
Title An adaptive large neighbourhood search algorithm for diameter
bounded network design problems

Authors Garraffa, Michele;Mehta, Deepak;O'Sullivan, Barry;Ozturk,
Cemalettin;Quesada, Luis

Publication date 2021-06-23

Original Citation Garraffa, M., Mehta, D., O'Sullivan, B., Ozturk, C. and Quesada,
L. (2021) 'An adaptive large neighbourhood search algorithm
for diameter bounded network design problems', Journal of
Heuristics. doi: 10.1007/s10732-021-09481-1

Type of publication Article (peer-reviewed)

Link to publisher's
version

10.1007/s10732-021-09481-1

Rights © 2021, the Authors, under exclusive licence to Springer Science
+Business Media, LLC, part of Springer Nature. This is a post-
peer-review, pre-copyedit version of an article published in
Journal of Heuristics. The final authenticated version is available
online at: https://doi.org/10.1007/s10732-021-09481-1

Download date 2024-04-26 21:55:53

Item downloaded
from

https://hdl.handle.net/10468/11543

https://hdl.handle.net/10468/11543

Noname manuscript No.
(will be inserted by the editor)

An Adaptive Large Neighbourhood Search
Algorithm for Diameter Bounded Network Design
Problems

Michele Garraffa · Deepak Mehta ·
Barry O’Sullivan · Cemalettin Ozturk ·
Luis Quesada

July 7, 2021

Abstract This paper focuses on designing a diameter - constrained network
where the maximum distance between any pair of nodes is bounded. The ob-
jective considered is to minimise a weighted sum of the total length of the
links followed by the total length of the paths between the pairs of nodes.
First, the problem is formulated in terms of Mixed Integer Linear Program-
ming (MILP) and Constraint Programming (CP) to provide two alternative
exact approaches. Then, an adaptive large neighbourhood search (LNS) to
overcome memory and runtime limitations of the exact methods in large size
instances is proposed. Such approach is based on computing an initial solu-
tion and repeatedly improve it by solving relatively small subproblems. We
investigate various alternatives for finding an initial solution and propose two
different heuristics for selecting subproblems. We have introduced a tighter
lower bound, which demonstrates the quality of the solution obtained by the
proposed approach. The performance of the proposed approach is assessed
using three real-world network topologies from Ireland, UK and Italy, which
are taken from national telecommunication operators and are used to design
a transparent optical core network. Our results demonstrate that the LNS

First Author
School of Computer Science & IT, University College Cork, Cork, Ireland
E-mail: michele.garraffa@ucc.ie

Second, Third and Fifth Authors
Insight Centre for Data Analytics
School of Computer Science & IT, University College Cork, Cork, Ireland
E-mail: deepakmehta79@gmail.com, barry.osullivan@insight-centre.org,
luis.quesada@insight-centre.org

Fourth Author
Munster Technological University, Process, Energy and Transport Engineering, Bishop-
stown Cork, Ireland. T12 P928
E-mail: cemalettin.ozturk@cit.ie

2 Garraffa et al.

approach is scalable to large networks and it can compute very high quality
solutions that are close to being optimal.

Keywords Diameter Bounded Network Design · Mixed Integer Linear
Programming · Constraint Programming · Large Neighbourhood Search ·
Optical Networks.

1 Introduction

Many network design problems arising in areas as diverse as Quality of Service
(QoS) routing, traffic engineering, and computational sustainability, require
clients to be connected to a facility under path-length and budget constraints.
In general, the length of the path can be interpreted as distance, delay, signal
loss, etc. For example, in a multicast communication setting where a single
node broadcasts to a set other of nodes, it is important to restrict the path
delays between them. In Long-Reach Passive Optical Networks (LR-PON), a
metro-core node is connected to a set of local-exchange sites via optical fibres
and the length of the fibre between a local exchange site and its metro-core
node is bounded due to signal loss. The goal in this case is to minimise the cost
resulting from the total length of fibres [31, 19]. In Transparent Optical Core
Networks (TOCN), all pairs of core nodes are connected via optical fibres and
the length of the fibre between any pair of core nodes is bounded due to signal
attenuation. The objective in this case is to minimise the cost resulting from
the length of the links chosen to connect the core nodes. In Very Large Scale
Integration (VLSI) circuit design, the path delay is a function of the maxi-
mum interconnection path length, while the power consumption is a function
of the total interconnection length [29]. In package shipment, service guaran-
tee constraints are expressed as restrictions on total travel time from an origin
to a destination, and the organisation wants to minimise the transportation
cost [36]. In wildlife conservation, which is an application from computational
sustainability [15], the landscape connectivity is vital in supporting resilient
wildlife populations in an increasingly fragmented habitat matrix. In this set-
ting, landscape connectivity is a function of the length of the path in terms of
landscape resistance to animal movement.

Many of these network design problems can be modelled as a Diameter
Constrained Network Design (DCND) problem. The objective is to find a
minimum cost network subject to the additional constraint that the length of
the path between any pair of nodes must not exceed a given threshold. The
DCND problem is NP-hard which can be shown using a reduction from the
constrained-shortest path problem [37]. This problem can be formulated both
as a Mixed Integer Linear Programming (MILP) and a Constraint Program-
ming (CP) model as exact solution approaches. While MILP formulation takes
advantage of network flow representation, CP formulation exploits dedicated
global constraints on networks [34] to formulate and solve the problem.

Since the size of real-world instances can be prohibitively large for exact
approaches both in terms of time and memory, a large neighbourhood search

An Adaptive LNS Algorithm for DCND Problems 3

(LNS) technique [32] is proposed and its utility is demonstrated by solving
instances of the TOCN problem close to optimality. LNS attempts to com-
bine the power of systematic search with the scalability of local search. LNS
scales significantly beyond commercial optimisation tools, such as CPLEX,
with the cost of not guaranteeing optimality. The key idea behind LNS is to
first compute an initial solution, then repeatedly consider a sub-problem and
optimise it until the stopping condition is met. In order to find an initial solu-
tion, we use a simple heuristic-based MILP decomposition scheme. Although
this heuristic allows us to start with a good quality solution, it consumes a
lot of time. Therefore, we propose an alternative approach that first enforces
the connectivity constraint by computing a minimum spanning tree. Then, a
MILP-based decomposition scheme is applied to repair the pairs for which the
length constraint is violated. This significantly reduces the time required to
solve the problem without sacrificing the quality of the initial solution. In the
context of LNS, and improving an initial solution, one of the important aspect
is how to select subproblems. If subproblems are selected in an ad-hoc manner,
then LNS might not help. For the diameter-bounded network design problem,
we propose two different ways of selecting subproblems. The first one is based
on the notion of support, which is computed as the number of pairs of nodes
that are affected when the current solution is destroyed. The second criterion
is link graph, which is based on the size of the subnetwork with respect to the
current solution that is going to be affected for a given subproblem.

We also investigate the impact of different ways of computing initial so-
lutions, subproblem selection, and size of the subproblem on the time and
solution quality for the instances of the TOCN problem. The adaptive LNS
method presented in this paper is general. It can also be easily extended to
solve other variants of the network design problems such as the Steiner tree
problem [5, 27], the buy-at-bulk network design, transportation network prob-
lems [20] and placement of warehouse problems [26].

The remainder of the paper is organised as follows. Section 2 gives a for-
mal specification of the problem and discuss the related literature. Section 3
provides a MILP formulation and a CP formulation for the DCND. Section 4
proposes a LNS approach and describes alternative methods to find an ini-
tial solution and two ways of selecting subproblems. Section 5 presents a
computational assessment of the exact approaches and some empirical results
obtained by running the LNS approach on national telecommunication net-
works of three countries. Section 6 introduces a new lower bound, which is
defined in terms of the rooted distance-constrained minimum spanning tree
problem (RDMSTP) [16]. Finally, Section 7 includes some conclusions and
future research directions.

2 Problem Specification and Related Work

The Diameter Constrained Network Design (DCND) problem consists of com-
puting a subgraph G∗ = 〈N,L∗〉 from a given graph G = 〈N,L〉 such that

4 Garraffa et al.

there exists a path between each pair of nodes {i, j} ⊆ N in G∗, whose length
is bounded by a value λ. We also say that the diameter of G∗ is bounded by λ,
since the diameter of a graph is defined as the length of the "longest shortest
path" between any two nodes. The primary objective is to minimise the sum
of the cost of the selected links. Additionally, we also seek to minimise the sum
of the lengths of the paths.

As mentioned before, DCND is NP-hard [5]. The difference between DCND
and related approaches relies on the fact that we ensure that there is a bounded
path for every pair of nodes, and the distance is expressed in terms of the sum
of the lengths of the links involved in the paths and not the number of hops. In
fact, the following related problems can be considered specific cases of DCND:

1. The constrained shortest path problem consists of finding a minimum cost
path from a source node to a destination node in a given graph subject to
the condition that the total length of the path must be less than or equal
to a specified value. This problem has been well studied [37]. However,
the difference with respect to our case is that they look for one distance-
bounded path for a given pair of nodes, while we are interested in finding
bounded paths for a given set of pairs of nodes and the primary goal is to
minimise the sum of the length of the links.

2. The Multiple Origin Multiple Destination (MOMD) problem is to find a
sub-network with the minimum total weighted length that connects each
origin-destination pair with a path. In this problem, the length of the path
is not bounded. Nevertheless, the problem is still NP-hard, as shown in
[2]. The MOMD problem can be seen as a simplified version of the logistics
planning problem in which packages are required to be transported from
their origins to their destinations by unlimited number of trucks for trans-
porting unlimited number of packets. DCND is a more general problem
than MOMD as it also considers the bounds on the lengths of the paths.
In terms of logistics planning problem, DCND includes the capacities of
the trucks. The optimal solution of DCND would be a tighter lower bound
than that of MOMD for the logistics planning problem.

3. The Rooted Distance-Constrained Minimum Spanning Tree Problem (RD-
CMST) is to find a minimum cost tree such that the length of the path
from the root node to any other node in the tree does not exceed a given
threshold [29]. Even though the distance between the root node to any
other node is bounded, the distance between the remaining pair of nodes is
not bounded. In relation to this problem, an approximation algorithm with
an approximation ratio of O(n log d) for poly-bounded lengths of links has
been proposed [11]. In [5] the authors propose a new algorithm to improve
the approximation introduced in [11], but they ignore the minimisation of
the length of the paths.

4. The hop-constrained network design problem is the closest problem to
DCND. The difference is that in this problem the lengths of all the links
are equal, so the bound is on the number of links included in a path con-
necting a pair of nodes [21]. An instance of DCND can be transformed into

An Adaptive LNS Algorithm for DCND Problems 5

an instance of the hop-constrained network design problem by introducing
additional nodes and splitting the existing links such that all of them have
the same length. This process may require adding a number of dummy
nodes equivalent to the size of the total length of the links in the input
graph in the worst case, which makes this transformation unsuitable even
for the smallest instances considered in this paper. The hop-constrained
network design problem can be modelled in Constraint Programming us-
ing the graph variables and the global constraints available in Choco 3.0,
Choco-Graph module [33]. The diameter constraint provided by this library
assumes links of equal length and it can handle graphs of up to 500 nodes.
However, the transformation described before can lead to graphs of several
thousands of nodes, which would compromise the viability of the constraint
programming approach. A way to overcome the limitation of these global
constraints is to use PathCumulative constraint of Google-Or-Tools [30],
which considers graphs with non-unitary weight and can impose that the
diameter of the network is bounded by a certain value (see Section 3.3).

In this paper, we develop an adaptive large neighbourhood search algo-
rithm to solve the DCND problem. Preliminary results of this approach were
presented in [24], where the approach was used as a preprocessing step for gen-
erating the input for the routing and spectrum allocation problem discussed in
[25]. With respect to what has been already presented in other publications,
here we provide: (1) an improved MILP model, (2) a novel CP formulation,
(3) a computational evaluation of both exact formulations, and (4) a novel
lower bounding procedure. Furthermore, we enhance the results obtained on
the LNS approach by providing: (5) alternative methods for neighbourhood
search, (6) a detailed analysis of subproblem selection methods and (7) a cor-
relation between the size of the subproblems and search effort / quality of
the solution. We also present some empirical results for several real size net-
works of Ireland, UK and Italy. Our computational results demonstrate the
effectiveness of our approach both in terms of scalability and quality.

3 Problem Formulations

In this section, a MILP and a CP model of the DCND are presented. In both
formulations, the objective is a weighted sum of these terms:
– the total length of the links (TLL)
– the total weighted sum of the paths between all pair of nodes (TLP)
Some notation used to formulate the problem is introduced in Section 3.1. The
MILP model and the CP model are presented in Section 3.2 and Section 3.3,
respectively.

3.1 Notation

Here follows some notation used to formulate the problem:

6 Garraffa et al.

– E is a set of directed edges. Each undirected link {i, j} ⊆ L is associated
with two directed edges 〈i, j〉 and 〈j, i〉 in E. The length of edge 〈i, j〉 is
denoted as dij and the symmetry property (dij = dji) holds. We say that
an undirected link is used if any corresponding directed edge is used.

– D is an |N |×|N | matrix whose components are equal to di,j if < i, j >∈ E,
0 otherwise.

– κ ∈ N is the source node, which corresponds to the first node in the
ordering of the nodes.

– P is the set of all ordered pairs of nodes. Each pair of nodes, ρ ∈ P, is a
tuple 〈s(ρ), t(ρ)〉 where s(ρ) and t(ρ) refer to the corresponding source and
target nodes of that pair, respectively.

– In(i) (resp. Out(i)) represents the set of all edges entering (resp. leaving)
node i.

– λ is the upper bound on the length of the shortest path between any pair
of nodes.

– βρ denotes the amount of commodity flowing from the source node to the
target node of a pair of nodes ρ ∈ P.

3.2 The MILP model

We now present a MILP model for DCND. In this model we opt for a node-
link formulation because we do not have mandatory nodes. We remark that a
link-path formulation would lead to consider all possible paths whose length
is below the threshold as no further pruning is possible due to the absence of
mandatory nodes and links [5]. The reader is referred to [23] for a detailed
comparison of the two formulations.

As mentioned before, a solution of DCND is a connected undirected graph.
Although the diameter constraint implies connectivity, we add redundant con-
straints to address this requirement in our model. We do so by computing
a directed graph out of the undirected one, which corresponds to an acyclic
orientation of the undirected graph. An acyclic orientation of an undirected
graph is an orientation of the links of the undirected graph that leads to no
cycles in the obtained directed graph. This orientation can be obtained by
ordering the nodes and then orienting each edge from the smaller node to the
greater node. The length of the directed edge is equivalent to its corresponding
undirected link so the total length of the acyclic orientation of an undirected
graph is the same of the undirected graph. We take advantage of this fact
when enforcing connectivity as we will show later.

Once we have an acyclic orientation we enforce connectivity by selecting
the node that is first in the order and making the incoming degree of any non-
source node equal to one, and the incoming degree of the source equal to zero.
Table 1 shows the complete MILP model. We now introduce the variables,
constraints and objective function.

Variables In our model, we have the following variables:

An Adaptive LNS Algorithm for DCND Problems 7

Table 1 The MILP model proposed

Minimise α× TLL+ TLP
Subject to

∑
i∈(N−{κ}) yiκ = 0 (1.1)∑
j∈N yji ≥ 1 ∀i∈N\{κ} (1.2)

fi + dij ≤ fj + 2× λ× (1− yij) ∀〈i,j〉∈E (1.3)
yij + yji ≤ 1 ∀{i,j}∈L (1.4)∑
〈i,j〉∈E yij ≥ |N | − 1 (1.5)∑
〈i,j〉∈E,i=n∨j=n yij ≥ 1 ∀n∈N (1.6)∑
e∈In(s(ρ)) xρe = 0,

∑
e∈Out(s(ρ)) xρe = 1 ∀ρ∈P (1.7)∑

e∈Out(t(ρ)) xρe = 0,
∑
e∈In(t(ρ)) xρe = 1 ∀ρ∈P (1.8)∑

e∈In(i) xρe =
∑
e∈Out(i) xρe ∀ρ∈P∀i∈N\{s(ρ),t(ρ)} (1.9)∑

e≡〈i,j〉∈E dij × xρe ≤ λ ∀ρ∈P (1.10)

yij + yji ≥ xρe ∀ρ∈P∀e≡〈i,j〉∈E (1.11)

– yij : a binary variable that if equal to 1 implies that the link {i, j} ∈
L is included in the solution. Please note that there are two y variables
associated with the link {i, j}: yij and yji. Such link is included in the
solution if and only if one of them is set to 1.

– xρe: a binary variable that is equal to 1 if and only if an edge e is used for
connecting pair ρ ∈ P.

– fi: an auxiliary real variable that is used for each node i to represent the
distance from κ to node i. fκ is zero since κ is the source node. In the other
cases, the domain is {dκi, . . . , λ} because the distance cannot be smaller
than the one obtained when we connect node i directly to the source node,
under the assumption that it is always possible to connect any node directly
to the source. Here we are also assuming that triangular inequality holds.

Constraints The set of constraints is divided into two groups. The first group
of constraints ensure that the computed graph is connected (Constraints (1.1)–
(1.5)). The second group of constraints enforce that the paths connecting the
pairs of nodes are well formed (Constraints (1.6)–(1.11)).

– The incoming degree of the source node is zero (Constraint 1.1).
– Any non-source node must have at least one incoming edge (Constraint

1.2).
– If a directed edge 〈i, j〉 ∈ E is selected, then the length of the path from κ

to node j, fj , must be greater than or equal to the length of the path from
κ to i, fi, plus dij (Constraint 1.3). If 〈i, j〉 ∈ E is not selected then we do
not want to enforce any constraint between fi and fj . As fi, fj and all dij
are bounded by λ, a valid upper bound for fi + dij is 2× λ. Therefore, we
use 2×λ as the big-M value in this constraint. This constraint is providing
a valid inequality to tighter the formulation.

– An acyclic graph cannot have cycles, so only one of the two directed edges
associated with a link is selected (Constraint 1.4).

8 Garraffa et al.

– The number of selected edges in a consistent graph is greater than or equal
to the number of nodes minus one (Constraint 1.5).

– For any node, the total number of incoming and outgoing edges must be
at least 1 to ensure connectivity (Constraint 1.6).

– For each pair of nodes in P, there exists a path connecting the nodes. No
path reaches the source or leaves the target of the pair and only one edge
leaves (resp. reaches) the source (resp. the target) (Constraints 1.7 and
1.8).

– The incoming and outgoing degrees of an intermediate node are equal (Con-
straint 1.9).

– The length of the path connecting a pair of nodes cannot exceed the thresh-
old (Constraint 1.10).

– A link between any pair of nodes i and j is selected if any of the corre-
sponding directed edges is used by a path connecting a pair of nodes in P
(Constraint 1.11).

Objective As shown in Table 1, the objective function considered is given by
α × TLL + TLP . In this definition, α is a constant that is greater than the
weighted total length of the paths connecting the pairs of nodes, such that
TLL is minimised first. In the MILP model, TLL and TLP are expressed as
TLL =

∑
〈i,j〉∈E dij×yij and TLP =

∑
ρ∈P βρ

(∑
e≡〈i,j〉∈E dij × xρe

)
. Recall

that βρ denotes the amount of commodity flowing from the source node to
the target node of ρ, which leads to reduce the cost of deploying required
infrastructure such as fibre cables and amplifiers in optical networks. If the
amount of commodity between a pair of nodes is not given or negligible with
respect to the total length of the links, then we can set βρ to one for all the
pairs of nodes. We can also chose to minimise the sum of the lengths of the
selected links and the average path length by setting the values of α to 1 and
βρ to 1/|N |2.

3.2.1 Size of the model

In our mathematical model we have 2× (|N | × (|N | − 1))× |L| xρe variables,
2×|L| yij variables, and |N | fi variables. However, the size of the mathematical
model is actually dominated by the number of linear equations, which depends
on the number of nodes (|N |) and links (|L|) only since we are assuming that we
have to connect all pair of nodes (i.e., |P| = |N |× (|N |−1)) and |E| = 2×|L|.

It is clear from the universal quantification of the constraints that Con-
straints (9) and (11) are the ones contributing the most to the total number
of linear equations. In fact, for those cases where the graph is dense (i.e.,
|E| ' |N | × (|N | − 1)), Constraint (11) is the greatest contributor since there
are O(|N |4) linear equations coming from that constraint alone, so the number
of linear equations in this mathematical model is O(|N |4).

An Adaptive LNS Algorithm for DCND Problems 9

3.3 The CP model

In the last decades, the constraint programming community put a lot of effort
in the definition of global constraints that are specifically focused on graphs
[12]. The idea is to model network problems by using global constraints that
exploit powerful graph-based filtering algorithms. In the case of the DCND,
a path from any node k ∈ N to all other nodes in N has to be enforced in
order to guarantee connectivity among couples of nodes. This is equivalent to
enforcing that, for each k ∈ N , there is a directed tree treek, rooted in k and
connecting k to all other nodes. Furthermore, we need to impose the diameter
constraint, meaning that the length of each path from the root to a leaf has to
be bounded by λ in each of the above mentioned trees. These properties can be
imposed on these trees by means of a PathCumulative constraint [7]. Given a
graph G a node k of G, a tree treek and an integer value λ, it imposes that the
condition above is verified. Finally, a solution of the problem is represented
by an undirected graph where a link {i, j} ∈ L is taken if at least one of the
edges < i, j > and < j, i > belongs to one of the trees treek.

In the following, we describe variables, constraints and the objective func-
tion required for formulating the problem. Please refer to Table 2, for the
complete CP model.

Variables that are considered in the CP model:

– Z is an |N | × |N | symmetric matrix whose components are the binary
variables zi,j indicating if the link {i, j} ∈ L is taken in the solution or not.

– xρe follows the same definition used in the MILP model.
– treei is a λ bounded directed spanning tree of G routed in i ∈ N .
– Γi is an |N |× |N | matrix representing the adjacency matrix of the directed

tree treei. Please note that this matrix is not symmetric because treei is a
directed graph. The components of Γi are binary variables indicated with
γij,k.

– treecosti is the sum of the length of the edges in treei.
– treei,j is the predecessor of the node j ∈ N in treei, with treei,i set to i.

Constraints The constraints indicated in (2.1) are ensuring both connectivity
and the diameter-bounded constraint, while all the other constraints are used
to express the objective functions and to link the variables.

– Any node is connected to any other node by means of a λ-bounded path.
This is done with |N | PathCumulative constraints, generating a tree treei
rooted in each node i ∈ N , whose longest path between i and the other
nodes is bounded by λ (Constraint 2.1).

– The edges taken in the solution are the union of all the edges considered in
each tree treei. This is done by means of an element constraint assigning
1 to all the variables associated with the edges considered in each tree
(Constraint 2.2), since treei,j is the predecessor of j in the tree treei.

10 Garraffa et al.

Table 2 The CP model proposed

Minimise α× TLL+ TLP
Subject to PathCumulative(G, i, treei, λ) ∀i∈N (2.1)

zj,treei,j = 1 ∀i 6=j∈N (2.2)

γij,treei,j = 1 ∀i 6=j∈N (2.3)

γij,k = 1 iff treei,j = k ∀i 6=j 6=k∈N (2.4)

Sum(Z) ≥ |N | − 1 (2.5)
Sum(Γi) = |N | − 1 ∀i∈N (2.6)
Sum(zi,j (i, j) ∈ E) ≥ 1 ∀i∈N (2.7)
Sum(zi,j (i, j) ∈ E) ≥ 1 ∀j∈N (2.8)
treecosti = Scalar(D,Γi) ∀i∈N (2.9)
treecosti ≤ TLL ∀i∈N (2.10)
xρe = 1 iff e in the path from s(ρ) to t(ρ) in trees(ρ) ∀e∈E∀ρ∈P (2.11)

– Constraint 2.3 and Constraint 2.4 are linking constraints between the com-
ponents of the adjacency matrices Γi and the directed trees treei.

– The minimum number of edges to ensure connectivity is |N |−1 (Constraint
2.5), while the number of edges in each directed tree treei is exactly |N |−1
(Constraint 2.6). These constraints are imposed by means of the Sum
global constraints, computing the summation of the components of the
matrix indicated as an argument.

– Each node of the graph has at least one in-going edge and one out-going
edge (Constraint 2.7 and Constraint 2.8). Here Sum indicates the sum of
the variables included as arguments.

– The cost of each tree treecosti is formulated by means of the Scalar global
constraints, which computes the Frobenius inner product between the dis-
tance matrix D and the adjacency matrix Γi (Constraint 2.9).

– The total length of links TLL is lower bounded by the sum of the lengths
of the edges considered in a each tree, indicated with treecosti (Constraint
2.10).

– An edge e is included in trees(ρ) if and only if a certain edge e is included
in the path from s(ρ) to t(ρ) (Constraint 2.11).

Objective The objective considered is the same of the MILP model. As for
the cost of the trees treecosti, TLL and TLP are expressed via the Scalar
global constraint. TLL can be expressed as TLL = 1

2Scalar(D,Z). In order
to define TLP , we indicate with Xρ an |N | × |N | matrix whose < i, j > −th
components are the variables xρ,<i,j> if < i, j >∈ E, 0 otherwise. The equality
TLP = Sum(βρ × Scalar(D,Xρ) : ρ ∈ P) holds.

3.3.1 Size of the model

Similarly to the MILP model, we have (|N | × (|N | − 1)) × |L| xρe variables,
2×|L| zij variables, plus |N | trees treei (and their adjacency matrices) for each
i ∈ N . Regarding the constraints, Constraints (2.11) clearly include O(|N |4),

An Adaptive LNS Algorithm for DCND Problems 11

similarly to Constraints (1.11) of the MILP model. However, the highest effort
in terms of propagation is given by the |N | constraints PathCumulative (G,
i, treei, λ), which ensures both connectivity and the fact that the diameter is
bounded by λ.

4 Adaptive Large Neighbourhood Search Method

The models defined in the previous section do not scale well and it is challeng-
ing to solve even for small size instances with |N | ≤ 20 as they are intractable
[37]. The reader is kindly referred to Section 5.1 for a computational assessment
of the exact approaches previously described. Although there are branch-and-
cut, and/or column generation methods for considerably small instances of
network design problems [23], the problem becomes highly challenging when
the distance bound exists between pairs of nodes. As pointed out in a recent
study [5], the current literature provides only approximation schemes with a
reasonable error level. Hence, we propose an adaptive Large Neighbourhood
Search (LNS) [32] approach for solving the DCND problem. The presented ap-
proach is scalable for large size instances and effective in terms of the solution
quality.

LNS is a meta-heuristic method which attempts to combine the power
of systematic search with the scalability of local search. LNS is applied to
many kind of combinatorial optimisation problems such as vehicle routing
[3, 1], scheduling [18], machine reassignment [22], lot-sizing [28] and network
design [13, 4]. The overall LNS approach is shown in Figure 1. We first find
an initial solution. We maintain the current solution, which is first set to the
initial solution. At each iteration of LNS, we select and create a subproblem
by selecting a subset of the pairs of MC nodes for which we want to recompute
the routes to connect them. We solve the resulting sub-problem, and keep the
best solution found during search.

Note that changing the size of the subproblems during the neighbourhood
search helps to escape from local optimal solutions. Such an adaptive search
is applied in many problems like the number of processes selected to be re-
assigned [22] or the number of customers to be re-located [1]. The search stops
when the total elapsed time is greater than the given time threshold or the
desired optimality gap is achieved. The lower bound for the total length of the
links is the minimum spanning tree since it is independent from the amount of
commodity transferred between pair of nodes and hence valid for all instances
of the DCND problem. The lower bound for the total length of the paths is
computed as the sum of the shortest paths between all pairs of MC nodes.

In the following, we describe all these steps in detail.

12 Garraffa et al.

Find an Initial Solution Current Solution

Select a Subproblem

Create and Re-optimise the sub-problem

Improved Solution

Fig. 1 Principle of the LNS approach.

4.1 Initial solution

As shown in 5.1, since the presented MILP model is performing better than
CP a decomposition approach exploiting the MILP model is used to find an
initial solution. However, other heuristic approaches are also evaluated as pre-
sented in section 5.2.5 The problem of constructing a diameter constrained
network design is decomposed into a sequence of subproblems which are solved
iteratively. In each iteration of the decomposition scheme, the objective is to
find a bounded path consisting of the cheapest (in terms of the total length of
the links and the path) set of links to connect a given pair of nodes.

Algorithm 1 FindSolution(〈N,L〉, S, Lb, λ, k, B)
1: Lo ← Lb

2: S ← S \ {ρ|ρ ∈ S,BoundedShortestPath(ρ, Lo, λ) 6= ∅}
3: while S 6= ∅ do
4: Select and remove a subset of pairs K ⊆ S such that |K| = k
5: Lt ←BoundedCheapestPath(K,〈N,L〉, Lo, λ)
6: if cost(Lt) < B then
7: Lo ← Lt

8: S ← S \ {ρ|ρ ∈ S,BoundedShortestPath(ρ, Lo, λ) 6= ∅}
9: else
10: Lo ← L
11: break
12: end if
13: end while
14: return Lo

The heuristic-based decomposition approach for finding a solution is pre-
sented in Algorithm 1. Given an input graph 〈N,L〉, a subset of links Lb ⊆ L,
a set of pairs of nodes S, the upper bound on the diameter λ, an integer con-
stant k and and a real constant B, the algorithm returns a set of links Lo such
that Lo ⊇ Lb. It decomposes the set of pairs of nodes S in to subsets of size up
to k and tries to find a path for each pair of nodes in the set S using the links
Lo such that its length is bounded by λ, and the sum of the lengths of the

An Adaptive LNS Algorithm for DCND Problems 13

links in Lo is at most B. To find an initial solution the algorithm is invoked
as follows: FindSolution(〈N,L〉, P, ∅, λ, k, ∞). Here S is initialised to the
set P which denotes the set of all pairs of nodes and Lb is initialised to an
empty set for finding an initial solution.

First Lo is initialised to Lb, and then for each pair of MC nodes, ρ, a poly-
nomial check is performed to verify whether the bounded path can be found
in Lo without adding any link. This is done by invoking BoundedShortest-
Path which returns the shortest path between S(ρ) and T (ρ) if the length of
the path is not greater than λ, otherwise it returns an empty set. The path is
denoted by a set of links. If the polynomial check fails then the MILP model
given in the previous section is solved for the k pairs of nodes by invoking
BoundedCheapestPath. The MILP model is solved by enforcing an addi-
tional constraint that the links in Lo must be included. The objective function
is reformulated as:

minα×
∑

{i,j}∈L\Lo

dij × (yij + yji) +
∑
ρ∈K

βρ

 ∑
e≡〈i,j〉∈E

dij × xρe

 (1)

When it comes to selecting ρ from the set S we consider three criterion:
random order (random), non-decreasing (nondec) and non-increasing order
(noninc) based on the lengths of the shortest paths between pairs of nodes.
The impact of these criteria is studied later in the paper. Although this proce-
dure reduces the number of links substantially, the resulting number of links
and the total length of the links will be sub-optimal because of the myopic
nature of the algorithm. In other words, a link added in the previous iterations
may become redundant when new links added in the next iterations. There-
fore, neighbourhood search is used to improve the initial solution further by
repeatedly selecting and solving subproblems as described in the next sections.

The heuristic-based decomposition presented in Algorithm 1 can be pa-
rameterised in many ways. For example, to find an initial solution instead
of setting Lb to an empty set of links, it can be initialised with the links in
the minimum spanning tree of the graph 〈N,L〉. The advantage is that the
connectivity constraint would be entailed. Consequently, when Algorithm 1 is
called, it would be possible to have already a bounded path for many pairs of
nodes. Therefore, BoundedCheapestPath might be invoked for fewer pairs
and the solution time can be extensively reduced.

Furthermore, instead of solving a modified MILP model in every call of
BoundedCheapestPath, a MILP-free approach can also be used. More pre-
cisely, a greedy algorithm can be used to compute a set of links for each pair of
nodes in the set K. In every invocation of BoundedCheapestPath, (i) order
the set of pairs of nodes of the set K based on the lengths of their shortest-
paths between them in the input graph, (ii) select and remove the first pair
of nodes from the ordered set K, (iii) add one or more links involved in the
shortest path to the set Lb, (iv) remove any pairs of nodes from the set K
which have now bounded paths, (v) repeat steps (i) to (iv) until the set K is

14 Garraffa et al.

empty. We have evaluated these alternative ways for finding an initial solution
and the results are shown in the experimental section.

4.2 Subproblem Selection

In the context of designing a diameter constrained network, a subproblem can
be seen as a subset of the pairs of nodes for which we want to destroy and
repair their corresponding bounded paths in the hope of improving overall cost
of the solution.

To select a subproblem, we first select one or more links of the current
solution and then select those pairs of nodes whose corresponding bounded
paths rely on any of these selected links. The goal is to select a subproblem
such that it improves the cost of the current solution. The hope is that one or
more selected pairs of nodes might find alternate paths to improve the overall
cost. We remark that the number of pairs of nodes relying on a single link
can vary. Therefore, the size of the subproblem can vary during the search,
too. Moreover, we also increase the number of links that are selected as search
progresses. Hence, these two aspects of the algorithm make it adaptive in the
sense of dynamically changing the subproblem sizes.

We propose two different ways of selecting links:

– Minimum Support. The first selection approach is called minimum sup-
port (minsup). Let pathρ be the set of links used in the current bounded
path for connecting the end nodes of ρ. Let support(l) be the set of pairs
of nodes whose paths are using link l:

support(l) = {ρ ∈ P|l ∈ pathρ}.

The intuition here is that a link supporting fewer pairs of nodes might
be easier to remove or replace. The worst-case complexity of computing
support values for all links is O(n3). The reason is that the number of
links is bounded by n2 and any path between any pair of nodes cannot
contain more than n− 1 links.

– Minimum Link Graph. The second selection approach is called min-
imum link graph (minlgraph). It is recalled that each pair of nodes is
associated with a bounded path consisting of a set of links that are used
to connect the end nodes. Let linkgraph(l) denotes the graph consisting of
the links associated with the bounded paths of the pairs of nodes supported
by the link l:

linkgraph(l) =
⋃

ρ∈support(l)

pathρ

When we select and remove a link for a subproblem selection, the entire
path associated with each pair of nodes supported by the removed link is
affected. If the graph associated with all the affected paths has many links
then it might be more difficult to find alternative paths while improving
the cost of the solution. Therefore, it makes sense to select a set of links of

An Adaptive LNS Algorithm for DCND Problems 15

a given cardinality such that the size of the graph obtained by projecting
the routes of all the affected pairs of nodes is minimum. The worst-case
complexity of computing the size of the link-graph is also O(n3). Here
instead of counting the number of paths where a link occurs, the union of
the sets of all links associated with these path is computed.

In the following, we provide a numerical example to demonstrate how to
compute minsup and minlgraph. Figure 2 shows a network with 5 nodes and
5 links to connect 10 pairs.

Fig. 2 A network to demonstrate minsup and minlgraph operators

The paths between every pair of nodes are listed in Table 3. The support(l)
for each link, l, is shown in Table 4. The best link based on minsup is a since
it has the minimum number of paths relying on it.

Table 3 Paths between all pairs of nodes in the sample network given in Figure 2

ρ 〈1, 2〉 〈1, 3〉 〈1, 4〉 〈1, 5〉 〈2, 3〉 〈2, 4〉 〈2, 5〉 〈3, 4〉 〈3, 5〉 〈4, 5〉
pathρ {a} {b} {b,c} {b,c,e} {d} {d,c} {d,c,e} {c} {c,e} {e}

Table 4 support(l) computation for the network given in Figure 2

Link (l) support(l) |support(l)|
a {〈1, 2〉} 1
b {〈1, 3〉,〈1, 4〉,〈1, 5〉} 3
d {〈2, 3〉,〈2, 4〉,〈2, 5〉} 3
e {〈1, 5〉,〈2, 5〉,〈3, 5〉,〈4, 5〉} 4
c {〈1, 4〉,〈1, 5〉,〈2, 4〉,〈2, 5〉,〈3, 4〉,〈3, 5〉} 6

In Table 5 presents the linkgraph(l) for each link, l. For example, link b
occurs in the paths of pairs 〈1, 3〉, 〈1, 4〉 and 〈1, 5〉. The union of the sets of
all the links occurring in these paths constitute linkgraph(l) which is {b,c,e}.

16 Garraffa et al.

Based on the minlgraph approach, the link with the smallest size of graph
associated with projected routes of all the affected pairs is link a.

Table 5 linkgraph(l) computation for the network given in Figure 2

Link (l) linhgraph(l) |linkgraph(l)|
a path〈1,2〉 = {a} 1

b
path〈1,3〉

∪ path〈1,4〉
∪ path〈1,5〉

= {b, c, e} 3

d
path〈2,3〉

∪ path〈2,4〉
∪ path〈2,5〉

= {d, c, e} 3

c

path〈1,4〉
∪ path〈1,5〉
∪ path〈2,4〉
∪ path〈2,5〉
∪ path〈3,4〉
∪ path〈3,5〉

= {b, c, e, d} 4

e

path〈1,5〉
∪ path〈2,5〉
∪ path〈3,5〉
∪ path〈4,5〉

= {b, c, e, d} 4

4.3 Subproblem Solving

A solution of DCND is represented by a set of links. An initial solution might
not be minimal in the sense that if one or more links are removed from the
current solution then all the pairs of nodes can still find bounded paths using
the remaining links of the current solution. For some subproblems especially in
the beginning of the LNS search, it might be possible that when a set of pairs
of nodes is selected one or more links are removed from the current solution
without adding any links to it. In this case, there is no need to create and solve
a MILP model. We instead use all-pairs shortest path [9] for checking bounded
connectivity, which is a polynomial algorithm and it speeds up the solving
time. Thus, in the context of LNS when a solution is destroyed by removing
one or more links from the current solution, we apply all-pairs shortest path
and create the MILP model only if the output of all-pairs shortest path fails
to satisfy the diameter constraint.

An Adaptive LNS Algorithm for DCND Problems 17

Algorithm 2 SolveDCND(〈N,L〉, P, λ, k)
1: Lb ← FindSolution(〈N,L〉, P,∅,λ, k, ∞)
2: Lb ← {l|l ∈ Lb,∃ρ ∈ P, shortestpath(ρ, Lb \ {l}) > λ}
3: L ← 2L

b − {∅}
4: while stopping condition is not true do
5: select and remove R from L
6: S ←

⋃
l∈R support(l)

7: Lc ← FindSolution(〈N,L〉, S, Lb −R, λ, k, cost(Lb))
8: if cost(Lc) < cost(Lb) then
9: Lb ← Lc

10: L ← 2L
b − {∅}

11: end if
12: end while
13: Return Lb

The pseudo-code of the adaptive large neighbourhood search algorithm is
given in Algorithm 2. In this algorithm, we start by finding an initial solution
(Line 1). We then compute a minimal solution by discarding from Lb a subset
of links that are redundant (Line 2).

Afterwards, the neighbourhood search is performed (Lines 3–13). First the
power set of the non-redundant links (L) is computed. An element of the
power set is selected based on one of the criteria introduced (e.g., minsup or
minlgraph) (Line 5). Furthermore, in each iteration of LNS when the current
solution is destroyed by removing even a single link, more than one pair of
nodes might be affected. Thus Algorithm 2 adapts the size of the subproblem,
i.e., |S| by varying this dynamically during the search (Line 6). The subprob-
lem where one needs to find bounded paths even for just 100 pairs of nodes
could be very large to be handled by the MILP based systematic search in
a reasonable time. We therefore again use a heuristic-based decomposition
approach similar to the one used for finding an initial solution (Line 7) by
invoking FindSolution(〈N,L〉, Lb−R, S, λ, k, cost(Lb)). If the cost of the
newly found solution Lc is better than the current best solution then Lb is up-
dated, and the set of subproblems that can be explored is reset (Lines 8–10).
We remark that the power-set of the subproblems is not generated in practice
as subproblems are created on demand.

5 Computational experiments

This section provides a computational assessment of the models and algo-
rithms described previously. It is divided in two subsections. Section 5.1 is
devoted to evaluate the performances of the exact approaches (the MILP the
CP models presented in Section 3.2 and Section 3.3) on small size randomly
generated instances. Section 5.2 focuses on analyzing the performances of the
LNS approach on larger instances arising in a telecommunication network de-
sign application.

18 Garraffa et al.

5.1 Computational assessment of the exact approaches

In this section, some preliminary experiments related to the CP and the MILP
formulations are presented. The aim of this analysis is twofold. On the one
hand, we want to show that both methods are not scalable enough to solve real
world instances. On the other hand, we want to determine the most efficient
formulation to be used in repairing phase of the LNS algorithm. Since here
the focus is on the size of the instances that can be solved through exact
methods, we generate challenging instances with a simple procedure whose
outcome is a complete graph, given the input number of nodes |N |. The first
step of the procedure is to generate |N | random points, by randomly assigning
their coordinates such that they are uniformly distributed integers between 1
and 100. A node is associated with each of the points generated. The length of
each edge < i, j >∈ E is then computed by considering the distances between
the points associated to node i and node j. Finally, the diameter λ is set to
the largest of the shortest paths between any couple of nodes in the graph. In
this way, we guarantee that the complete graph is always a feasible solution.

For the sake of simplicity, both formulations are simplified by considering
only the first objective that is minimizing the total length of the links in the
resulting network. The search procedure used in the CP model is based on
branching on the components of the matrices Γi with i = 1, ..., |N |. The value
ordering heuristic chosen is branching on the shortest edge available. Both
models were tested on an AMD A9-9410 by using Google-Or-Tools version
7.5.7466 and IBM ILOG CPLEX Optimisation Studio 12.6.0 as CP and MILP
solvers, respectively. A time limit of 1200 seconds was set in both solvers.

The results obtained are shown in Table 6. The first three columns of such
table describe the instance considered by including the ID of the instance, the
number of nodes |N |, and the diameter considered. Please note that 3 different
instances are generated for each value of |N |. The next two columns provide
the best TLL found by the CP solver (indicated with Obj) and the computa-
tional time in seconds (indicated with Time(s)). The last three columns are
related to the results obtained with the MILP model. They are related to the
best objective found, the computational time in seconds and the percentage
optimality gap. Each different row is referring to a different instance and the re-
sults reported in bold are identifying the cases where the optimality is proven.
The results reported show that the instances generated are pretty challenging
for both models. The CP model is able to solve only one instance (ID = 2)
to optimality within the time limit. When |N | ≥ 13, the CP model does not
converge to a feasible solution. The MILP model proposed outperforms the
CP model, by solving to optimality all the instances with |N | ≤ 13 and 2 out
of 3 instance with |N | = 14. However, the MILP model was not able to solve
to optimality any of the instances with |N | ≥ 14 within the time limit.This
is partially due to the very high time required to generate the model with
its variables. Since the MILP model outperforms the CP model, we consid-
ered MILP-based subroutines in the proposed LNS approach while repairing
solutions.

An Adaptive LNS Algorithm for DCND Problems 19

Table 6 The results obtained by running the MILP and the CP solver

Instance CP MILP
ID |N | λ Obj Time(s) Obj Time(s) Gap(%)
1 8 101.98 325.53 1200.00 325.53 4.80 0.00
2 8 96.66 458.83 22.23 458.83 0.77 0.00
3 8 81.04 388.60 1200.00 331.28 2.13 0.00
4 9 103.77 614.38 1200.00 532.62 5.74 0.00
5 9 92.41 684.66 1200.00 604.90 1.02 0.00
6 9 82.73 397.40 1200.00 386.81 12.42 0.00
7 10 105.41 798.45 1200.00 547.11 8.34 0.00
8 10 98.18 886.11 1200.00 543.91 15.27 0.00
9 10 89.28 968.83 1200.00 602.43 9.48 0.00

10 11 105.41 924.88 1200.00 547.52 122.49 0.00
11 11 98.18 753.79 1200.00 546.52 36.04 0.00
12 11 113.14 1006.05 1200.00 519.13 6.38 0.00
13 12 105.41 846.18 1200.00 522.60 234.73 0.00
14 12 98.18 1275.49 1200.00 634.87 32.43 0.00
15 12 113.14 1257.77 1200.00 641.16 85.83 0.00
16 13 105.41 No sol. found 1200.00 555.35 262.87 0.00
17 13 98.18 1044.58 1200.00 493.43 452.98 0.00
18 13 113.14 No sol. found 1200.00 659.93 661.83 0.00
19 14 105.41 No sol. found 1200.00 576.44 936.39 0.00
20 14 98.18 1187.59 1200.00 413.60 1200.00 6.36
21 14 113.14 No sol. found 1200.00 719.69 618.24 0.00
22 15 105.41 No sol. found 1200.00 611.29 1200.00 9.87
23 15 109.01 1134.99 1200.00 423.66 1200.00 11.87
24 15 113.14 No sol. found 1200.00 643.39 1200.00 21.91
25 16 109.20 No sol. found 1200.00 543.91 1200.00 17.01
26 16 89.28 No sol. found 1200.00 558.35 1200.00 8.48
27 16 113.89 1524.69 1200.00 631.60 1200.00 24.91
28 17 109.20 No sol. found 1200.00 530.13 1200.00 16.79
29 17 105.11 No sol. found 1200.00 497.23 1200.00 27.97
30 17 113.89 No sol. found 1200.00 569.90 1200.00 26.29
31 18 109.20 No sol. found 1200.00 547.17 1200.00 19.51
32 18 113.14 No sol. found 1200.00 685.98 1200.00 25.69
33 18 94.64 No sol. found 1200.00 665.36 1200.00 29.26
34 19 109.20 No sol. found 1200.00 536.21 1200.00 18.75
35 19 113.14 No sol. found 1200.00 660.21 1200.00 26.81
36 19 112.60 2113.70 1200.00 504.39 1200.00 22.23
37 20 109.20 No sol. found 1200.00 577.56 1200.00 18.20
38 20 113.14 No sol. found 1200.00 9853.18 1200.00 100.00
39 20 112.60 No sol. found 1200.00 8533.35 1200.00 95.45

5.2 Computational assessment of the LNS approach

In this section, we present experimental results obtained using adaptive large
neighborhood search (LNS) on different national network topologies. All the
algorithms are implemented using IBM ILOG CPLEX Optimisation Studio
12.6.0, which provides the OPL Script language for integrated algorithm de-
velopment and communicating with CPLEX solver. All test instances were run
on a PC with an Intel(R) Core (TM) i7-4600U 2.10 GHz CPU, 8 GB RAM
and 64-bit Microsoft Windows 7 operating system.

20 Garraffa et al.

As test instances, national network topologies of Ireland, UK and Italy are
derived from DISCUS project [35] which aims to develop a transparent optical
core network, TOCN (also referred as optical island and defined as a set of
Metro-Core (MC)) that can provide high-speed broadband capability while
reducing energy consumption and remains economically viable.

The advantage of a TOCN is the absence of Optical-Electrical-Optical
conversions and the reduction in switching, routing and packet processing in
the MC nodes. The disadvantage is that as the number of MC nodes, denoted
by |N |, grows, the number of physical links can grow quickly and in the worst-
case it could be |N |(|N |− 1)/2. Therefore, it is important to design a network
by minimising the total length of links, while guaranteeing that the distance
between any pair of MC nodes is within a given threshold in order to ensure
transparency. Another important cost factor in the design of a TOCN is the
amount of fibers deployed, which is mostly related with the optical signals used
to carry lightpaths. Optical signals with higher capacity allow to carry the
same amount of traffic with less number of lightpaths and hence consume less
total slots in fibers. Therefore, using higher capacity optical signals reduces the
length and the cost of fibers deployed [25]. However, the reach of these signals
is limited [10], so minimising the total length between each pair of metro-core
nodes is considered as a secondary objective in the design of a TOCN. Overall,
the design of a TOCN is an optimisation problem where the cost of a nation-
wide core network is typically dominated by the connection cost (i.e., fibre
deployment, placement of optical amplifiers at regular intervals etc.).

In fact, the design of a TOCN is an instance of the DCND problem, where
the diameter of the network consisting of MC nodes must be less than a given
threshold. A part of TOCN for Italy with 132 MC nodes is illustrated in Figure
3 [24].

Fig. 3 Resulting Italy network with 132 metro-nodes

An Adaptive LNS Algorithm for DCND Problems 21

The instances of Ireland are small as they only contain from 18 to 24 MC
nodes. However, the instances of UK ranges from 74 to 99, and the ones of
Italy from 132 to 189 MC nodes. These instances are available in CSPLib [6],
Problem 71. The LNS algorithm terminates when the upper bound on the
size of the network is less than 1% away from the lower bound, considering a
timeout of 5 hours. The results are presented in terms of Total Length of Links
(TLLs), Total Length of Paths (TLPs), solution time in seconds (time) and
the diameter of the network. The value of λ, which is the maximum diameter,
is set to 2430KMs [25].

In order to design a transparent optical core network one option is to
connect all pairs of MC nodes using shortest paths between them. This solution
is referred as Initial Design Network (IDN). The advantage of IDN is that
the total length of the paths between all pairs of MC nodes would be minimum
but the disadvantage is that the total length of links is going to be very high. In
the worst-case, each pair of MC nodes is connected directly. Another possibility
is to design a network by selecting only a subset of the links L such that the
total length of the links is minimised and the distance between any pair of MC
nodes does not exceed the maximum optical signal reach which is obtained by
running Algorithm 2.

In the following subsections, we first provide lower bounds for both the size
of the networks and the total length of the paths. Then, we discuss heuristics
for finding an initial solution. Next, different subproblem selection heuristics
are discussed. We continue with the trade-off between the size of the sub-
problems and the solution effort to find the best subproblem size. Finally, we
investigate different ways of finding initial solution and solving subproblems
to improve the performance of developed LNS algorithm .

5.2.1 Lower Bounds

In this section we present the lower bounds so that the quality of the solutions
obtained by the proposed approach can be evaluated. The lower bounds for
the total length of links are obtained by simply computing Minimum Spanning
Tree (MST) solutions. The lower bounds for the total length of paths between
all pairs of nodes are obtained by summing the shortest paths between all
pairs of nodes based on the initial design networks. The values of the lower
bounds for the Total Length of Links (TLL) and the Total Length of Paths
(TLP) are shown in Table 7.

The diameter of the initial networks and minimum spanning tree networks
are also presented in the table. Note that if the diameter of IDN is greater
than λ then the problem instance is unsatisfiable. It is recalled that when the
diameter of the MST of the input network is not greater than λ then the total
length of the links of the MST is optimal.

As the diameter of the MST of the Irish network is less than 2430kms, there
is no need to apply the LNS algorithm.The UK and Italy network results are
also summarised in Table 7. Because of the size of these countries, it is not
possible to obtain an optical island with the MST algorithm as the diameter

22 Garraffa et al.

Table 7 Lower bounds for the total length of the links and the total length of the paths
with diameters of the networks

Diameter Lower Bounds (KMs)
Network #MC #MC Pairs IDN MST TLP TLL
Ireland 18 306 509 783 71272 1314
Ireland 20 380 558 918 91584 1400
Ireland 22 462 549 897 107450 1416
Ireland 24 552 576 1135 134040 1645
UK 74 5402 1747 3443 3154070 5506
UK 79 6162 1751 3091 3599974 6010
UK 84 6972 1761 3176 3981740 5943
UK 89 7832 1751 3129 4434340 6198
UK 94 8742 1754 2740 4802718 5949
UK 99 9702 1748 2918 5554962 6480
Italy 132 17292 1779 2974 11799056 7124
Italy 189 35532 1844 3367 24157057 11300

of the MST of the input network is more than the value of λ. Furthermore,
because of the number of variables and constraints, solving the UK and Italy
instances are out of the scope of systematic search (see Section 5.1 for details).
Therefore, in the following sections we will present the results obtained using
LNS for those instances. We omit the lower bound on the total length of the
paths as this is a secondary objective.

5.2.2 Heuristics for Finding An Initial Solution

In this section, we compare the impact of three different heuristics for ordering
the pairs of MC nodes on the quality of finding initial solutions using Algo-
rithm 1. The heuristics are based on random order (random), non-decreasing
order (nondec) and non-increasing order (noninc) of the lengths of the short-
est paths between the pairs of MC nodes in the IDN. For random order, the
presented results are the median values of solving each instance ten times. We
compare these heuristics by showing the gaps with respect to the lower bounds
on the total length of the links.

Table 8 Comparison of heuristics for finding initial solution

nondec noninc random
NetworkGap(%) Time (sec.) Gap(%) Time (sec.) Gap(%) Time (sec.)
UK 74 14.89 547.31 44.49 544.26 35.45 537.41
UK 79 7.48 651.16 47.28 669.41 37.62 647.12
UK 84 11.63 818.69 44.91 834.88 37.72 823.72
UK 89 10.55 973.82 46.90 1002.10 34.24 959.92
UK 94 6.93 1171.91 48.35 1207.68 35.39 1163.80
UK 99 6.63 1415.95 44.77 1499.96 35.76 1444.84
Italy132 7.30 4311.58 63.72 4462.44 40.02 4267.11
Italy189 19.95 17293.60 68.15 17700.80 43.27 17514.30

An Adaptive LNS Algorithm for DCND Problems 23

The results show that ordering the pairs of metro-core nodes has a clear
effect on the quality of the initial solution. Furthermore, the results also in-
dicate that the non-decreasing heuristic has an absolute advantage over the
other heuristics while non-increasing order is the worst performing heuristic.
However, the reported gaps show the need of a neighborhood search algorithm
to improve the result of the initial solution. Table 8 also indicates that the time
to find an initial solution is primarily proportional to the size of the network.

5.2.3 Impact of Neighbourhood Selection

Table 9 Comparison of Different Neighbourhood Selection

minsup maxsup minlgraph maxlgraph
N Gap(%) Time (sec.) Gap(%) Time (sec.) Gap(%) Time (sec.) Gap(%) Time (sec.)

UK 74 1.18 8348.02 19.43 2913.29 1.18 8777.81 19.43 2877.39
UK 79 10.27 38.53 9.88 1845.78 0.91 7623.83 9.88 647.80
UK 84 1.41 6171.11 0.91 998.92 0.97 377.70 0.80 491.86
UK 89 12.31 715.68 12.31 453.01 12.31 254.15 12.31 428.88
UK 94 9.01 418.05 9.59 500.75 9.01 421.13 1.92 4102.62
UK 99 12.31 880.10 21.57 3401.27 10.92 6438.70 38.05 2706.45
IT 132 30.23 1695.95 0.63 3758.85 17.28 3904.84 32.32 3131.64
IT 189 67.33 183.40 67.47 318.90 65.19 278.50 67.91 338.60

To evaluate the subproblem selection heuristics given in Section 4.2, we
use the worst initial solutions presented in Table 8 since it gives a larger room
for neighbourhood search and allows evaluating different heuristics fairly. In
Table 9, minimum support (minsup), maximum support (maxsup), minimum
link graph (minlgraph), and maximum link graph (maxlgraph) based subprob-
lem selection heuristics are compared in the neighbourhood search algorithm.
The links are ordered in the increasing order of support and linkgraph us-
ing minsup and minlgraph heuristics respectively and they are ordered in the
decreasing order using the maximum versions of the heuristics. Note that the
time column indicates the time between the initial solution found and the time
at which the corresponding gap is found. All instances are run until the opti-
mality gap in terms of the size of the network falls below 1% or the runtime
exceeds 5 hours including the time for finding the initial solution. The best
solutions in terms of gap are shown in bold. We break the ties based on the
solution time.

Overall, the results in Table 9 suggest that the minlgraph heuristic per-
forms better in terms of solution quality. The average gaps for minsup and
maxsup are 18% and 17.72% respectively whereas the average gaps for minlgraph
and maxlgraph are 14.72% and 22.82% respectively. Furthermore, although
minlgraph is more complex, in some cases it can find the same solution faster
depending on the topology of the network as in the UK 89 instance.

24 Garraffa et al.

Based on these findings, we conclude that the minlgraph heuristic is better
than the minsup and we continue to use it throughout the next experiments.
Note that as a consequence of being adaptive, we were not limiting the size
of the subproblems. However, it may not be worthwhile to explore some large
subproblems since they are not improving at the end. Hence, in the next
subsection, we analyse the best upper bound for the size of the subproblems
to be considered during the search.

5.2.4 Evaluation of different subproblem sizes

As shown in Figure 4, which shows the change in the size of the subproblems
for the UK 94 instance, the size of the subproblems can be limited without
harming the search quality. Hence, in this section, we will investigate the effect
of restricting the size of the subproblems on the quality and search effort to
find the minimum upper bound for the size of the subproblems.

The impact of bounding the subproblem size can be seen in Table 10. For
example, when the subproblem size is bounded to 20% in the UK network
with 94 metro-nodes, the same quality solution of unbounded subproblem size
is obtained in shorter time. Note that the time column in Table 10 indicates the
time elapsed between finding the initial solution and finding the best solution
in the neighbourhood search with the given subproblem size.

0

10

20

30

40

50

60

0 5000 10000 15000

S
u

b
p

ro
b

le
m

 S
iz

e
 (

%
)

Time (sec.)

Fig. 4 Changes in the size of the subproblem during the search progress for the UK 94
instance

The convergence of the duality gap for each instance is depicted in Table 11.
Based on these plots, the subproblem size of 20% seems enough for networks
of all sizes. However, we set the upper bound on the size of the subproblem to
40% considering the instance of the UK network with 89 metro-nodes.

An Adaptive LNS Algorithm for DCND Problems 25

Max Subproblem

Size

Network

Gap

(%)

Time

(sec.)

Gap

(%)

Time

(sec.)

Gap

(%)

Time

(sec.)

Gap

(%)

Time

(sec.)

Gap

(%)

Time

(sec.)

UK 74 1.60 57.44 0.59 106.30 0.59 108.53 0.59 112.01 0.59 114.22

UK 79 1.84 60.09 1.00 14.35 1.00 14.37 1.00 14.46 1.00 14.38

UK 84 1.03 108.40 0.93 128.58 0.93 128.22 0.93 128.01 0.93 125.05

UK 89 3.04 122.69 1.50 144.44 1.13 179.87 0.70 199.81 0.70 194.72

UK 94 1.59 70.23 1.52 4845.05 1.52 5882.49 1.52 5882.64 1.52 8316.53

UK 99 0.99 88.07 0.99 87.81 0.99 87.66 0.99 88.58 0.99 84.87

100%10% 20% 30% 40%

Table 10 Effect of limiting the subproblem size on the neighborhood search

Table 11 Performance using different subproblem-size bounds

UK 74 UK 79

1.60

0.59 0.59 0.59 0.59

0.40

0.80

1.20

1.60

2.00

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

1.84

1.00 1.00 1.00 1.00

0.90

1.30

1.70

2.10

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

UK 84 UK 89

1.03

0.93 0.93 0.93 0.93

0.80

0.90

1.00

1.10

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

3.04

1.50

1.13

0.70 0.70

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

UK 94 UK 99

1.59

1.52 1.52 1.52 1.52

1.45

1.55

1.65

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

0.99 0.99 0.99 0.99 0.99

0.90

0.92

0.94

0.96

0.98

1.00

10 20 30 40 100

D
u

a
li

ty
 G

a
p

 (
%

)

Max Allowed Subproblem Size (%)

5.2.5 Alternative Methods for Finding an Initial Solution

The results of all the networks using the best initial solution heuristic for
subproblem selection (minlgraph), and bounding the subproblem size to 40%
is shown in Table 12. The results indicate that the proposed neighbourhood

26 Garraffa et al.

search algorithm succeeds at reducing the duality gap of a given solution. How-
ever, the overall adaptive large neighbourhood search algorithm is hampered
by the time spent in finding an initial solution. For example, in the biggest in-
stance, IT 189, almost all the solving time is spent finding the initial solution.
Therefore, in this subsection, we investigate two alternative ways of finding an
initial solution faster.

Duality Gap (%) Time (sec.) Duality Gap (%) Time (sec.)

UK 74 14.89 547.31 0.59 112.01 659.32

UK 79 7.48 651.16 1.00 14.46 665.62

UK 84 11.63 818.69 0.93 128.01 946.70

UK 89 10.55 973.82 0.70 199.81 1173.63

UK 94 6.93 1171.91 1.52 5882.64 18000.00

UK 99 6.63 1415.95 0.99 88.58 1504.53

IT 132 7.30 4311.58 0.94 1466.72 5778.30

IT 189 19.95 17293.60 9.88 773.40 18000.00

Network

Adaptive Large Neighbourhood Search Steps

Initial Solution Neighbourhood Search
Termination

Time (sec.)

Table 12 Time consumed by steps of the adaptive large neighbourhood search

1. In the first alternative approach, we invoke FindSolution by setting Lb
to the set of links in the Minimum Spanning Tree (MST) instead of setting
it to the empty set. The result would be that many pairs of nodes would
already be bounded and therefore BoundedCheapestPath would be in-
voked fewer times as there would be relatively fewer pairs of nodes that
would need to be repaired. Therefore, the set S is initialised with the set of
pairs of nodes whose path lengths are violating the bound when consider-
ing the links of the MST. Furthermore, we order the set S in Algorithm 1
using the non-increasing order of the lengths in the spanning tree. Here the
intuition is that repairing the longest path first might repair other pairs
of relatively shorter paths and consequently this would further reduce the
number of calls to MILP-based BoundedCheapestPath.

2. The second approach is to find an initial set of links with the MST but
instead of using a MILP model to repair unbounded paths, we use a greedy
algorithm. Here also FindSolution would be invoked by initialising Lb
with the set of links in the MST, S with the set of pairs of nodes whose
paths are not bounded, and ordering the set S based on the lengths of the
paths in the MST in a non-increasing manner. The MILP-free Bounded-
CheapestPath would compute the shortest path for a given pair of nodes
in the input graph and add the corresponding links which are not included
in the current solution. Subsequently the paths of all the pairs of nodes of
the set S would be re-computed based on the current solution. The reason
is that adding more links to the current solution might solve the infeasi-

An Adaptive LNS Algorithm for DCND Problems 27

bility of some of the other pairs of nodes of the set S. The greedy search
would continue until all the paths are repaired.

The results obtained using different methods for computing initial solu-
tions are shown Table 13 where the best result of each instance is shown in
bold. The results show that finding an initial solution by computing minimum
spanning tree and repairing infeasible paths using MILP is the faster method
to find an initial feasible solution compared to the MILP based decomposition.
As an example, consider the Italy instance with 189 metro-nodes. While an
initial solution is found in almost five hours with the MILP decomposition,
it takes only four minutes with MST and repairing infeasible paths with the
MILP based method. Moreover, the quality of the initial solutions obtained by
computing MST and then repairing with MILP is also better than the other
methods.

MILP Based
Initial Solution

MST repaired
with MILP based
Initial Solution

MST repaired
with Greedy Heuristic
based Initial Solution

Duality
Gap (%) Time (sec.) Duality

Gap (%) Time (sec.) Duality
Gap (%) Time (sec.)

UK 74 14.89 547.31 3.93 8.58 20.83 24.43
UK 79 7.48 651.16 4.82 9.44 13.85 23.36
UK 84 11.63 818.69 6.72 11.93 19.36 35.53
UK 89 10.55 973.82 6.44 15.94 26.78 60.5
UK 94 6.93 1171.91 5.77 16.72 18.76 37.14
UK 99 6.63 1415.95 4.08 19.27 16.76 49.14
IT 132 7.3 4311.58 5.43 54.62 45.56 499.2
IT 189 19.95 17293.6 12.1 236.19 40.51 2829.99

Table 13 Performance comparison of all alternative methods to find an initial solution

The impact of different initial solutions on LNS is summarised in Table 14
where the best result of each instance is shown in bold. We recall that the
algorithm stops when the gap with respect to the lower bound is less than or
equal to 1% or when it runs out of time. Note that time column shows the
total elapsed time until the corresponding solution is found. Although there
is no clear winner, the results suggest that the combination of the neighbour-
hood search and the initial solutions obtained using MST repaired with MILP
is better than the other methods. It is worth mentioning that it terminates
for 5 instances and computed the best results for 4 instances including the
biggest Italy instance with 189 MC nodes. Figure 5 illustrates how the upper
bound on the total length of the links (TLL) converges during the adaptive
large neighbourhood search for the Italy instance with 189 MC nodes. In this
experiment we obtain a initial solution by computing the minimum spanning
tree and repairing the infeasible paths using the MILP approach.

28 Garraffa et al.

MILP Based
Initial Solution

MST repaired
with MILP based
Initial Solution

MST repaired
with Greedy Heuristic
based Initial Solution

Duality
Gap (%) Time (sec.) Duality

Gap (%) Time (sec.) Duality
Gap (%) Time (sec.)

UK 74 0.59 659.32 0.5 24.23 0.59 197.28
UK 79 1.00 665.62 1.67 61.43 0.98 76.76
UK 84 0.93 946.7 2.45 43.45 0.96 211.13
UK 89 0.7 1173.63 0.7 128.26 2.47 13998.3
UK 94 1.52 7054.55 1.01 101.59 1.39 322.35
UK 99 0.99 1504.53 0.99 110.71 0.94 364.71
IT 132 0.94 5778.3 1.36 1494.78 2.42 5343.48
IT 189 9.88 18000 3.22 5094.36 15.48 17346.6

Table 14 Performance comparison of neighbourhood search algorithm with all alternative
methods to find an initial solution

11200

11400

11600

11800

12000

12200

12400

12600

12800

13000

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

T
L

L
 (

km
.)

Time after initial solution (sec.)

TLL

LB

Fig. 5 Toal length of the links vs. the lower bound during the search for Italy instance with
189 metro-nodes

6 Exploring alternative approaches based on RDMSTP techniques

In this section we look closely at two related approaches and discuss how they
can be adapted to complement our approach to DCND.

6.1 Computing a tighter lower bound for DCND

We introduce a tighter lower bound implemented in terms of the rooted distance-
constrained minimum spanning tree problem (RDMSTP) [16].

In Table 7 we presented a lower bound for DCND based on the computation
of the minimum spanning tree connecting the nodes of the network. In this
section we consider a tighter lower bound, which is defined in terms of the
rooted distance-constrained minimum spanning tree problem (RDMSTP) [16].

Given a graph G = (V,E) with set of nodes N and set of edges E, a cost
ce and a delay δe associated with each edge e of E, and an upper bound λ,
RDMSTP is to find a spanning tree T of the graph with minimum total cost
and such that every path from the root node to any other node has total delay
not greater than λ.

DCND can be easily expressed in terms of RDMSTP. In order to see this
let us refer to the decision version of RDMSTP. That is, instead of looking for

An Adaptive LNS Algorithm for DCND Problems 29

a tree of minimum cost, we want to decide whether there is a tree whose cost
is less than or equal to a given bound.

Let us simplify the definition of RDMSTP by unifying the two constants
associated with every edge. That is, we assume that the delay and the cost
of each edge ere equivalent. Let us also abuse the notation by saying that we
have a predicate with the same name:

RDMSTP (G∗, s, λ, cost, T)

that holds iff T is a tree, subgraph of G∗, that connects s with all the other
nodes using paths bounded by λ and the cost of the tree is less than or equal
to cost. Then DCND(G∗, λ, cost ,G) can be expressed as follows:

– RDMSTP (G∗, v, λ, costv ,Tv), for all v ∈ nodes(G∗)
– G =

⋃
v∈nodes(G∗) Tv

–
∑
v∈nodes(G∗) costv ≤ cost

where nodes(G∗) denotes the set of nodes of G∗. This model leads us to
two bounds for DCND:

– An upper bound can be obtained by composing the optimal solutions of
the corresponding RDMSTPs. That is, if Tv is the optimal tree for node
v, a suboptimal solution for DCND is G =

⋃
v∈nodes(G∗) Tv and the upper

would therefor be the cost of G.
– A lower bound can be obtained by choosing the most expensive Tv. Indeed

the cost of the optimal solution of DCND is bound to be at least as ex-
pensive as the cost of the most expensive Tv since all the nodes need to be
reached from v respecting the bound on the length of the paths.

As mentioned before, if the length of the paths are not constrained, the
optimal solution to DCND is a minimum spanning tree. What makes the
problem hard is the constraint on the length of the paths. A drawback of the
lower bound proposed before is that it does not take into account the upper
bound on the length of the path.

Figure 6 shows a simple scenario where we can appreciate the difference
between the two bounds. In this cases we have assumed that λ is 15, which
rules out the possibility of associating all nodes with the same tree. Notice
that if we did so for node 2, the path from node 2 to node 3 would violate the
upper bound on the length of the path. Therefor, (b), (c) and (d) are the best
bounded trees for nodes 1, 2, and 3 respectively. Here we can observe the gap
between the two lower bounds since the lower bound based on the minimum
spanning tree would be 20, and the one based on the maximum cost over the
bounded spanning trees would be 25.

We can observe a remarkable difference between the two bounds in Ta-
ble 15. In this table we are focusing on the Irish instances since the MILP
approach used to compute the tighter bounds would not scale up to the sizes
of the large instances. For each case we are reporting the number of nodes

30 Garraffa et al.

Fig. 6 (a) is n example of graph with bounded trees of different costs. λ is assumed to be
15, thus ruling out the tree associated with node 1 for the other two nodes. (b), (c) and (d)
are the bounded trees for nodes 1, 2, and 3 respectively.

Table 15 Comparing the two lower bounds proposed for DCND on the Irish instances

Network #MC λ MST BT LNS MST Gap (%) BT Gap (%)
Ireland 18 510 1314 1914 2485 47.12 22.98
Ireland 20 559 1400 1996 2194 36.19 9.02
Ireland 22 550 1416 1796 2502 43.41 28.22
Ireland 24 577 1645 2297 2616 37.12 12.19

(Column #MC), the upper bound on the length of the paths considered (Col-
umn λ), the lower bound obtained by computing the minimum spanning tree
(Column MST), the lower bound obtained by considering the maximum on
the optimal costs of the bounded spanning trees (Column BT), and the cost
obtained by our large neighbourhood search approach (Column LNS). In the
last two columns (Column MST Gap and Column BT Gap) we are also show-
ing the gap obtained with the corresponding lower bounds.

Fig. 7 Computation of a unit distance graph. (a) is the original graph and (b) is its corre-
sponding unit distance graph.

6.2 Modelling DCND in terms of the Steiner tree problem

We consider the layered graph approach to RDMSTP proposed in [17]. In this
approach it is assumed that the edges of the graph are associated with unit
delays. We remind the reader that in our case we have unified the delays and
the costs of the edges. So, this means that we need to transform our networks
so that the resulting edges have unit costs. In Figure 7 we show an example
of this transformation. Figure 7(a) is the original graph and Figure 7(b) is its
corresponding unit cost graph.

The next step in the approach consist is computing the layered graph. As
explained in [17], the layered graph GL = (NL, EL) of a given directed graph
graph G = (N,E) with source node 0 can be defined as follows:

An Adaptive LNS Algorithm for DCND Problems 31

Fig. 8 Layered graph transformation: original graph of an instance with λ = 3 on the
left-hand side and the corresponding layered graph on the right-hand side (taken from [17])

NL = {0} ∪ {(i, h) : 1 ≤ h ≤ λ, i ∈ N \ {0}}
EL = E0 ∪ E1 ∪ E2

E0 = {(0, (j, 1)) : (0, j) ∈ E}
E1 = {((i, h), (j, h+ 1)) : (i, j) ∈ E, i 6= 0, 1 ≤ h ≤ λ− 1}
E2 = {(i, h), (i, λ)) : i ∈ N \ {0}, 1 ≤ h ≤ λ− 1}

(2)

Basically, in the layered graph, each node in the original graph is replicated
λ times. In the transformation the nodes {(i, λ) : i ∈ N \ {0}} play the role of
terminal nodes. Any path from the source to a terminal node corresponds to
a path in the original graph whose length is less than or equal to λ. Therefor,
a minimum Steiner tree containing the source and the terminal nodes corre-
sponds to an optimal solution of RDMSTP. In Figure 8 we show an example
of a transformation, which has been taken from [17].

Something that we can infer from the definition of the transformation is
that there are (|N | − 1) ∗ λ + 1 nodes in GL. This together with the fact
that the size of the graph is remarkably increased in the transformation to
its corresponding unit cost graph prevents us from exploring this approach
further. In Table 16 we consider again the Irish instances. In Column G we
present the sizes of the original graphs. In Column GU we show the sizes
of their corresponding unit graphs. In Column |NL| we report the number of
nodes in their corresponding layered graphs. As it can be observed in the table,
even though the unit cost graphs and the layered graphs are sparse, their set
of nodes are very large. In fact we could only compute the layered graph of
the Irish network of 18 nodes, which has a layered graph of 36202351 nodes
and 72401195 edges. For the other cases we run out of memory.

32 Garraffa et al.

Table 16 Comparing the size of the original network with its unit length transformation
and its multi-layer transformation

Network #MC λ
G GU |NL||N | |E| |N | |E|

Ireland 18 510 18 306 70986 71274 36202351
Ireland 20 559 20 380 91222 91582 50992540
Ireland 22 550 22 462 107014 107454 58857151
Ireland 24 577 24 552 133508 134036 77033540

7 Conclusions and Future Work

In this paper we proposed a MILP model, a CP model and an adaptive large
neighbourhood search (LNS) method for diameter constrained network design
(DCND) problems. We showed that both exact approaches can not solve even
small size instances within a time limit of 1200 seconds. Hence, we investigated
performances of the LNS approach to design an optical core network. Our
empirical results with nation-wide large telecommunication networks of various
countries show the scalability and quality of the proposed LNS, which are very
close to optimal. Furthermore, we investigated various methods to speed-up
the search process and proposed alternative approaches for finding an initial
solution, selecting subproblems with bounded sizes, and computing tighter
lower bounds. We showed that the methods proposed have a big impact on
the performance of our LNS approach and the quality of the solutions obtained.

The proposed approach is general and therefore it can be applied in a
number of settings without changing the methodology, e.g., in many network
design problem one might enforce degree constraints that is a node should be
connected to at least k other nodes. Another possible extension of this study
is to consider node/edge disjointness for resilient network design problems. We
also consider to develop Benders decomposition [8] and Lagrangian relaxation
[14] methods to obtain better lower bounds for these extensions.

When it comes to the current implementation, we believe that one way of
improving the overall performance of our LNS approach is by implementing
an incremental version of the Minimum Support and Minimum Link Graph
subproblem selection approaches.

Finally, developing multi-objective methods for investigating trade-off be-
tween minimizing the total length of links and paths is a promising future
research direction.

Acknowledgement

The authors acknowledge both Eircom and Telecom Italia for providing net-
work data. This work was supported by the European Union Seventh Frame-
work Programme (FP7/2007-2013) under grant agreement no. 318137 (DIS-
CUS), and Science Foundation Ireland (SFI) under grant numbers 12/RC/2289

An Adaptive LNS Algorithm for DCND Problems 33

(Insight P2), 16/SP/3804 (ENABLE), and 16/RC/3918 (CONFIRM).

References

1. Azi, N., Gendreau, M., Potvin, J.: An adaptive large neighborhood search
for a vehicle routing problem with multiple routes. Computers & OR 41,
167–173 (2014)

2. Barták, R., Zhou, N., Dovier, A.: Multiple-origin-multiple-destination path
finding with minimal arc usage: Complexity and models. In: 2016 IEEE
28th International Conference on Tools with Artificial Intelligence (2016)

3. Bent, R., Van Hentenryck, P.: A two-stage hybrid algorithm for pickup and
delivery vehicle routing problems with time windows. Comput. Oper. Res.
33(4), 875–893 (2006). URL http://dx.doi.org/10.1016/j.cor.2004.08.001

4. Chabrier, A., Danna, E., Le Pape, C., Perron, L.: Solving a network design
problem. Annals OR 130(1-4), 217–239 (2004)

5. Chimani, M., Spoerhase, J.: Network design problems with bounded dis-
tances via shallow-light steiner trees. CoRR abs/1409.6551 (2014). URL
http://arxiv.org/abs/1409.6551

6. CSPLib: A problem library for constraints. http://www.csplib.org (1999)
7. De Backer, B., Furnon, V.: Meta-heuristics in constraint programming

experiments with tabu search on the vehicle routing problem. In: 2nd
International Conference on Metaheuristics (1997)

8. de Camargo, R., de Miranda, G., Løkketangen, A.: A new formu-
lation and an exact approach for the many-to-many hub location-
routing problem. Applied Mathematical Modelling 37(12-13), 7465 –
7480 (2013). DOI http://dx.doi.org/10.1016/j.apm.2013.02.035. URL
http://www.sciencedirect.com/science/article/pii/S0307904X1300142X

9. Dijkstra, E.: A Note on Two Problems in Connection with Graphs. Nu-
merische Mathematik 1(1), 269–271 (1959)

10. Discus: Deliverable 7.2, Preliminary quantitative results for flat optical
network. Tech. rep., The DISCUS Project (FP7 Grant 318137) (2014)

11. Dodis, Y., Khanna, S.: Designing networks with bounded pairwise dis-
tance. In: Proc. 21st Ann. ACM Symposium on Theory of Computing
(STOC’99), pp. 750–759 (1999)

12. Dooms, G., Deville, Y., Dupont, P.: Cp(graph): Introducing a graph com-
putation domain in constraint programming. In: P. van Beek (ed.) Prin-
ciples and Practice of Constraint Programming - CP 2005, pp. 211–225.
Springer Berlin Heidelberg, Berlin, Heidelberg (2005)

13. Elias, J., Martignon, F., Carello, G.: Very large-scale neighborhood search
algorithms for the design of service overlay networks. Telecommunication
Systems 49(4), 391–408 (2012). DOI 10.1007/s11235-010-9381-4. URL
http://dx.doi.org/10.1007/s11235-010-9381-4

14. Gelareh, S., Maculan, N., Mahey, P., Monemi, R.: Hub-and-spoke
network design and fleet deployment for string planning of liner

34 Garraffa et al.

shipping. Applied Mathematical Modelling 37(5), 3307 – 3321
(2013). DOI http://dx.doi.org/10.1016/j.apm.2012.07.017. URL
http://www.sciencedirect.com/science/article/pii/S0307904X12004295

15. Gomes, C.: Computational sustainability: Computational methods for a
sustainableenvironment, economy, and society. The Bridge 39(4), 5–13
(2009)

16. Gouveia, L., Paias, A., Sharma, D.: Modeling and solving the rooted
distance-constrained minimum spanning tree problem. Computers &
OR 35(2), 600–613 (2008). DOI 10.1016/j.cor.2006.03.022. URL
https://doi.org/10.1016/j.cor.2006.03.022

17. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and
diameter-constrained minimum spanning tree problems as steiner tree
problems over layered graphs. Math. Program. 128(1-2), 123–148 (2011).
DOI 10.1007/s10107-009-0297-2. URL https://doi.org/10.1007/s10107-
009-0297-2

18. Hurink, J.: An exponential neighborhood for a one-machine batch-
ing problem. OR Spectrum 21(4), 461–476 (1999). URL
http://dx.doi.org/10.1007/s002910050098

19. Kokangul, A., Ari, A.: Optimization of passive optical net-
work planning. Applied Mathematical Modelling 35(7), 3345 –
3354 (2011). DOI dx.doi.org/10.1016/j.apm.2011.01.017. URL
http://www.sciencedirect.com/science/article/pii/S0307904X11000308

20. Kowalski, D., Nutov, Z., Segal, M.: Scheduling of vehicles in transportation
networks. In: A. Vinel, R. Mehmood, M. Berbineau, C. Garcia, C.M.
Huang, N. Chilamkurti (eds.) Communication Technologies for Vehicles,
pp. 124–136. Springer Berlin Heidelberg (2012)

21. Mahjoub, R., Simonetti, L., Uchoa, E.: Hop-level flow formulation for the
survivable network design with hop constraints problem. Networks 61(2),
171–179 (2011)

22. Malitsky, Y., Mehta, D., O’Sullivan, B., Simonis, H.: Tuning parameters
of large neighborhood search for the machine reassignment problem. In:
Integration of AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems, pp. 176–192. Springer (2013)

23. Medhi, D.: Network Routing: Algorithms, Protocols, and Architectures.
Morgan Kaufmann (2010)

24. Mehta, D., O’Sullivan, B., Ozturk, C., Quesada, L.: An adaptive large
neighbourhood search for designing transparent optical core network. In:
Telecommunications (ConTEL), 2015 13th International Conference on,
pp. 1–8 (2015). DOI 10.1109/ConTEL.2015.7231187

25. Mehta, D., O’Sullivan, B., Ozturk, C., Quesada, L., Simonis, H.: Designing
an optical island in the core network: From routing to spectrum alloca-
tion. In: 2014 IEEE 26th International Conference on Tools with Artificial
Intelligence, pp. 560–567 (2014). DOI 10.1109/ICTAI.2014.90

26. Meyerson, A.: Online algorithms for network design. In: IN PROCEED-
INGS OF THE 16TH ACM SYMPOSIUM ON PARALLELISM IN AL-
GORITHMS AND ARCHITECTURES, pp. 275–280. ACM Press (2003)

An Adaptive LNS Algorithm for DCND Problems 35

27. Miranda, G., Luna, H., de Camargo, R., Pinto, L.: Tree network de-
sign avoiding congestion. Applied Mathematical Modelling 35(9), 4175
– 4188 (2011). DOI http://dx.doi.org/10.1016/j.apm.2011.02.046. URL
http://www.sciencedirect.com/science/article/pii/S0307904X1100117X

28. Muller, L., Spoorendonk, S.: A hybrid adaptive large neighborhood search
algorithm applied to a lot-sizing problem. DTU Management 2010. DTU
Management (2010)

29. Oh, J., Pyo, I., Pedram, M.: Constructing minimal spanning/steiner trees
with bounded path length. Integration 22(1-2), 137–163 (1997)

30. van Omme, N., Perron, L., Furnon, V.: or-tools user’s manual. Tech. rep.,
Google (2014)

31. Payne, D.: FTTP deployment options and economic challenges. In: Pro-
ceedings of the 36th European Conference and Exhibition on Optical Com-
munication (ECOC 2009) (2009)

32. Pisinger, D., Ropke, S.: Large neighborhood search. In: Handbook of
metaheuristics, pp. 399–419. Springer US (2010)

33. Prud’homme, C., Fages, J., Lorca, X.: Choco3 Documentation. TASC,
INRIA Rennes, LINA CNRS UMR 6241, COSLING S.A.S. (2014). URL
http://www.choco-solver.org

34. Régin, J.C.: Global constraints: A survey. In: P. van Hentenryck, M. Mi-
lano (eds.) Hybrid Optimization: The Ten Years of CPAIOR, pp. 63–134.
Springer New York, New York, NY (2011)

35. Ruffini, M., Wosinska, L., Achouche, M., Chen, J., Doran, N., Farjady, F.,
Montalvo, J., Ossieur, P., O’Sullivan, B., Parsons, N., Pfeiffer, T., Qiu,
X., Raack, C., Rohde, H., Schiano, M., Townsend, P., Wessaly, R., Yin,
X., Payne, D.: Discus: an end-to-end solution for ubiquitous broadband
optical access. Communications Magazine, IEEE 52(2), S24–S32 (2014).
DOI 10.1109/MCOM.2014.6736741

36. Ruthmair, M., Raidl, G.: A kruskal-based heuristic for the rooted delay-
constrained minimum spanning tree problem. In: Computer Aided Sys-
tems Theory-EUROCAST 2009, pp. 713–720. Springer (2009)

37. Ziegelmann, M.: Constrained Shortest Paths and Related Problems - Con-
strained Network Optimization. VDM Verlag, Saarbrücken, Germany,
Germany (2007)

