respect the

following constraint, with r a predetermined radius:

|x− x(0)| =
∑

xijk∈S̄

(1− xijk) +
∑

xijk /∈S̄

xijk ≤ r, (6)

where the two terms in the left-hand side of the inequality count the number of binary variables

that, compared to x(0), “flip” their value either from 1 to 0 or from 0 to 1, respectively. If the

cardinality of S̄ of any feasible solution is a constant (which is the case for model M0), then the
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|x− x(2)| ≤ r |x− x(2)| ≥ r + 1

no improved solution

Figure 2: Illustration of the tree structure for local branching

constraint (6) can be replaced by ∑
xijt∈S̄

(1− xijt) ≤ r′, (7)

with r′ = r/2. Constraint (6) or (7) confines the solution domain to a hypercube centered at x(0),

which defines the smaller branch. In the larger branch, we impose

|x− x(0)| ≥ r + 1. (8)

The smaller branch (node 1), i.e. the original model with the constraint (6), can be solved by a

regular solver. The optimal solution is denoted by x(1). Subsequently, the larger branch (node 2)

can be branched into a smaller branch (node 3) with the constraint |x − x(1)| ≤ r, and a larger

branch (node 4) with the constraint |x−x(1)| ≥ r+1. Nodes 3 and 4 also include the constraint (8),

since it defines their parent node 2. Subsequently, we can use a solver to solve node 3. If there is no

improved solution (node 5 in Figure 2), this situation leads to node 6 with constraint |x− x(2)| ≥

r + 1, and the branching procedure is halted. More algorithmic details of the local branching

scheme can be found in Fischetti and Lodi (2003), who also state that the resulting node 6 can

then typically be solved be a solver.

5 Initialization

In this section, we first describe how to produce an initial schedule while ignoring the deadline

constraints. Subsequently, two matheuristics are proposed to find a feasible solution based on an

input reference solution that has violated deadlines. The first one is referred to as infeasible schedule
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repair (ISR), and employs local branching directly. The second approach is called feasible schedule

search by artificial variables (FSSA) and is adapted from Fischetti and Lodi (2008); the procedure

relaxes constraints violated by the input schedule by means of artificial variables in model M0, and

then repairs the infeasibility by local branching. Another potential approach would be to change

the job deadlines d̄i into due dates di and minimize the total tardiness: when the total tardiness

is zero then the schedule is feasible. The corresponding problem F2(P )|ri, di|
∑
Ti is NP-hard in

the strong sense, however, and an optimal solution procedure for this problem takes a prohibitive

amount of time, which is why we do not follow this approach in this paper. Improvements in the

objective function can be achieved using the methods in Section 6.

5.1 Initial schedule generation

We first introduce a schedule representation and generation scheme. Subsequently we describe a

job window heuristic (JWH), which aims to improve the schedule quality by iteratively and locally

optimizing a sub-sequence of the schedule representation within a varying job window.

5.1.1 Schedule representation and generation

We represent a schedule by means of a pair (η1, η2) of ordered job lists (below also referred to

as “sequences” or “permutations”), one for each stage. In detail, η1 = (`11, `21, . . . , `n1) and

η2 = (`12, `22, . . . , `n2), where `ij is the i-th listed job at stage j, with j = 1, 2. A schedule

representation is transformed into a schedule using the so-called serial generation scheme (Kolisch,

1996), which iteratively selects the next job in the list and schedules it as early as possible. The

scheme takes machine capacities, ready times and stage precedence into account, but not the

deadlines. If there exists a feasible schedule, then a list pair exists that generates such a schedule.

A stronger result also holds: with a regular objective function (i.e., non-decreasing with task

completion times), there always exists a list pair that leads to an optimal schedule by the serial

generation scheme. The optimal schedule in Example 1, for instance, can be obtained from the list

pair ((5, 2, 1, 3, 4, 6), (2, 1, 5, 3, 4, 6)).

Example 2 Consider the instance described in Example 1. Applying the serial schedule generation

scheme to the list pair ((1, 2, 3, 4, 5, 6), (1, 5, 4, 3, 2, 6)) leads to the schedule in Table 3. This schedule

is infeasible because jobs 2, 3 and 6 violate their deadlines (printed in boldface).
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Table 3: The schedule generated in Example 2

Jobs S1 C1 S2 C2 d̄i

1 20 26 27 35 44

2 5 17 178 244 140

3 18 69 157 177 170

4 27 98 99 156 194

5 70 125 126 187 223

6 99 151 188 207 157

Many choices can be made for the initial list pair, for instance by ordering the jobs in non-

decreasing order of their deadlines. Another possible way to generate a list pair is by solving the

linear relaxation of model M0 and then ordering the jobs in non-decreasing order of their average

starting time in each stage. The main drawback of this method is that solving the linear relaxation

is time-consuming, especially for large instances. To illustrate, suppose that we have the following

values for a given job i ∈ N at stage j = 1 or 2: xij4 = xij5 = 0.3 and xij7 = 0.4, then the

corresponding average starting period is 4× 0.3 + 5× 0.3 + 7× 0.4 = 5.5.

5.1.2 Job window heuristic

Our job window heuristic employs a strategy of job-based decomposition, similar to Debels and

Vanhoucke (2007), Della Croce et al. (2014) and Davari et al. (2016). The procedure iteratively

and locally improves a given schedule within a varying job window. Afterwards, if the schedule is

still infeasible, it can be repaired by ISR (Section 5.2) or FSSA (Section 5.3).

Given a job sequence σ, a position r in the sequence and a size parameter h, let σ(r, h) be the

set of jobs that are in consecutive positions r, r + 1,. . . , min{r + h− 1, n} of the sequence σ. We

call this sub-sequence a job window. A job window gives rise to a new problem P |r′ij , d̄′ij |
∑
wiCij

with at most h jobs, where r′ij , d̄
′
ij and Cij are the release date, deadline and completion time

of job i ∈ σ(r, h) at stage j (the window pertains to one stage only). For the first stage, we set

r′i1 = ri and d̄′i1 = d̄i − pi2, and for the second stage we let r′i2 = Ci1 + 1 and d̄′i2 = d̄i. Let H ′ij

be the set of potential start periods of job i at stage j, i.e., H ′i1 = {r′i1, r′i1 + 1, . . . , d̄′i1 − pi1 + 1}

and H ′i2 = {r′i2, . . . , d̄′i2 − pi2 + 1}. For a given stage j = 1 or 2, we solve this problem with the

following time-indexed formulation:

min
∑

i∈σ(r,h)

wi
∑
t∈H′

ij

xijt(t+ pij − 1) (9)
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subject to

∑
i∈σ(r,h)

min{t,τij}∑
k=max{t−pij+1,r′ij}

xijk ≤ ma(t), ∀t ∈ H ′ (10)

∑
t∈H′

ij

xijt = 1, ∀i ∈ σ(r, h). (11)

The objective is to minimize the total weighted completion times of the jobs in job window σ(r, h)

at stage j. Constraints (10) impose the machine capacity constraints, with total planning horizon

H ′ = {mini∈σ(r,h){r′ij}, . . . ,maxi∈σ(r,j){d̄′ij − pij + 1}}. Value ma(t) is the number of available

machines at time period t, taking into account the scheduling decisions made for all the previous

job windows. Constraints (11) state that each each job is scheduled exactly once. If the formulation

is infeasible, we generate a tentative (infeasible) partial schedule based on the job order in σ and the

serial generation scheme, and we continue to the next job window. Instead of MIP, B&B (Davari

et al., 2016) and meta-heuristics (Debels and Vanhoucke, 2007) are other possible choices as a

search tool. We have chosen for MIP because it can guarantee optimal solutions, and it can handle

larger job windows than the B&B method (to the best of our knowledge, there is no efficient B&B

method for P |r′ij , d̄′ij |
∑
wiCij in the literature). A MIP model is also easily extensible to include

additional technical constraints.

We apply this procedure stage by stage, where the search starts with the first job window of

sequence σ at stage 1. Each job window is considered one by one in the order of σ. After stage 1,

we update the job completion times and we run the procedure for stage 2. Davari et al. (2016)

choose a job window randomly, but this is not straightforward to implement in a hybrid flow shop.

If the final schedule is still infeasible, we will use ISR or FSSA (see below) to attempt to achieve

feasibility.

Example 3 Consider Example 2. We start with list pair σ = ((1, 2, 3, 4, 5, 6), (1, 5, 4, 3, 2, 6)),

and we select the width of the job window as h = 3. We first optimize sub-problem (1, 2, 3) in

stage 1, followed by (4, 5, 6); in this second run, we take the schedule for (1, 2, 3) into account. At

the second stage we solve the sub-problem for (1, 5, 4) and subsequently (3, 2, 6), in which the jobs

cannot start before their completion in stage 1. The final schedule is represented in the Table 4,

with corresponding job sequences ((3, 2, 1, 5, 4, 6), (1, 5, 4, 3, 2, 6)). We see that jobs 2 and 6 still

violate their deadlines, but we have achieved an improvement compared to Example 2.
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Table 4: The schedule generated in Example 3

Jobs S1 C1 S2 C2 d̄i

1 20 26 27 35 44

2 5 17 166 232 140

3 4 55 145 165 170

4 56 127 128 185 194

5 27 82 83 144 223

6 83 135 186 205 157

5.2 Infeasible schedule repair

Given an initial infeasible schedule x̄, we define set S̄ = {xijt|x̄ijt = 1, t ∈ Hij , i ∈ N, j = 1, 2} and

we impose a constraint to delimit a search space for local branching as

∑
xijk∈S̄

(1− xijk) +
∑

xijk /∈S̄

xijk ≤ r, (12)

where r is the search radius, and we implement local branching with model M0 and constraint (12).

If the model in the smaller branch is infeasible, then we branch as shown in Figure 3 with x(0) = x̄,

i.e., we reverse the constraint such that the left-hand side of equation (12) is greater than or equal

to r + 1. Subsequently, the radius is increased by ∆ISR
r to r1 = r + ∆ISR

r , and we solve a new

smaller branch. When the radius is greater than or equal to |S̄|+ 2n and the model in the smaller

branch is still infeasible, then the corresponding instance is not feasible. We halt local branching

as soon as we find a feasible solution. In Figure 3, the procedure is interrupted when we obtain

the feasible schedule x(1) in node 3.

0

1 2

3 4

infeasible model

|x− x(0)| ≥ r + 1|x− x(0)| ≤ r

|x− x(0)| ≤ r1 |x− x(0)| ≥ r1 + 1

obtain x(1)

Figure 3: Branching tree for ISR

Example 4 Consider the infeasible schedule of Example 3. We define set S̄ = {x1,1,20, x1,2,27, x2,1,5,

x3,1,4, x3,2,145, x4,1,56, x4,2,128, x5,1,27, x5,2,83, x6,1,83}. The set S̄ does not include x-variables for
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jobs 2 and 6 at stage 2 because the corresponding starting periods are outside of the sets H22 and

H62. We set the initial search radius r = 6. The repaired feasible schedule is described in Table 5,

with objective value 3444; this schedule is already obtained in the node corresponding with node 1

in Figure 3, so in the first smaller branch.

Table 5: The schedule of Example 4

Jobs S1 C1 S2 C2 d̄i

1 20 26 27 35 44

2 5 17 18 84 140

3 4 55 92 112 170

4 56 127 128 185 194

5 27 82 160 221 223

6 83 135 138 157 157

5.3 Feasible schedule search by artificial variables

For an initial infeasible schedule x̄, let Γ1, Γ2 and Γ3 be the subsets of constraints from constraint

sets (1), (2) and (3) that are violated by x̄ in model M0. We relax the constraints in Γl, l = 1, 2, 3,

as follows:

∑
i∈N

min{t,τij}∑
`=max{t−pij+1,rij}

xij` − δ1k ≤ mj , ∀k ∈ Γ1 (13)

∑
t∈Hij

xijt + δ2k − δ′2k = 1, ∀k ∈ Γ2 (14)

∑
t∈Hi2

txi2t −
∑
t∈Hi1

txi1t + δ3k ≥ pi1, ∀k ∈ Γ3 (15)

where δlk ≥ 0, l = 1, 2, 3, and δ′2k ≥ 0 are nonnegative continuous artificial variables. We replace

the original objective in M0 by

min
∑
k∈Γ1

δ1k +
∑
k∈Γ2

(δ2k + δ′2k) +
∑
k∈Γ3

δ3k. (16)

Once this objective is zero, we have obtained a feasible solution.

With the same definition of S̄ as in Section 5.2, we also incorporate the local branching con-

straint (12). Specifically, we implement local branching with constraints (13), (14), (15), (12), and

all the remaining constraints that are not violated in M0 to minimize objective function (16).

Compared to Fischetti and Lodi (2008), which was the main inspiration for our algorithm,

FSSA skips a feasibility-pump procedure (Fischetti et al., 2005), which needs to solve a linear

relaxation and is time-consuming. We also minimize the sum of continuous artificial variables,
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which is easier than using binary indicator variables when solving a MIP (see Fischetti and Lodi

(2008) for more details). If the final result of local branching has an objective greater than zero,

then the instance is infeasible. One drawback of FSSA is that the original objective function is

disregarded, thus the feasible solution obtained might be arbitrarily bad.

Example 5 Consider the infeasible schedule of Example 3. As discussed in Example 4, the dead-

lines of jobs 2 and 6 are not respected, and some of the constraints (2) and (3) in model M0 are

violated. The feasible schedule generated by FSSA is shown in Table 5, with objective value 3112.

Table 6: The schedule of Example 5

Jobs S1 C1 S2 C2 d̄i

1 20 26 31 39 44

2 5 17 29 95 140

3 97 148 150 170 170

4 56 127 128 185 194

5 0 55 75 136 223

6 32 84 96 115 157

6 Improvements

In this section we introduce two improvement methods that can be applied to an initial feasible

solution. The first method is a stage-by-stage decomposition (SD) and uses a regular solver for

improvements. The second procedures is an adapted form of local branching (AL). Both of the

procedures improve the initial solution by a MIP solver, which allows to keep the solution feasi-

ble. Meta-heuristics are an alternative, but would require significant attention to ensure that no

infeasible solutions are generated during the random search. A computational comparison of the

two improvement methods SD and AL can be found in Section 7.

6.1 Stage-by-stage decomposition

In the stage-by-stage decomposition SD, we divide the original problem into two parallel machine

scheduling problems with time windows, and we optimize each stage in succession. Consider an

initial feasible solution x̄ composed of x̄1 and x̄2, which correspond with schedules for stages 1

and 2, respectively. For stage 1, set d̃i1 = S̄i2 − 1 for all i ∈ N , where S̄i2 is the starting time of

job i at stage 2 in x̄. This leads to a problem Pm1|ri, d̃i1|
∑
wiCi1, where ri, d̃i1 and Ci1 are the
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release date, deadline and completion time of job i at stage 1. We solve this problem with a MIP

solver and we provide the initial schedule x̄1 as the starting solution to the solver, which helps to

find a feasible solution quickly. Similarly, we set r̃i2 = Ci1 + 1 for i ∈ N , and solve the problem

Pm2|r̃i2, d̄i|
∑
wiCi2, where r̃i2, d̄i and Ci2 are the release date, deadline and completion time of

job i at stage 2; again we give x̄2 as starting solution to the solver.

Obtaining an optimal solution at stage 1 may be time-consuming, and might leave only little

time for stage 2. We can therefore impose a time limit on the first stage. When m1 = m2, we

impose a time limit of
(

2
3

)
(T−Tini) in the first stage, where T and Tini are the total time limit and

the initialization time, respectively. Otherwise, m1 6= m2 and there is a bottleneck stage, namely

the stage with the lowest number of machines. If mB and mN are the machine numbers in the

bottleneck and the non-bottleneck stage, then we impose the following limits on the runtime:

TB =
2mN −mB

2mN
(T − Tini), TN =

mB

2mN
(T − Tini),

where TB is the time for the bottleneck stage and TN for the non-bottleneck stage.

6.2 Adapted local branching

Local branching is another possibility for improving a given starting solution. We have made some

adaptations to the general framework in function of the particular problem setting of hybrid flow

shops with time windows.

A starting solution is provided to the solver in each node of the search tree, which is necessary

especially for instances with tight time windows, where finding a feasible solution is quite difficult.

The standard local branching constraint and the reference solution normally simply control the

definition of the search space. If we set a small search radius, a feasible solution is easily found

based on the reference solution, but the solution improvement procedure will be slow. In order to

speed up the improvements achieved by the solver, we set the initial solution from the initialization

stage as the starting solution for the first node, and other nodes use the solution from the previous

level in the search tree.

We also impose a time limit Tnode and a stop criterion based on the gap Gnode between upper

bound and lower bound for each node, because of the difficulty of convergence for some instances.

Once the time limit or the gap threshold is reached, then we backtrack to the parent node and
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0

1 2

3 4

5 6

obtain x(1)

|x− x(0)| ≥ 1|x− x(0)| ≤ r

|x− x(1)| ≤ r |x− x(1)| ≥ 1

obtain x(2)

|x− x(2)| ≤ r

Figure 4: Illustration of adapted local branching

create a new smaller branch. We illustrate the procedure in Figure 4. Solution x(0) is the reference

(input) solution. At node 1, we solve model M0 with local branching constraint |x − x(0)| ≤ r,

and afterwards we reverse the branching to |x − x(0)| ≥ 1, effectively rendering the solution x(0)

“tabu,” as in tabu search. Subsequently, x(1) serves as starting solution at node 3, in which we

impose |x − x(1)| ≤ r. In case the obtained solution x(1) in node 1 equals the starting solution

then the solver will not receive a starting solution in node 3, since x(1) then violates the constraint

|x − x(0)| ≥ 1. If we do not find a feasible solution in a node, we reduce the radius by 4ALr and

increase the time limit by 4t, because a smaller solution space is easier to explore. The search

procedure will halt when for a predetermined time TAL or a predetermined number of rounds

(number of small branches) KAL there is no improved solution, and then return the best solution

found. In our implementation, we have actually opted for the local branching constraint (7) rather

than (6) because this turns out to lead to slightly better results here.

7 Computational results

In this section we report the results of a number of experiments to evaluate the effectiveness of the

proposed methods. All algorithms are coded in C++, and Gurobi 8.0.1 is used to solve the MIP

models. All computational results are obtained on a laptop with Intel core i5 2.3GHz processor,

4GB of RAM, and running under Windows 10. In Section 7.1 we describe the experimental setup.

Section 7.2 contains a comparison between the initialization methods. Section 7.3 compares the

performance of the matheuristics on small instances, in Section 7.4 we provide a comparison of the
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different procedures on large instances.

7.1 Experimental setup

To the best of our knowledge, there are no relevant benchmark instances available in the literature

for the problem at hand; we therefore generate our own instance sets. For each job i ∈ N ,

the processing times pij , j = 1, 2, are drawn (as integers) from a discrete uniform distribu-

tion on [1, 100], which is a very common choice in the literature, and an integer weight wi

is generated from the discrete uniform distribution on [1, 10]. We generate time windows us-

ing a scheme adapted from Davari et al. (2016). Release dates ri are generated from a dis-

crete uniform distribution on the interval [0, φP1], where P1 =
∑
i∈N pi1. Deadlines d̄i are

sampled from the discrete uniform distribution on [ri + pi1 + pi2, ri + pi1 + pi2 + ρP2], where

P2 =
∑
i∈N pi2. We consider six scenarios for the combination of values for φ and ρ, namely

(φ, ρ) ∈ {(0.1, 0.6), (0.3, 0.6), (0.2, 0.5), (0.2, 0.8), (0.3, 0.5), (0.5, 0.3)}.

Two problem sets are generated. Set I contains small instances with n = 20 and 30, which

will allow to assess the gap from the optimal solution. We consider the following choices for the

machine layout (m1,m2) of the flow shop: (1, 4), (2, 2), (2, 4) and (3, 2). A time limit of 600

seconds is imposed for each instance in Set I. Set II consists of larger instances with n = 60, 90

and 120, and has three different machine layouts, namely (2, 2), (2, 4) and (4, 2). We test each

procedure with a time limit T of 600, 900 or 1200 seconds, according to the problem size, which

is a similar choice as Della Croce et al. (2014). For each combination of job number, scenario and

machine layout we construct 10 instances.

7.2 Comparison of the initialization methods

Table 7 compares several priority rules based on the number of instances for which no feasible

solution is produced (column “NoS”) although the instance itself is feasible, and the average

number of tardy jobs “Tar.” The second column of the table shows how many instances are

feasible, out of the total number. We have tested the earliest-deadline-first (ED) rule, a random

priority rule (RP), and ordering in the average starting time of the linear relaxation (ALP). The ED

rule orders the jobs in increasing d̄i for both stages. If deadlines are equal, priority is given to the

job with the lower release date. We also report the performance of the job window heuristic JWH
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Table 7: Comparison of initialization methods

n Fea/Total
ED RP ALP JWH

NoS Tar NoS Tar Time NoS Tar Time NoS Tar

20 157/240 83 1.95 157 15.19 1.84 128 2.10 1.35 15 0.19

30 165/240 86 4.40 164 24.33 5.46 145 3.75 2.96 18 0.43

60 174/180 84 6.98 172 51.08 27.71 168 9.70 10.91 6 0.41

90 176/180 90 10.90 176 79.00 76.37 173 15.24 24.87 4 0.39

120 180/180 102 12.23 180 106.69 193.74 179 21.59 44.68 3 0.03

Total 445 849 793 46

Table 8: Comparison between ISR and FSSA

n Fea/Total
JWH + ISR JWH + FSSA

Time NoS Obj Time NoS Obj
20 157/240 1.77 0 38222 1.74 0 38345
30 164/240 4.91 2 78679 3.38 3 79901
60 172/180 12.82 2 280105 12.23 1 280662
90 176/180 26.79 2 618169 29.05 0 618956
120 180/180 49.40 0 1078339 47.68 0 1078662

Total 6 4

with the ED ordering as input; we set the job window width h = 10. The columns labeled “Time”

contain the average runtime for ALP and JWH; the runtime for ED and RP is not mentioned

because it is very low. For ALP, when the time for solving the LP exceeds the time limit, which

happens for some instances, then these instances are not included in the computation of average

Time and Tar.

From Table 7, we see that JWH can find feasible solutions to most feasible instances in a

reasonable time; the performance of ALP is rather disappointing, especially given its high runtimes.

We therefore use the output of JWH as the input for ISR and FSSA; Table 8 shows the results.

In ISR, we set the search radius r = max{2a, 20} and 4ISRr = b0.5 ∗max{2a, 20}c, where a is the

number of jobs violating their deadlines in x̄. Based on Fischetti and Lodi (2008) and our own

experiments, at each node of FSSA, we use an adaptive radius r as 1.2∗b(|Γ1|+ |Γ2|+ |Γ3|)c, where

|Γ1|+ |Γ2|+ |Γ3| is the number of constraints violated by the current solution. If |Γ1|+ |Γ2|+ |Γ3|

is less than 20 then r = 20.

In Table 8, “Obj” are the average objective values. FSSA solves slightly more instances than

ISR but the initial objective values are a bit higher, which is expectable because FSSA pursues

a different objective. We give priority to initializing the highest number of instances, and we

therefore select JWH + FSSA as initialization method. Below, we combine JWH + FSSA with
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the two improvement methods SD and AL (referred to as “JFS” and “JFA,” respectively), and we

compare with the time-indexed formulation.

7.3 Results for small instances (Set I)

Tables 9–11 show the results of JFS, JFA and the optimal solutions by the time-indexed formu-

lation M0. In JFA, we set the initial search radius r′ = 30, and the parameters 4ALr = 5 and

4t = 30. In case no solution is found in a node then we let r′ := max{r′ −4ALr , 10}. The time

limit for each node is 3n, and the gap threshold Gnode is 0.05. Let TAL = T−Tini, where Tini is the

initialization time, and KAL = 3. Subsets of 10 instances are identified based on the job number n,

the scenario for (φ, ρ) (value “S,” numbered from 1 to 6), and the machine layout (m1,m2); for

each subset, the column “Fea” indicates the number of feasible instances (out of 10). As before,

“NoS” refers to the number of feasible instances for which no feasible solution is found. “Time”

is the average runtime computed only for the feasible instances; when an instance is infeasible

then this is typically recognized very quickly by M0 if the LP is also infeasible, which is almost

always the case. The values for “Gap” report the average gap in the objective value (expressed as

a percentage) between the corresponding method and the output of model “M0” within the time

limit, as follows: Gap = Zmethod−ZM0

ZM0
× 100, where Zmethod is the objective found by the method

and ZM0 is the objective found by model M0; if no feasible solution is found within the time limit,

then we take ZM0 as the LP bound. The number of instances for which a guaranteed optimal

solution is found, is reported as “OPT.”

We observe that the balance between stages affects the feasibility of the instance; the layout

(m1,m2) = (1, 4), for example, only has infeasible instances, due to the capacity imbalance be-

tween the two stages. Obviously, the tightness of the time windows (determined mainly by the

parameter ρ) also influences the probability of infeasibility.

Not all methods are able to obtain feasible solutions in all instances, especially for tight time

windows (especially scenarios 1 and 3). The time-indexed formulation in particular struggles for

some settings. In Table 9, for example, M0 does not produce feasible solutions for five instances

with 30 jobs of scenario 1 in layout (2, 2), and in Table 10 model M0 has seven unsolved instances

with 30 jobs of scenario 3 in layout (2, 2). Also, the time-indexed formulation cannot reach an

optimal solution for some small instances, probably due to the high number of binary variables. In
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Table 9, model M0 cannot find any optimal solution for the layout (2, 2) with 30 jobs in scenarios 1

and 2.

We also find that JFA has a better performance than JFS in most instances. This might be

explained by the fact that JFA can iteratively improve any given starting solution, while JFS is

more dependent on the starting solution, especially with tight time windows, and an early start of

jobs in stage 2 leads to even tighter time windows in stage 1, thus leaving only little margin for

improvement in a stage-based decomposition.

Table 9: Results for scenarios 1 and 2 of Set I

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap OPT NoS Time
20 (1,1,4) 0 - - - - - -
20 (1,2,2) 4 0 3.92 0 1.39 3 0 211.76
20 (1,2,4) 5 0 9.85 0 2.11 4 0 130.85
20 (1,3,2) 8 0 7.11 0 0.61 4 0 304.35
20 (2,1,4) 1 0 22.64 0 2.96 1 0 103.77
20 (2,2,2) 10 0 4.21 0 −0.87 7 0 369.59
20 (2,2,4) 10 0 8.06 0 1.25 10 0 123.48
20 (2,3,2) 10 0 3.99 0 0.65 10 0 30.98
30 (1,1,4) 0 - - - - - -
30 (1,2,2) 6 0 5.58 0 4.36 0 5 400.74
30 (1,2,4) 8 0 7.30 0 −3.39 7 0 275.32
30 (1,3,2) 7 0 2.27 0 2.26 1 0 588.14
30 (2,1,4) 0 - - - - - -
30 (2,2,2) 10 0 −5.20 0 −9.68 0 4 600.00
30 (2,2,4) 10 0 13.36 0 2.95 7 1 396.61
30 (2,3,2) 10 0 −1.49 0 −1.59 7 0 284.06

Table 10: Results for scenarios 3 and 4 of Set I

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap OPT NoS Time
20 (3,1,4) 0 - - - - - -
20 (3,2,2) 8 0 6.62 0 1.58 4 0 404.97
20 (3,2,4) 8 0 9.04 0 0.99 8 0 73.83
20 (3,3,2) 9 0 3.95 0 1.20 8 0 105.30
20 (4,1,4) 2 0 9.87 0 2.31 2 0 43.43
20 (4,2,2) 9 0 6.56 0 1.69 3 0 464.88
20 (4,2,4) 9 0 11.29 0 1.51 9 0 63.47
20 (4,3,2) 9 0 4.20 0 1.06 8 0 136.58
30 (3,1,4) 0 - - - - - 0 -
30 (3,2,2) 8 2 13.39 2 10.08 0 7 600.00
30 (3,2,4) 8 1 14.88 1 2.58 6 0 362.96
30 (3,3,2) 10 0 1.32 0 −1.20 4 0 483.68
30 (4,1,4) 1 0 13.86 0 4.35 0 0 600
30 (4,2,2) 10 0 −0.02 0 −6.81 0 1 600.00
30 (4,2,4) 10 0 10.69 0 −1.65 6 0 412.94
30 (4,3,2) 10 0 −1.68 0 −3.89 8 0 289.39
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Table 11: Results for scenarios 5 and 6 of Set I

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap OPT NoS Time
20 (5,1,4) 0 - - - - - -
20 (5,2,2) 10 0 6.77 0 1.92 4 1 447.29
20 (5,2,4) 10 0 6.58 0 1.76 10 0 36.92
20 (5,3,2) 10 0 3.76 0 0.90 10 0 38.04
20 (6,1,4) 0 - - - - - -
20 (6,2,2) 7 0 1.61 0 1.23 5 0 206.23
20 (6,2,4) 9 0 1.67 0 1.21 9 0 23.85
20 (6,3,2) 9 0 0.35 0 0.38 9 0 9.33
30 (5,1,4) 0 - - - - - -
30 (5,2,2) 9 0 5.16 0 −0.76 0 4 600.00
30 (5,2,4) 9 0 14.81 0 3.54 7 0 296.48
30 (5,3,2) 9 0 2.89 0 2.21 7 0 272.04
30 (6,1,4) 0 - - - - - -
30 (6,2,2) 9 0 2.52 0 1.84 4 2 358.85
30 (6,2,4) 10 0 3.68 0 2.64 10 0 121.31
30 (6,3,2) 10 0 0.55 0 0.76 10 0 46.72

7.4 Results for large instances (Set II)

Tables 12–14 report the results of JFS, JFA and the MIP formulation M0 on Set II. The gap is

computed as Gap = Zmethod−ZM0

ZM0
× 100, where ZM0 is the LP bound from model M0.

For the large instances, tighter time windows lead to significantly more difficult instances. For

scenario 1 in Table 12, for example, the time-indexed formulation solves only 14 out of 84 feasible

instances, while for the scenario 2 (with looser time windows), this amounts to 65 out of 88 feasible

instances. Looser time windows appear to be more difficult to schedule to guaranteed optimality,

however: although an initial feasible solution is easily found, improvements are more difficult, and

this is probably due at least in part to the higher number of variables in the corresponding time-

indexed formulation. In scenario 4 of Table 13, for example, some gaps for M0 are larger than

100 percent.

Again, the machine layout also strongly affects the results. Model M0 has the most difficulties

with finding feasible solutions for the layout (2, 2), where the capacity is the most restrictive. Based

on the average gaps, it seems to be easier to find high-quality solutions for the layout (4, 2) rather

than for (2, 4), probably because with (4, 2) the shop can handle more jobs at the first stage, which

decreases idle time on the machines at the second stage.

Similarly to Set I, JFA performs better than JFS for most cases in Set II. In scenario 6, however,

the performance of JFS is quite close to JFA’s, and even better for some cases. We suspect that this
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Table 12: Results for scenarios 1 and 2 of Set II

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap NoS Gap
60 (1,2,2) 9 0 18.18 0 22.28 9 -
60 (1,2,4) 9 0 24.31 0 9.61 9 -
60 (1,4,2) 10 0 5.24 0 6.84 4 30.42
60 (2,2,2) 9 0 16.97 0 15.87 2 61.64
60 (2,2,4) 10 0 21.30 0 7.56 0 62.08
60 (2,4,2) 9 0 1.24 0 2.79 0 2.57
90 (1,2,2) 8 0 24.32 0 31.16 8 -
90 (1,2,4) 8 0 32.84 0 15.42 5 76.72
90 (1,4,2) 10 0 19.24 0 17.81 6 5.71
90 (2,2,2) 10 0 21.23 0 14.60 8 74.44
90 (2,2,4) 10 0 25.80 0 8.14 2 3.99
90 (2,4,2) 10 0 8.29 0 4.33 0 2.84
120 (1,2,2) 10 0 29.98 0 32.28 10 -
120 (1,2,4) 10 0 33.69 0 20.14 10 -
120 (1,4,2) 10 0 34.95 0 15.86 9 94.04
120 (2,2,2) 10 0 20.85 0 19.53 8 79.75
120 (2,2,4) 10 0 24.97 0 10.13 3 79.19
120 (2,4,2) 10 0 12.08 0 6.08 0 4.03

Table 13: Results for scenarios 3 and 4 of Set II

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap NoS Gap
60 (3,2,2) 9 0 17.26 0 19.12 9 -
60 (3,2,4) 9 0 20.88 0 8.85 9 -
60 (3,4,2) 10 0 2.32 0 5.90 7 5.4
60 (4,2,2) 10 0 21.10 0 20.77 0 76.59
60 (4,2,4) 10 0 27.34 0 9.12 1 77.3
60 (4,4,2) 10 0 2.96 0 4.20 0 36.46
90 (3,2,2) 10 0 19.52 0 21.52 10 -
90 (3,2,4) 10 0 25.07 0 13.86 10 -
90 (3,4,2) 10 0 19.60 0 6.93 8 2.80
90 (4,2,2) 10 0 28.52 0 17.77 3 109.89
90 (4,2,4) 10 0 33.08 0 9.24 1 70.32
90 (4,4,2) 10 0 22.58 0 6.03 0 13.9
120 (3,2,2) 10 0 27.33 0 25.33 10 -
120 (3,2,4) 10 0 25.07 0 16.03 10 -
120 (3,4,2) 10 0 23.42 0 10.79 9 5.09
120 (4,2,2) 10 0 29.13 0 24.95 2 115.96
120 (4,2,4) 10 0 31.85 0 13.22 2 117.29
120 (4,4,2) 10 0 22.46 0 9.06 0 81.85
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Table 14: Results for scenarios 5 and 6 of Set II

n (S,m1,m2) Fea
JFS JFA M0

NoS Gap NoS Gap NoS Gap
60 (5,2,2) 10 0 15.25 0 16.56 8 77.93
60 (5,2,4) 10 0 19.84 0 6.82 8 73.82
60 (5,4,2) 10 0 1.12 0 3.19 2 19.59
60 (6,2,2) 9 1 4.80 1 7.38 8 22.47
60 (6,2,4) 10 0 5.52 0 5.05 4 0.56
60 (6,4,2) 9 0 0.46 0 1.95 0 0.72
90 (5,2,2) 10 0 20.04 0 15.82 9 69.72
90 (5,2,4) 10 0 21.98 0 9.10 8 6.30
90 (5,4,2) 10 0 11.26 0 5.40 2 18.06
90 (6,2,2) 10 0 6.58 0 8.24 9 29.63
90 (6,2,4) 10 0 7.47 0 6.07 8 7.79
90 (6,4,2) 10 0 0.35 0 1.41 1 0.61
120 (5,2,2) 10 0 23.21 0 22.24 10 -
120 (5,2,4) 10 0 21.50 0 11.01 10 -
120 (5,4,2) 10 0 15.74 0 7.21 4 3.58
120 (6,2,2) 10 0 6.66 0 12.97 9 3.89
120 (6,2,4) 10 0 8.23 0 8.05 1 1.96
120 (6,4,2) 10 0 2.57 0 3.17 0 1.15

is the case because the release dates of scenario 6 are distributed widely, which means that jobs can

often be scheduled quite close to their release dates. This renders these instances relatively easy,

and model M0 also has a good performance in scenario 6. Moreover, M0 has a smaller gap than

JFS and JFA in some cases, e.g., case (3,4,2) with 90 jobs in Table 13. More generally, model M0

does not find a feasible solution for many harder instances, however.

8 Conclusion

In this paper we have studied the scheduling of a hybrid flow shop with hard time windows to

minimize the total weighted completion times. Based on our literature review, we find that this

problem has not really been studied before, although the problem statement is very natural, and

we have indicated close connections with a wide range of industrial cases. We have developed two

initialization and two improvement methods for the scheduling problem, which can be combined

to lead to a number of different matheuristic strategies. Our computational experiments show

that the resulting matheuristics are competitive with a regular solver for small instances, and they

outperform the solver for medium-sized and large instances.

For future work in this area, several research directions can be explored. First of all, other

optimization methods can be considered and hybridized. Various meta-heuristic procedures can
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be plugged into the job window heuristic, for instance. The incorporation of a number of practical

factors, such as restrictive storage policies (with limited buffers or waiting times) and production

characteristics (such as uniform or unrelated parallel machines), is also evident, as is the extension

to more than two production stages. Finally, industrial case studies could be used to validate the

applicability of the current models and algorithms.
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E. Néron, P. Baptiste, and J. N. Gupta. Solving hybrid flow shop problem using energetic reasoning

and global operations. Omega, 29(6):501–511, 2001.

Q. K. Pan. An effective co-evolutionary artificial bee colony algorithm for steelmaking-continuous

casting scheduling. European Journal of Operational Research, 250(3):702–714, 2016.

Q. K. Pan, R. Ruiz, and P. Alfaro-Fernandez. Iterated search methods for earliness and tardiness

minimization in hybrid flowshops with due windows. Computers & Operations Research, 80:

50–60, 2017.

Y. Pan and L. Shi. Dual constrained single machine sequencing to minimize total weighted com-

pletion time. IEEE Transactions on Automation Science and Engineering, 2(4):344–357, 2005.

S. Panwalkar, R. Dudek, and M. Smith. Sequencing research and the industrial scheduling problem.

In Symposium on the Theory of Scheduling and its Applications, volume 86, pages 29–38. Springer

Berlin, 1973.

M. L. Pinedo. Scheduling: theory, algorithms, and systems. Springer, 2016.

28



D. Quadt and H. Kuhn. A taxonomy of flexible flow line scheduling procedures. European Journal

of Operational Research, 178(3):686–698, 2007.

I. Ribas, R. Leisten, and J. M. Framinan. Review and classification of hybrid flow shop schedul-

ing problems from a production system and a solutions procedure perspective. Computers &

Operations Research, 37(8):1439–1454, 2010.

R. Ruiz and J. A. Vazquez-Rodriguez. The hybrid flow shop scheduling problem. European Journal

of Operational Research, 205(1):1–18, 2010.

T. Sawik. Mixed integer programming for scheduling surface mount technology lines. International

Journal of Production Research, 39(14):3219–3235, 2001.

M. Schulze, J. Rieck, C. Seifi, and J. Zimmermann. Machine scheduling in underground mining:

an application in the potash industry. OR Spectrum, 38(2):365–403, 2016.

O. Shahvari and R. Logendran. A comparison of two stage-based hybrid algorithms for a batch

scheduling problem in hybrid flow shop with learning effect. International Journal of Production

Economics, 195:227–248, 2018.

R. Simpson and A. Abakarov. Mixed-integer linear programming models for batch sterilization of

packaged-foods plants. Journal of Scheduling, 16(1):59–68, 2013.

Y. Tan, L. Mönch, and J. W. Fowler. A hybrid scheduling approach for a two-stage flexible flow

shop with batch processing machines. Journal of Scheduling, 21(2):209–226, 2018.

L. Tang and X. Wang. An improved particle swarm optimization algorithm for the hybrid flowshop

scheduling to minimize total weighted completion time in process industry. IEEE Transactions

on Control Systems Technology, 18(6):1303–1314, 2010.
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