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Abstract
Theproblemoffinding a shortest curvature-constrained closed path through a set of tar-
gets in the plane is known asDubins traveling salesman problem (DTSP). Applications
of the DTSP include motion planning for kinematically constrained mobile robots and
unmanned fixed-wing aerial vehicles. The difficulty of the DTSP is to simultaneously
find an order of the targets and suitable headings (orientation angles) of the vehicle
when passing the targets. Since the DTSP is known to be NP-hard there is a need for
heuristic algorithms providing good quality solutions in reasonable time. Inspired by
standard methods for the TSP we present a collection of such heuristics adapted to
the DTSP. The algorithms are based on a technique that optimizes the headings of the
targets of an open or closed subtour with given order. This is done by discretizing the
headings, constructing an auxiliary network and computing a shortest path in the net-
work. The first algorithm for the DTSP uses the order of the targets obtained from the
solution of the Euclidean TSP. A second class of algorithms extends an open subtour
by successively adding a new target and closes the tour if all targets have been added.
A third class of algorithms starts with a closed subtour consisting of few targets and
successively inserts a new target into the tour. The individual algorithms differ by the
number of headings to be optimized in each iteration. Extensive simulation results
show that the proposed methods are competitive with state-of-the-art methods for the
DTSP concerning performance and superior concerning running time, which makes
them applicable also to large-scale scenarios.
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1 Introduction

The Traveling Salesman Problem (TSP) is one of the most intensely studied problems
in combinatorial optimization. Given a set of targets, the task is to determine a shortest
tour that visits each target precisely once and returns to the start. If the distance between
any two targets is equal to the Euclidean distance, the problem is called the Euclidean
Traveling Salesman Problem (ETSP). The Asymmetric Traveling Salesman Problem
(ATSP) is a problem where the distance between two targets is not symmetric but
depends on the direction of the traversal. Further variations of the TSP include the
Traveling Salesman Problem with Neighborhoods (TSPN) where each target of the
tour is allowed to move in a given region, the Bottleneck Traveling Salesman Problem
(BTSP)where the largest distance between two targets in the tour should beminimized,
and others. For more details see e.g. the reviews of Lawler et al. (1985), Laporte (1992)
and Gutin and Punnen (2007).

The route planning problems listed above are aimed at finding best possible tours
without taking into account the characteristics of the vehicle. However, when work-
ing with real-world vehicles, one has to consider kinematic constraints such as the
minimum turning radius. Vehicles with motion constraints imposed by the steering
mechanism satisfy a non-holonomic constraint. Such vehicles are not able to follow
paths obtained from solutions of the classical TSP problems. Car-like mobile robots or
fixed-wing aerial vehicles that move forward at a constant speed and turn with upper
bounded curvature can be modeled as a Dubins vehicle (see e.g. Tang and Özgüner
2005; Otto et al. 2018). The traveling salesman problem for a Dubins vehicle is usu-
ally called Dubins Traveling Salesman Problem (DTSP) or Curvature-constrained
TSP (see LaValle 2006).

The DTSP has attracted considerable attention due to many civil and military appli-
cations. A typical setup is monitoring a collection of spatially distributed targets by
an unmanned aerial vehicle (UAV). This might concern traffic control over specific
locations, intelligence gathering and reconnaissance of suspicious targets for anti-
terrorism operations, security missions and monitoring of critical infrastructure and
other point of interests, support of combat missions by intelligence, surveillance and
reconnaissance (ISR) operations, battle damage assessment (confirming a target and
verifying its destruction), and others. For further applications see e.g. Epstein et al.
(2014) and Otto et al. (2018).

It is well known (see Dubins 1957) that a shortest path between two points in the
plane with prescribed initial and terminal tangents and a constraint on the curvature
consists of a concatenation of straight lines and circle segments with maximal cur-
vature. More precisely, each path is of the form CSC or CCC where C stands for a
concave or convex circle segmentwithmaximal curvature andS for a line segment. The
solutions are commonly called Dubins paths. Alternative proofs have been obtained
by Reeds and Shepp (1990) using advanced calculus, and by Boissonnat et al. (1994)
from the standpoint of optimal control using Pontryagin’s maximum principle. The
original idea of Dubins has been refined by Shkel and Lumelsky (2001) in order to
speed up the computation of the paths.

The particular challenge associated with the DTSP is not only to find an optimal
order of the targets but also suitable headings (orientation angles) of the vehicle when
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passing the targets. Since the target order is discrete but the heading angles are contin-
uous, we obtain an optimization problem with both discrete and continuous decision
variables. Just like the TSP and its variations mentioned above, the DTSP turns out to
be NP-hard (see Le Ny et al. 2012). Therefore, unless P = NP, there are no efficient
algorithms to solve any of these problems to optimality. Hence there is a need for
methods providing approximate solutions in reasonable time.

Numerous heuristic methods have been developed for the DTSP. One popular
approach is to use the order obtained from the corresponding ETSP and determine
suitable headings of the targets. Representatives of such methods include the Alter-
nating Algorithm of Savla et al. (2008) that replaces the even-numbered edges of an
ETSP tour by a Dubins path. The algorithms of Rathinam et al. (2007) and Ma and
Castanon (2006) are look-ahead algorithms that consider a short sequence of targets in
each iteration. While the former restricts to two targets, the second algorithm searches
for the minimal path through three targets at a time. Another method proposed by
Macharet and Campos (2014) assigns orientations to each target, taking into account
the turning radius and the distance between targets.

Methods that do not apply the ETSP order include the algorithms of Tang and
Özgüner (2005) and Le Ny et al. (2007). The first determines an order by geometric
reasoning and computes a path through the targets using an approximated gradient
method. The second algorithm, called Nearest Neighbor Heuristic, adds one target
to the order in each step and fixes its heading, namely the target closest to the last
added configuration according to the Dubins metric. A further algorithm proposed by
Medeiros and Urrutia (2010) adopts an angular-metric traveling salesman problem to
minimize the sum of direction changes in determining the visiting order.

A well known technique for finding a Dubins path through an ordered set of targets,
in the following referred to as theDubins Shortest PathProblem (DSPP), is to discretize
the headings of the targets, that is, for each target, to consider h candidate headings
that partition the interval [0, 2π ] uniformly into h subintervals. The idea has been used
in the context of motion planning of robots by several authors including Jacobs and
Canny (1992), Edison and Shima (2011), Cons et al. (2014) and others. Alternative
approaches for the DSPP are due to Goac et al. (2013), Lee et al. (2000), Rathinam
and Khargonekar (2016) and Manyam et al. (2017).

Discretization is also the basis of several approaches for the DTSP. Le Ny et al.
(2012) propose a method that chooses a set of possible headings at each target and
transforms the problem into a larger asymmetric TSP. Epstein et al. (2014) discretize
the problem and formulate it as an integer optimization problem. The authors solve
problems with up to 30 targets, however requiring several hours of running time on
a standard desktop computer. Isaiah and Shima (2015) develop a k-step look-ahead
algorithm and solve small-size problems with up to nine targets. Additionally, they
propose a local improvement algorithm similar to the classic 2-opt algorithm for the
TSP. Cohen et al. (2016) continue this work and present discretization-based look-
ahead algorithms with different discretization levels and lengths of the look-ahead
horizon. They solve problems with up to 30 targets requiring not more than few tens
of minutes, even for high discretization levels.

Another line of research applies global search metaheuristics to both the DSPP and
DTSP. This includes the genetic algorithms of Yu and Hung (2012) and Hansen and La
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Cour-Harbo (2016). The former presents a coupled strategy where both headings and
sequence of the targets are determined concurrently. The latter extends the algorithm
by allowing Dubins curves with varying turning radii. This is motivated by the fact
that lowering the forward speed of an aircraft reduces the turning radius. Macharet
et al. (2011) use a continuous GRASP technique consisting of a construction and local
improvement phase. Kenefic (2008) applies particle swarm optimization to solve the
DSPP. The method starts with a solution of the Alternating Algorithm and optimizes
the headings at each target to smooth the entire path such that there are as few large
or complete turns as possible.

In this paper we present a collection of new heuristic algorithms for the DTSP
and evaluate their performance empirically. The algorithms are inspired by standard
methods for the TSP and are based on several variants of the DSPPwhich are solved by
discretizing the headings, constructing an auxiliary network and finding a shortest path
in the network. The proposed heuristics are suitable for solving large instances of the
DTSPwith thousand ormore targets,while keeping computation times low. Tested on a
large variety of random scenarios with different turning radii of the Dubins vehicle, the
methods show a significant performance improvement over standard methods known
from the literature.Moreover, the methods appear competitive with the state-of-the-art
algorithm of Le Ny et al. (2012), however with a much lower computation time.

The remainder of the paper is structured as follows. In Sect. 2 we outline the
network-based approach to solve the DSPP and numerically analyze the performance
with respect to different discretization levels of the headings. Section 3 presents algo-
rithms for the DTSP based on the target order of the Euclidean TSP. A class of
algorithms that extends an open subtour by successively adding a new target is intro-
duced in Sect. 4. In Sect. 5 we propose a further class of algorithms that starts with a
closed subtour consisting of few targets and successively inserts a new target into the
tour. Section 6 discusses the trade-off between quality of solutions and running time
and attempts a final assessment of the different methods. We conclude in Sect. 7 with
final remarks.

2 Optimization of headings

In this section we address several variants of the DSPP. The solution method is inter-
esting in its own right, and will serve as the basis for the algorithms of the DTSP. The
following four problems are investigated. Given a specified order T1, . . . , Tn of the
targets find a shortest possible:

(I) open Dubins tour with predefined headings in T1 and Tn
(II) open Dubins tour without predefined headings in T1 and Tn
(III) open Dubins tour with predefined heading in T1 and without predefined heading

in Tn
(IV) closed Dubins tour.

Figure 1 shows examples of such tours for a set of five targets with turning radius
r = 1. The headings of the first and last target in the open tour of subfigure (a)
are predefined as 180◦ and 90◦, respectively. All other headings are free and have
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Fig. 1 Open and closed Dubins tours with optimized headings

been determined as to minimize tour length. The open tour in subfigure (b) has been
generated without predefined headings, i.e. all headings are optimized. Subfigure (c)
shows a closed tour where all headings are optimized.

In the following we present a technique that optimizes the headings of the targets in
a tour with a given order. The method is based on finding a shortest path in an auxiliary
network. The network is constructed by discretizing the headings of the targets. Each
target without predefined heading is associated with m vertices where m denotes the
number of different headings in the discretization. Each vertex represents the target
with a special heading.

The network to solve problem (I) consists of a vertex s representing the first target
T1 of the tour with the predefined heading and a vertex t representing the last target
Tn , again with predefined heading. Every other target T2, . . . , Tn−1 is represented
by m vertices forming a layer of the network. All vertices of consecutive layers are
connected by directed edges. The weight of an edge is equal to the Dubins distance
between the targets with the associated headings. Vertex s is connected to all vertices
of the first layer and all vertices of the last layer are connected to t . The idea is sketched
in Fig. 2a. Obviously, for the given discretization, a shortest path in the network from
s to t provides a tour with optimal headings of the targets T2, . . . , Tn−1.

The network for problem (II) consists of n layers for the targets T1, . . . , Tn and two
auxiliary vertices s and t , see Fig. 2b. All edges from s to the first layer get weight 0 as
well as all edges from the last layer to vertex t . A shortest path from s to t provides a
shortest tour where the headings of all targets are optimized. Problem (III) is addressed
by defining n − 1 layers for T2, . . . , Tn along with a vertex s representing the first
target T1 with predefined heading and an auxiliary vertex t with incoming edges of
weight 0, see Fig. 2c. Now a shortest path from s to t corresponds to a shortest tour
with optimal headings for T2, . . . , Tn .

The network for problem (IV) consists of n + 1 layers for T1, . . . , Tn and T1 as
shown in Fig. 2d. The vertices of the first layer are denoted by s1, . . . , sm , the vertices
of the last layer by t1, . . . , tm . Hence si and ti represent target T1 with the same heading.
The shortest path from si to ti corresponds to a closed Dubins tour with predefined
heading in T1. The shortest tour is obtained by calculating all m shortest paths from
si to ti , i = 1, 2, . . . ,m and selecting the shortest one. Shortest path calculations are
performed using the A∗-algorithm (see Hart et al. 1968).
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Fig. 2 Shortest paths in auxiliary networks

Fig. 3 Dubins tours with different discretization levels of headings

It should be noted that the lengths of theDubins tours are not continuouswith respect
to the discretization level of the headings. Even small changes of the discretization
may completely change the course of the tour and significantly increase or decrease the
tour length. For that reason it is advisable to choose as fine a discretization as possible.
Figure 3 shows an example where different discretization levels provide completely
different Dubins tours. The turning radius of the Dubins vehicle is r = 0.5. The length
of the tour decreases when the stepsize is reduced from 10◦ to 5◦, however it increases
when the stepsize is further reduced to 2◦.

All algorithms presented in this paper have been implemented in Matlab version
R2018a, on a standard PC running Windows 10 with 3.5 GHz CPU and 8 GB RAM.
In order to assess the performance of the above methods, the tour length is considered
as a function of the discretization level of the headings. A wide range of test cases
has been generated where the targets are located randomly according to a uniform
distribution in an area of size [−2.5, 2.5] × [−2.5, 2.5]. We compute open Dubins
tours through a number n ∈ {10, 50, 100} of targets arranged in random order with
different turning radii r ∈ {0.1, 0.5, 1.0}. The lengths of all tours are normalized
(divided) by the length of the Euclidean tour consisting of straight-line connections
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Fig. 4 Average computation time for open Dubins tour

(i.e. the length of the normalized straight-line tour is equal to 1). Table 1 shows the
average of 100 random instances for each combination of n and r .

It can be seen that the results stabilize very soon if the turning radius is small. In
this case, independent of the number of targets, a relatively rough discretization of 10◦
appears sufficient. A further reduction of the stepsize offers only minor improvements.
With increasing turning radius it is advisable to select a finer discretization.

The running time of the algorithm depending on the discretization level is shown
in Fig. 4 using a logarithmic scale of the time axis. For example, computing a tour
consisting of 10 targets requires about 1 s for a discretization of 5◦ and 25 s for a fine
discretization of 1◦. Tours consisting of 100 targets are computedwithin approximately
10 s for stepsize 5◦. For a stepsize of 1◦ the running time grows to almost five minutes.
The strong increase is due to the fact that, in the last case, a huge network consisting of
100 layers with 360 vertices each has to be constructed, resulting in a total of 36,000
vertices. Calculating the Dubins distances between all pairs of vertices of consecutive
layers is time-consuming, whereas finding a shortest path with the A∗-algorithm is
very fast.

3 Algorithms based on solutions of the ETSP

In this section we compare several algorithms that are based on an order of the tar-
gets obtained from an optimal solution of the Euclidean Traveling Salesman Problem
(ETSP). The algorithms fix the headings of the targets according to different strategies.

The Randomized Headings Algorithm assigns the headings purely at random (see
Le Ny et al. 2007). The Alternating Algorithm (see Savla et al. 2005) retains all odd-
numbered edges of the solution of the ETSP (i.e. the subpath is a straight line) aswell as
the corresponding headings. The even-numbered edges are replaced by Dubins paths.
TheOptimizedHeadings Algorithm uses the technique for subproblem (IV) introduced

123



New heuristic algorithms for the Dubins traveling salesman… 511

Fig. 5 Results of algorithms based on optimal solution of the ETSP

in the previous section. As a benchmark and lower bound we use the solution of the
ETSP.

The scenario in Fig. 5 with 20 targets and turning radius 0.5 shows the strong
impact of the headings on the course and the length of the Dubins tour. The Optimized
Headings Algorithm has been applied with a discretization of stepsize 5◦. Clearly,
if the headings of the Alternating Algorithm are included in the discretization of the
headings of the Optimized Headings Algorithm, then the latter algorithm will always
provide a solution that is at least as good.

The impact of the turning radius on the course of the tour is shown in an example in
Fig. 6. For a small turning radius, the order obtained from the ETSP is in most cases
appropriate to produce a good solution of the DTSP since the kinematic constraints
are less relevant. However, this is not necessarily the case if the radius increases. For
a vehicle with large turning radius we get solutions with many loops which may be
improved by modifying the order of the targets.

The performance of the algorithms has been tested on scenarioswith n targets, again
located uniformly at random in an area of size [−2.5, 2.5] × [−2.5, 2.5], where n =
10, 20, . . . , 100, and turning radius r ∈ {0.1, 0.5, 1.0}. The diagrams inFig. 7 show the
average of 50 instances, normalized with respect to the length of the ETSP. The ETSP
has been solved using Helsgaun’s implementation of the Lin–Kernighan heuristic (see
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Fig. 6 Tours obtained by Optimized Headings Algorithm

Helsgaun 2000). The Optimized Headings Algorithm uses a 10◦ discretization for
turning radius 0.1◦ and 5◦ for turning radius 0.5 and 1.0.

It is evident that the Optimized Headings Algorithm clearly outperforms the other
methods. For turning radius 0.1 and 0.5, the improvement of the tour length compared
to theAlternatingAlgorithm is about 25% for 10 targets. The percentage drops slightly
with increasing number of targets to about 20% for 100 targets. For turning radius 1.0,
we get more than 30% improvement for 10 targets and 10% for 100 targets. Not
surprisingly, the Randomized Headings Algorithm is not competitive.

The proposed algorithm provides a significant improvement of the tour length for
small turning radii. The reason for this is that the algorithm allows a wide range of
possible headings and the vehicle is agile enough to prevent it from performing big
loops. On the other side, the gap to the Alternating Algorithm gets smaller if the radius
and the number of targets increases. This may be explained as follows. If the targets
are close together compared to the turning radius, then only few targets can be passed
in a row with small maneuvers. Very often, the vehicle will have to make a wide turn
to get to the next target. The length of such a turn by far exceeds the length of the
direct connection. One half of the solution of the Alternating Algorithm are straight-
line connections, the other connections are mostly wide turns. In order to significantly
improve such a solution, one should avoid the turns which is only possible to a limited
extend due to the restricted maneuverability of the vehicle.

4 Extension algorithms

Inspired by the nearest neighbor method for the TSP, see e.g. Lawler et al. (1985), the
Nearest Neighbor Heuristic for the DTSP has been introduced by Le Ny et al. (2012).
The method starts with an arbitrary target and defines its heading arbitrarily. Then, at
each step, the target is determined which is not yet on the path but is closest to the last
added target (with already fixed heading) according to the Dubins metric. The authors
use an idea of Savla et al. (2005) that computes the Dubins distance and path between
an initial target with fixed heading and a final target with free heading. The closest
target is added to the path with the associated optimal arrival heading. In a final step,
when all targets have been added to the path, the tour is completed by a Dubins path
connecting the last and the initial target.
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Fig. 7 Computational results for ETSP-based algorithms

The Nearest Neighbor Heuristic optimizes the heading of the newly added target
only, whereas the headings of all previously inserted targets remain fixed. In contrast,
the following algorithm optimizes the headings of all included targets.
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Algorithm: Greedy-extend

1. Start with an arbitrary target T1.
2. For p = 1 to n − 1 do

Choose the next target Tp+1 in such a way that the open
Dubins tour through T1, . . . , Tp, Tp+1 is as short as possible.

3. Find a shortest possible closed Dubins tour through T1, T2, . . . , Tn .
Let h1, . . . , hn denote the headings of T1, . . . , Tn in the obtained tour.

The open Dubins tours are computed by the technique introduced in Sect. 2 to
solve problems of type (II). If the complete order T1, T2, . . . , Tn is determined then a
shortest closed Dubins tour is determined using the technique for problem (IV). Note
that the algorithm does not extend a frozen path (as Nearest Neighbor does), but adds
a new target to the order in each iteration. The headings of the targets may change in
the next iteration. The final headings h1, . . . , hn are determined in the last step.

As it turns out, the algorithm is practicable for a relatively small number of targets.
However, the running time gets quite extensive if the number of targets is high. The
results indicate that, when adding a new target, the headings of the last targets in the
order change, whereas inmost cases the headings of the first targets in the order remain
as they are. In order to reduce the computation time, we consider only the last k targets
in the order when optimizing the headings. The previous targets in the order are not
used, i.e. their headings remain unchanged.

Algorithm: Greedy-k-extend

1. Determine an order T1, T2, . . . , Tk using step (1) and (2) of algorithm
Greedy-extend.
Let h1 denote the heading of T1 in the associated open Dubins tour.

2. For p = k to n − 1 do
Choose the next target Tp+1 in such a way that the open Dubins tour
through Tp−k+1, . . . , Tp, Tp+1 with predefined heading h p−k+1 in Tp−k+1
is as short as possible.
Let h p−k+2 denote the heading of Tp−k+2 in the obtained tour.

3. Find a shortest possible open Dubins tour through Tn−k+1, . . . , Tn, T1
with predefined headings hn−k+1 in Tn−k+1 and h1 in T1.
Let hn−k+2, . . . , hn denote the headings of Tn−k+2, . . . , Tn in the obtained
tour.

After step (1) we have k targets fixed in an order. Only the heading of the first
target is frozen. In each iteration of step (2) we have to calculate n − p open Dubins
tours consisting of k + 1 targets, namely the last k targets from the already fixed order
plus one target from the n − p not yet included targets. The tours are calculated using
the technique for problem (III) where the heading of the start target is fixed. This
means that k headings are free. At the end of each iteration we freeze one further
heading, namely the heading of the second target of the shortest tour. This target with
the associated heading serves as the start target in the next iteration. In step (3) we
close the tour by calculating an open Dubins tour consisting of the last k targets and
the first target of the order. This is done using technique (I) where the headings of the
first and last target are predefined. Here k − 1 free headings have to be optimized.
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Fig. 8 Example for algorithm Greedy-3-extend

It is worth noting that Greedy-1-extend turns into the Nearest Neighbor method if
the discretization of the headings is infinitely fine. Figure 8 shows the single stages
of algorithm Greedy-3-extend in a scenario with 7 targets and turning radius 0.5. The
start target of each iteration is marked in green color. The first subfigure shows the
result of step (1), the next four plots the iterations of step (2). The last plot shows the
closure of the tour.

The performance of the algorithms, tested on the random instances of Sect. 3, is
illustrated in Fig. 9 with the solutions of the ETSP as a benchmark. The headings
are discretized with a resolution of 10◦. The algorithms achieve a clear improvement
of the tour lengths compared to the Nearest Neighbor Heuristic. The gap increases
even further with the number of targets. The improvement is about 15% for turning
radius 0.1 and 25% for larger turning radii. It is remarkable that Greedy-3-extend
on average provides only slight improvements compared to Greedy-2-extend. Further
improvements obtained by increasing the value of k or by applying algorithm Greedy-
extend are almost negligible. On the other side, the running time of the latter methods
increase significantly with k. For instance, Greedy-3-extend requires more than twice
the running time of Greedy-2-extend. Algorithm Greedy-extend is extremely time-
consuming such that the test cases have been limited to 80 targets. The results clearly
indicate that the additional computational effort is not justified.
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Fig. 9 Computational results for extension algorithms
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5 Insertion algorithms

The following algorithms are motivated by a class of methods for the TSP known as
insertion algorithms, see e.g. Lawler et al. (1985). The algorithms start with a closed
subtour consisting of few targets and extend this tour by inserting the remaining targets
one after the other until all targets have been inserted. The methods can be classified
according to how the initial tour is constructed, how the next target to be inserted is
chosen, and where the chosen target is inserted.

The starting tour is usually some tour consisting of three targets. A new target is
inserted into the tour at a position that causes the minimum increase in the length of
the tour. The major difference between the insertion algorithms is the order in which
the targets are inserted. The nearest and farthest insertion algorithms, for instance,
insert the target whose minimal distance to a target of the tour is minimal or maximal.
The cheapest insertion algorithm chooses a target whose insertion causes the lowest
increase in the length of the tour.

We try to adapt these algorithms to the DTSP. Given a closedDubins tour consisting
of targets T1, . . . , Tp, a new target can be inserted at p different positions, namely
between T1 and T2, between T2 and T3, etc., or between Tp and T1. The following
algorithmic scheme selects a new target according to some strategy and inserts it such
that the resulting tour is as short as possible.

Algorithm: Greedy-insert

1. Start with an arbitrary target T1.
2. For p = 1 to n − 1 do

Choose a target T not yet belonging to the Dubins tour T1, . . . , Tp

according to the selected strategy (Random / Nearest / Farthest).
Determine a position in the tour such that the closed Dubins tour
through T1, . . . , Tp and T is as short as possible.
Rename the targets to T1, . . . , Tp+1 according to the order of the obtained
tour.

3. Let h1, . . . , hn denote the headings of T1, . . . , Tn in the obtained tour.

The closedDubins tours are determined using technique (IV) fromSect. 2. Note that
the headings of all targets are free, i.e. the headings may change in each iteration. Due
to the large number of tours to be computed, the algorithm is rather time-consuming
and applicable only for scenarios of modest size. The following enhancements do not
recalculate the whole tour in each iteration, but restrict themselves to a small portion
of the tour around the inserted target. The methods differ in the number of targets that
are considered for recalculation.

Given a Dubins tour T1, . . . , Tp with headings h1, . . . , h p we denote with
d(Ti , Ti+1) the length of the subtour between the targets Ti and Ti+1 (with indices
modulo p). For a target T not yet belonging to the tour let dT (Ti , Ti+1) denote the
length of the shortest possible open Dubins tour from Ti to Ti+1 via T with fixed
headings hi in Ti and hi+1 in Ti+1 and free heading in T . Then

ΔT (Ti , Ti+1) = dT (Ti , Ti+1) − d(Ti , Ti+1)
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is the increase of the tour length if T is inserted between Ti and Ti+1 without changing
the headings of the targets. We choose the insert position for T in such a way that the
increase of the tour length is minimal. This approach inserts a new target leaving the
whole tour unchanged except the connection between Ti and Ti+1.

The following relaxation modifies the headings of few targets that are adjacent
to the inserted target. For a Dubins tour T1, . . . , Tp with headings h1, . . . , h p let
d(Ti−k+1, Ti+k) denote the length of the subtour between Ti−k+1 and Ti+k and
dT (Ti−k+1, Ti+k) the length of the shortest possible open Dubins tour through
Ti−k+1, . . . , Ti , T , Ti+1, . . . , Ti+k with predefined heading hi−k+1 in Ti−k+1 and hi+k

in Ti+k (again with all indices modulo p). Then

ΔT (Ti−k+1, Ti+k) = dT (Ti−k+1, Ti+k) − d(Ti−k+1, Ti+k)

again describes the increase of the tour length if T is inserted between Ti and Ti+1.
Now the headings of Ti−k+1 and Ti+k remain fixed but the headings of all targets in
between are free. The length dT (Ti−k+1, Ti+k) of the open Dubins tour is calculated
using technique (I) from Sect. 2. This approach provides a local change of the tour
around the inserted target. Here is a more formal description:

Algorithm: Greedy-k-insert

1. Start with an initial Dubins tour T1, . . . , Tk with headings h1, . . . , hk .
2. For p = k to n − 1 do

Choose a target T not yet belonging to the Dubins tour T1, . . . , Tp

according to the selected strategy (Random / Nearest / Farthest).
Determine a position in the tour such that the increase ΔT (Ti−k+1, Ti+k)

of the tour length is as short as possible.
Rename the targets to T1, . . . , Tp+1 according to the order of the
obtained tour with headings h1, . . . , h p+1.

The start tour is generated using algorithm Greedy-insert. Algorithm Greedy-1-
insert considers only one free heading for the inserted target. Greedy-2-insert allows
twomore free headings for the predecessor and successor. Greedy-3-insert has five free
headings, for the inserted target and two predecessors and two successors. Generally,
Greedy-k-insert (with its versions Random-k-insert, Nearest-k-insert and Farthest-k-
insert) allows 2k − 1 free headings.

The following algorithm tries to simultaneously find the most promising target and
position in each iteration. It computes a closed Dubins tour for every target not yet
belonging to the tour and for each possible insert position and chooses the target and
position providing the shortest tour. As above, the methods differ in the number of
free headings when inserting a target.

Algorithm: Cheapest-k-insert

1. Start with an initial Dubins tour T1, . . . , Tk with headings h1, . . . , hk .
2. For p = k to n − 1 do

Choose a target T not yet belonging to the Dubins tour T1, . . . , Tp

and a position for T in the tour such that the increase ΔT (Ti−k+1, Ti+k)

of the tour length is as short as possible.
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Fig. 10 Example for algorithm Cheapest-2-insert

Rename the targets to T1, . . . , Tp+1 according to the order of the
obtained tour with headings h1, . . . , h p+1.

The idea of algorithm Cheapest-2-insert is demonstrated in Fig. 10. The scenario
contains the same set of targets as used in Fig. 8. The initial tour consisting of three
targets is obtained by two iterations of Cheapest-insert. The latter algorithm leaves all
headings free and is not explicitly formulated here. The following four iterations of
Cheapest-2-insert add the remaining targets. The dashed lines mark the part of the tour
that remains unchanged in the actual iteration. The inserted targets are highlighted in
green color.

The performance of Greedy-k-insert and Cheapest-k-insert for k = 1, 2 and for a
10◦ resolution of the headings is presented in Fig. 11. We can observe big improve-
ments from k = 1 to k = 2, independent of the turning radius and the selected strategy.
Results for higher values of k allowing five or more free headings are not included in
the figure since the associated algorithms do not show substantial improvements but
increase the computer running time by a high factor. The same holds for the algorithms
Greedy-insert and Cheapest-insert where the headings of all targets are free in each
iteration.

It turns out that the performance is strongly depending on the turning radius of
the vehicle. If the radius is small then algorithm Farthest-2-insert clearly outperforms
all other methods. Furthermore, Random-2-insert is superior to Cheapest-2-insert and
Nearest-2-insert. These results are in accordance with practical experience obtained
for the insertion heuristics of the TSP (see Lawler et al. 1985). However, the behavior
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Fig. 11 Computational results for insertion algorithms
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Table 2 Summary of proposed algorithms

Class of
algorithms

Basic idea Method Strategy

ETSP-based
algorithms

Solve ETSP and
determine headings of
optimal tour

Optimized Headings
Algorithm

Optimize headings by
computing shortest paths in
auxiliary network

Extension
algorithms

Extend open Dubins
subtour by adding new
target

Greedy-Extend Optimize headings of all
targets

Greedy-k-Extend,
k ≥ 1

Optimize heading of new
target and of k − 1
preceding targets

Insertion
algorithms

1. Determine new target
according to selected
rule

Greedy ∈ {Random,
Nearest, Farthest}

Randomly or with
minimal/maximal distance
to other targets of tour

2. Insert new target into
closed Dubins subtour

Greedy-Insert Optimize headings of all
targets

Greedy-k-Insert,
k ≥ 1

Optimize heading of new
target and of k − 1
preceding and k − 1
succeeding targets

Simultaneously determine
new target and position
in closed Dubins
subtour

Cheapest-Insert Optimize headings of all
targets

Cheapest-k-Insert,
k ≥ 1

Optimize heading of new
target and of k − 1
preceding and k − 1
succeeding targets

completely changes if the turning radius increases to 0.5. Now Farthest-2-insert seems
inferior to the other methods with Cheapest-2-insert appearing as the most promis-
ing approach. For turning radius 1.0 we observe only small differences between the
algorithms, again with slight advantages for Cheapest-2-insert.

6 Performance and runtime analysis

In the previous sections we introduced a number of new heuristic algorithms for
the DTSP (see the summary in Table 2), evaluated their performance depending on
the turning radius of the vehicle, and showed that they compete favorably against
standard methods known from the literature, including the Alternating Algorithm and
the Nearest Neighbor method. A further step to demonstrate the capability of the new
heuristics is to compete with an algorithm proposed by Le Ny et al. (2012) which is
regarded as one of the leading methods for the DTSP. To gain an overall picture and
provide a concluding assessment we consider the quality of the solutions versus the
running time of the algorithms.
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The algorithm of Le Ny et al. (2012) defines a set of m possible headings at each
target and constructs a graph with n clusters corresponding to the n targets, where
each cluster containsm vertices corresponding to the choice of the headings. Then the
Dubins distances are computed between all configurations corresponding to pairs of
vertices in distinct clusters. Now the task is to find a tour through the n clusters which
contains exactly one vertex in each cluster. This problem is known as the Generalized
Asymmetric Traveling Salesman Problem (GTSP) and can be reduced to a standard
asymmetric traveling salesman problem (ATSP) over n · m vertices.

We apply the algorithm with 5 discretization levels of the headings, evenly dis-
tributed in the interval [0, 2π ]. Given a set of 100 targets, this provides an ATSP with
500 vertices. The solution of such an ATSP requires about half a minute using the Lin–
Kernighan heuristic, see Helsgaun (2000). Clearly, the performance of the algorithm
can be improved by increasing the discretization levels. However, this is at the expense
of significantly increased computation time. For example, increasing the number of
discretization levels to 10 will more than double the time. For larger scenarios with
several hundreds or even thousands of targets, the method will soon require hours of
running time. For that reason the algorithm is only of limited use for processing very
large instances of the problem.

The quality of the solutions and the running time of the most promising algorithms
for the DTSP are summarized in Figs. 12 and 13. For turning radius 0.1, the Optimized
Headings Algorithm turns out to be clearly superior to all other methods regarding
performance. This appears plausible since the optimal order of the ETSP should pro-
vide a good solution of the DTSP whenever the turning radius is small compared to
the distance of the targets. The computation time is far below 10 s for a scenario with
100 targets, including the time to solve the associated ETSP. The method with lowest
running time is Farthest-1-insert, however with rather modest quality of the solutions.
The extension algorithms are not competitive for small turning radius.

The Optimized Headings Algorithm clearly outperforms GTSP. As mentioned
before, the results of GTSP can be improved by increasing the number of headings.
Given 100 targets, a 10◦ discretization of the headings as used by the Optimized
Headings Algorithm provides an ATSP with 3600 instead of 500 vertices, implying
exploding computation time. The running time of the Optimized Headings Algorithm
remains low compared to GTSP since the former is based on an ETSP with 100 ver-
tices only, along with quickly solvable shortest path problems in a network with less
more than 3600 vertices.

For turning radius 0.5 there are several methods with similar performance. While
the insertion algorithms perform slightly better for less than 50 targets, the extension
algorithms are superior for larger scenarios. In the first case Cheapest-2-insert appears
to be the best choice, replaced by Greedy-3-extend in the second case. However,
Cheapest-2-insert is much more time-consuming than Greedy-3-extend. It seems that
algorithm Greedy-2-extend provides the best trade-off between quality of solutions
and runtime. Algorithms based on solutions of the ETSP perform poorly for large
turning radii.

For turning radius 1.0 we again find several methods of similar performance, with
the extension algorithms seeming slightly superior to the insertion algorithms.Greedy-
3-extend appears as the best method, however with significantly higher running time
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Fig. 12 Computational results for DTSP algorithms
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Fig. 13 Running time for DTSP algorithms
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Fig. 14 Tours obtained by algorithms Greedy-2-extend and Cheapest-2-insert

thanGreedy-2-extend.While the running time ofGreedy-2-extendmarginally exceeds
GTSP for less than 80 targets, it reverses for larger scenarios. The gap substantially
increases with the number of targets. In summary, algorithm Greedy-2-extend again
constitutes the best compromise between running time and quality of the solution.

Our experience indicates that, in general, insertion algorithms tend to work better
than extension algorithms if the turning radius is small. Figure 14 shows the tours
obtained by algorithms Cheapest-2-insert and Greedy-2-extend in a scenario with 100
targets, for a vehicle with turning radius 0.1. The increase of the tour lengths when
adding new targets reveals the typical behavior of the algorithms. While Cheapest-2-
insert shows a more or less even increase of the tour length with few and moderate
peaks only, algorithm Greedy-2-extend proceeds extremely well in the first phase but
shows large peaks at the end. The reason is that single targets or groups of targets
lie outside the growth corridor of the algorithm and must be connected to the actual
subtour by long Dubins paths.

This also explains the performance of algorithm Greedy-2-extend when the size of
the scenario grows from 10 to 20 targets (see Fig. 12a). While the algorithm operates
well for very small test cases, the number of forgotten targets increases for larger test
cases. This requires several long connections to add those targets and deteriorates the
quality of the solutions. Moreover, the last step of the algorithm which closes the open
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Fig. 15 Tours obtained by algorithms Greedy-2-extend and Cheapest-2-insert

Dubins tour, often requires a long Dubins path leading back to the start point of the
tour.

A further conclusion is that, for large turning radii, the extension algorithms seem
superior to the insertion methods. A typical example based on the same scenario
as above, but with turning radius 1.0, is presented in Fig. 15. The tour obtained by
Greedy-2-extend shows long series of targets with modest increase of the tour lengths,
but also a certain number of peaks. These correspond to targets which are located far
away from the last target of the subtour, or to targets which are added by realizing
loops. Cheapest-2-insert contains much more and higher peaks. This indicates that
inserting targets into a closed subtour seems more difficult than adding them to an
open subtour. The final tour contains more and longer loops. Note that the first peak
belongs to the initial tour which consists of two targets only. This tour resembles a
circle of circumference 2π .

The new methods are also applicable to large-scale scenarios with thousand and
more targets, keeping the running time within reasonable limits. The tours for a sce-
nario with 1000 targets in Fig. 16 have been generated by the Optimized Headings
Algorithm, with a 10◦ discretization of the headings. For turning radius 0.05 the tour
strongly resembles the optimal solution of the ETSP where all targets are connected
by straight lines. There are only minor deviations and a restricted number of short
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Fig. 16 Tours obtained by Optimized Headings Algorithm

Fig. 17 Tours obtained by algorithms Greedy-2-extend and Nearest-2-insert

loops. The ratio of the tour lengths of DTSP and ETSP is 1.25. If the turning radius is
increased to 0.1 then we observe a large number of loops. This is due to the fact that
the turning radius gets large compared to the average distance of consecutive targets. It
is frequently not possible to directly connect two targets. The ratio of the tour lengths
increases to 2.40.

Figure 17 shows the tours of the same scenario obtained by algorithms Greedy-2-
extend and Nearest-2-insert, again with a 10◦ resolution of the headings. The tour of
Greedy-2-extend shows many targets in a row with short connections. Compared to
the Optimized Headings Algorithm there is only a small number of loops. On the other
hand, the algorithm generates several long straight segments to other subregions of the
operational area not yet processed by the algorithm.One of the straight segments closes
the tour by connecting the first with the last target. The tour of Nearest-2-insert seems
to be somewhat more winding but does not contain any long straight path segments.
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Both algorithms perform significantly better than the Optimized Headings Algorithm
with a similar tour length ratio of slightly above 1.8.

The running time of the Optimized Headings Algorithm is about 80 s, including the
time for solving the associated ETSP. Greedy-2-extend is marginally faster, whereas
Nearest-2-insert requires almost 4 min. For comparison, solving the corresponding
GTSP with a discretization level that allows solutions of similar quality, takes many
hours.

7 Conclusion

TheDubins traveling salesmanproblem is a variationof the traveling salesmanproblem
where the length of a tour has to be minimized in which a kinematically constrained
vehicle visits a set of targets. This paper introduces new classes of heuristic algorithms
to solve this problem. The algorithms are based on a technique that optimizes headings
by discretization and finding shortest paths in auxiliary networks. The order of the
targets is obtained by solving an Euclidean traveling salesman problem, or by applying
different strategies that successively extend an open subtour by one target or insert a
new target into a closed subtour. A comparative study shows that the algorithms are
able to compete with state-of-the-art algorithms in terms of performance. A major
benefit is that the algorithms are time-efficient and applicable for very large scenarios,
hence overcoming limitations of other methods.

The proposed methods belong to the class of constructive algorithms that build a
solution according to a predefined set of rules. In future work we intend to extend
our investigations to improvement algorithms that start from a feasible tour and try to
iteratively improve the tour by applying small changes. Such local search algorithms
could be inspired by thewell known2-opt and 3-optmethods for the traveling salesman
problem, or by metaheuristics including genetic algorithms, tabu search, simulated
annealing, and others.
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