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Abstract

This paper introduces a multi-level (m-lev) mechanism into Evolution Strategies (ESs) in order to address a
class of global optimization problems that could benefit from fine discretization of their decision variables. Such
problems arise in engineering and scientific applications, which possess a multi-resolution control nature, and thus
may be formulated either by means of low-resolution variants (providing coarser approximations with presumably
lower accuracy for the general problem) or by high-resolution controls. A particular scientific application concerns
practical Quantum Control (QC) problems, whose targeted optimal controls may be discretized to increasingly
higher resolution, which in turn carries the potential to obtain better control yields. However, state-of-the-art
derivative-free optimization heuristics for high-resolution formulations nominally call for an impractically large
number of objective function calls. Therefore, an effective algorithmic treatment for such problems is needed.
We introduce a framework with an automated scheme to facilitate guided-search over increasingly finer levels of
control resolution for the optimization problem, whose on-the-fly learned parameters require careful adaptation.
We instantiate the proposed m-lev self-adaptive ES framework by two specific strategies, namely the classical
elitist single-child (1+1)-ES and the non-elitist multi-child derandomized (µW , λ)-sep-CMA-ES. We first show
that the approach is suitable by simulation-based optimization of QC systems which were heretofore viewed as
too complex to address. We also present a laboratory proof-of-concept for the proposed approach on a basic
experimental QC system objective.

Keywords: Black-box global optimization, derivative-free search heuristics, multi-resolution, scalability, quantum
coherent control, simulation-based optimization, experimental optimization.

1 Introduction

Control problems are routinely reformulated by higher numbers of variables due to the available advanced state-
of-the-art hardware. For instance, modern laser pulse shaping technologies offer experimental apparatus with a
growing number of control variables [48, 29] with the aim of enhancing performance. At the same time, the
challenge of treating global black-box optimization problems subject to an extremely large number of continu-
ous variables translates into algorithmic scalability issues and the inevitable curse of dimensionality [7]. Unlike
optimization of explicit expressions by means of solvers applied to mathematical programs [11], which are often
deployed on convex models comprising thousands of decision variables, randomized search heuristics have not been
demonstrated to successfully operate on equivalent scales of black-box problems. This statement is valid for the
broad class of Evolutionary Algorithms (EAs) [4], and the family of Evolution Strategies (ESs) [5, 19, 16] – which
are powerful derivative-free heuristics for black-box optimization, and are of particular interest herein. Importantly,
certain families of real-world problems possess a multi-resolution control nature, i.e., their decision variables may be
arranged on a grid. This implicit assumption allows them to be formulated in either coarse or fine scales, meshed
in a hierarchy of resolutions. While the fine-scaled problem is generally too complex to tackle, its coarser variants
may be solved.

The broad domain of multi-resolution methods [6] encompasses techniques to automatically solve computational
problems by efficient consideration of their underlying scales. Multi-resolution problems are common in compu-
tational fluid dynamics, nuclear physics and chemistry (i.e., featuring finite elements) as well as in digital signal
processing (i.e., featuring wavelets). The former group is best handled by Multigrid (MG) methods, which were
introduced to Applied Mathematics and Computer Science in the form of numerical analysis algorithms to accel-
erate high-dimensional problem-solving (see, e.g., [18, 14]). In essence, MG methods aim to solve a computational
problem on the fine scale by moving back and forth between scales, wherein they are primarily applied to solving
partial differential equations. MG methods were later adapted to global optimization targets in order to devise
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Term Description Not.

model single-objective optimization model M
level index an indicator for the current problem instance `
dimensionality current scale / resolution; the grid’s cardinality n`

problem n`-dimensional instance of the model M: objective function to be minimized P`

decision space n`-dimensional feasible search space, subset of Rn` X`

seed an initial search-point for the ES operating on P` ~x
(0)
`

minimizer a feasible minimizer to the given problem P` ~x∗`
strategy parameters set of parameters defining ES mutation on X`; required for level (`+ 1) S`

leveling-up schedule the grid enlargement plan as a function of the level index ` {n`}
“fixed-target” satisfactory objective function value, serving as termination criterion (tc-1) ε
“stagnation threshold” variation threshold of objective function values, serving as termination criterion (tc-2) ϑ
stagnation sliding-window number of recent selected individuals to be evaluated per (tc-2) w`

initial dimension the initial level of search; the targeted dimensionality during the first run Ni

final dimension the ultimate level of search; the targeted dimensionality during the last run Nf

direct dimension decision-space dimensionality in a direct search (no m-lev) Nd

null hypothesis statistical hypothesis: no difference between heuristics in used function calls h0

Table 1: Nomenclature.

multi-level solvers [12]. Importantly, using the term of multi-level in the MG context is not to be confused with the
notion of multi-level in the sense of decomposition [15], as sometimes utilized [45]. In what follows, we restrict the
usage of multi-level to the MG context. Also, the term Hierarchically Organised ESs has been used [2] in a different
context of parameter tuning by means of a bi-level meta-evolution treatment. Despite the terminology resemblance,
the latter studies are not relevant to the current work. For instance, multi-level annealing was presented with the
cooling scheme playing the role of identifying promising degrees of freedom at the coarse level [12], which translates
into introducing new large-scale variables as the temperature is lowered.

Another related research topic is multi-fidelity optimization, being primarily concerned with complex systems
that may be modelled by high-fidelity functions (the most informative and the best available) and by lowe(er)-fidelity
functions that exhibit diminished information at a reduced cost [28]. The fidelity is defined either by hierarchical or
approximation models. It is decreased accordingly by simplifying the model (“reduced Physics”) and/or coarsening
the discretizations within hierarchical models, or by reducing the model’s order in approximation models. The focus
in this research thread is mainly on effectively utilizing low-fidelity information to accomplish high-fidelity optimal
design, with the primary approaches involving surrogates and meta-modeling, often employing EAs (see, e.g., [25]).

The concept of extending the array of decision variables during an ongoing optimization process is referred to,
within the Evolutionary Computation terminology, as variable length genotypes. This concept is rather straightfor-
ward in the context of Genetic Programming [22], where candidate solutions are represented by trees that constantly
grow. Additionally, this concept was explored by Harvey, who devised a specific Genetic Algorithm dedicated to
such a theme (SAGA; see, e.g., [20]), with implications mainly in Robotics. The utilization of other specific MG
methods stemming from Computational Intelligence heuristics was reported in multiple studies. For example, a
multigrid EA was released in [21] to accelerate global optimization of single-objective continuous problems and
to boost their accuracy. The dimensionality of a given problem remained fixed therein, while the grid/scale of
each decision variable ranged from coarse to finer scales, allowing faster convergence and gradual increase of accu-
racy/precision. Another study [3] proposed a Genetic Algorithm that operates at various dimensions (levels) of an
inherently multi-resolution simulation-based optimization problem, where the leveling of the grids is to be manu-
ally planned a priori. A closely-related idea, utilized in a different application and treated by Artificial Immune
Systems, was presented in [47]. Finally, a metamodel-assisted framework for expensive aerodynamics simulation-
based optimization problems, either single- or multi-objective, was devised in [17]. This comprehensive framework
proposed an EA in possibly three multi-level modes – one of which was multi-level parameterization. The latter
relied on available transformations on the decision vectors for switching amongst the levels. This study reported
on significant reduction of simulation calls and overall time, yet the independent contribution of the multi-level
parameterization was not determined, and the effective roles of the evolutionary operators were not investigated.

It should be stressed that the use of multi-level methods in MG applications is clearly linked to the topic of
evolutionary optimization in dynamic environments [13], since the search landscape periodically changes, however
such consideration of varying dimensionality has not been considered to the best of our knowledge.

The notion of multi-level optimization strategies has not been formally introduced into ESs in the MG perspec-
tive, and any related utilization is unknown to us, even when ESs were applied to problems with an extreme number
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of continuous variables. The goal of the current study is thus to meet the challenge of introducing multi-level tools
into ESs, instantiating it and providing two empirical proofs-of-concept. Any proposed multi-level ES would require
careful formulation due to the self-adaptive nature of strategy parameters within this family of heuristics.

Importantly, there are certain assumptions on the relevant problems in the current scope of study, considering
an objective function, f : Rd → R —

1. The decision variables, ~x ∈ Rd, constitute an ordered sequence of elements, {x}d=1, which is placed on a
one-dimensional grid and undergoes some form of interpolation during the evaluation of f .

2. f is smooth over the grid and well-defined per each level of the schedule d ∈ {n`}.
3. The model is static in the sense that f does not shift during the course of optimization.

Clearly, discontinuous objective functions, e.g.,

fdis (~x) =

[∑
ı=2m

x2
ı +

∑
=2m−1

(x − 1)
2

]
−→ min,

may constitute deceptive use-cases for the current framework and are excluded herein. Overall, here are the distilled
contributions of the current study:

i Formally introducing the notion of m-lev into ESs

ii Devising an upscale operator for ES’s strategy parameters

iii Empirically assessing a proposed m-lev approach on a high-dimensional black-box control test-bed, and com-
paring it to the default approach of addressing the finer-level directly.

iv Deploying the proposed approach on a truly black-box objective function in real-world laboratory settings

In what follows, we present a novel m-lev ES framework, propose the necessary operators, and describe the
methodology in detail in Section 2. We then devise instantiations of two specific multi-level ES variants, namely
the classical elitist single-child (1 + 1)-ES [34, 4] and the non-elitist multi-child derandomized (µW , λ) sep-CMA-ES
[35, 5]. Section 3 considers the minimization of the unconstrained high-dimensional quadratic model placed on a
grid, as a proof-of-concept for the proposed multi-level ES approach. In what follows, in order to practically assess
the proposed framework on meaningful test-cases, we first exercise a simulation-based QC setup – with the explicit
systems under investigation being described in Section 4, and the practical observations reported and analyzed
in Section 5. A laboratory-based experimental QC test-case is reported in Section 6. Finally, we summarize our
work and outline directions for future research in Section 7. Nomenclature is provided in Table 1 to outline the
terminology and notation.

2 Multi-Level Evolution Strategies

We propose an m-lev approach using an ES for high-dimensional problems of a multi-resolution nature. Consider
an optimization modelM formulated on various grid-scales (dimensions) {n`} by means of minimization problems
{P` : Rn` → R} that are all normalized with a global minimum that has a zero objective function value. We also
assume a self-adaptive ES, operating on P` at dimension n`, employing a set of strategy parameters S`. Note that
S` may comprise either a scalar (constituting the global-step-size), or a vector (constituting individual step-sizes

that represent the distributions’ variances). Moreover, deploying the ES on P` with a seed point ~x
(0)
` ∈ X` ⊆ Rn` ,

with some performance-based termination criterion denoted by ε, would result in a randomized heuristic search that
outputs a minimizer ~x∗` ∈ X` and an adapted strategy S`. We denote such a self-adapting procedure by solveES.

The main concept behind the proposed multi-level ES is to iteratively increase the dimensionality n` upon
solving each problem instance P`. Each iteration’s output, {~x∗` ,S`}, is then lifted-up to the next dimension n`+1,

e.g., by means of a dedicated upscale operator, to yield the following iteration’s initial components,
{
~x

(0)
`+1,S`+1

}
.

The global step-size, though, is always reduced by a factor of
√
n`+1/n`, as will be justified below theoretically.

Overall, the following ES operation sets the lifted-up parameters as its seed and as its initial strategy parameter(s),
respectively, and accordingly conducts a randomized heuristic n`+1-dimensional search.

The proposed m-lev approach is summarized as Algorithm 1. Throughout this study, we utilize a constant
leveling-up schedule for simplicity, and fix it to ∀` n`+1/n` = 2 (see discussion in Section 7). The termination
criterion per level is assumed to be implemented within solveES and is thus left abstract in Algorithm 1; it will
be discussed per our implementations in Section 2.1. The procedure entitled formProblem refers to the explicit
formulation of the given optimization problem M on a grid of size n`. For typical MG problems, this formulation
is straightforward and mainly involves numerical adjustment to the grid size and its boundaries.
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input : problemModel M, schedule {n`} , finalDim Nf , tc object tc
output: minimizer ~x∗ ∈ RNf

1 `← 1

2 ~x
(0)
` ←randomInit(M, n`)

3 S` ←initStrategy(M, n`)
4 while n` ≤ Nf do
5 P` ←−formProblem(M, n`)
6 if ` > 1 then

7 ~x
(0)
` ←upscale

(
~x∗`−1, n`

)
8 S` ←upscale(S`−1, n`)
9 σ` ← σ`−1√

n`/n`−1

10 end

11 {~x∗` ,S`} ←−solveES
(
S`,P`, ~x(0)

` , tc
)

12 if n` == Nf then return ~x∗`
13 else `← `+ 1

14 end
15 return ~x∗`−1

Algorithm 1: An m-lev Evolution Strategy operating on a given schedule {n`} and some termination
criterion (denoted by tc).

2.1 Leveling-up Criteria

Given the black-box nature of the search landscape, assumptions on the objective function values are needed, to
some extent, in order to devise criteria for automated leveling-up. We consider the following three straightforward
termination criteria:

(tc-0) A fixed budget is allocated per each level.

(tc-1) The attainment of an objective function value below a prescribed threshold denoted as ε (also known as
“fixed-target” optimization).

(tc-2) The stagnation of the search as indicated by some statistics of the objective function values recorded in a
predefined sliding window. Particularly, we consider the search to be stagnated when the range of the values
within the window are below a threshold denoted by ϑ. The sliding window’s size is denoted by w`.

The usage of (tc-0) is meant for zero-assumption black-box optimization problems with possibly expensive objective
function calls and unknown noise distributions. The policy in determining the budget allocation per level is likely to
stem from operational considerations (e.g., costs, duration, etc.), and could be analyzed in light of the multi-armed
bandit problem [31]. Next, (tc-1) is applicable when the scale of the objective function values is known a priori. It
is often encountered in black-box optimization, especially when the objective function has a known lower bound,
or is normalizable as a whole. At the same time, (tc-2) is a commonly utilized criterion with practical efficacy in
heuristics. However, the effectiveness of (tc-2) is dependent upon the sensitivity of the search landscape’s attraction
basins. Unknown sensitivity is likely to render the statistical operation over the sliding window useless. Importantly,
the applicability of (tc-2) is prone to be limited in real-world settings, mainly due to the existence of noise, which
renders profiling attempts problematic.

2.2 Leveling-Up the Parameters

We elaborate here on the update scheme per each leveling-up step:

The Upscale Operator A straightforward treatment for the required task of upscaling the decision variables’
vectors is to conduct standard interpolation [32], while fixing the variables at the edges. We consider the following
variants, listed in ascending order of time and space complexity:
(U-1) Nearest neighbor: the simplest form of interpolation, setting the value of the nearest sample grid point
(U-2) Linear: setting linear interpolants between each pair of grid points
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(U-3) Cubic: setting shape-preserving piecewise cubic interpolants based on the neighboring grid points (at least 4
grid points are needed)

Boundary conditions enforcement may be implemented by any of the conventional schemes; a particular case will
be reported in one of the illustrated systems.

Global Step-Size Level-Update Theoretical results devising the optimal step-size for an elitist single-child
ES operating with the so-called 1/5th success-rule and targeting an unconstrained n`-dimensional quadratic model
(also known as the Sphere function), are available following the work of Rechenberg [34, 10]:

σ∗` (~x) ≈ 1.224 · R
n`
, (1)

where R =
√
fSphere (~x) (see Eq. 3). In the current MG perspective, assuming that the decision variables are

simply duplicated per each leveling-up step between n` to n`+1, the quadratic modeling is subject to increasing
the objective function value by a factor of n`+1/n`. Since the optimal step-size is proportional to R/n`,
the step-size should be reduced by a factor of

√
n`+1/n` in each leveling-up. Keeping in mind that the

validity of the 1/5th rule is broad, and extends to nonspherical fitness landscapes that may be locally approximated
by a substitute sphere [10], we follow this theoretical argumentation to formulate our leveling-up step-size update
scheme as the reduction by a factor of

√
n`+1/n`.

2.3 Instantiations

We instantiate the proposed multi-level ES approach by means of two strategies, both holding a single search-point
and a single set of strategy parameters in each iteration – a choice which allows for straightforward multi-level
implementation.

m-lev-(1 + 1)-ES (denoted m-lev-1p1) The elitist single-child (1 + 1)-ES [34, 4] has become a benchmark
strategy due its simplicity, fine performance, but above all, due to the broad understanding of the theory behind
its operation [10]. This self-adaptive hill-climber adheres to the class of scalar-driven mutations within ESs, since
its mutation operates only with a global step-size σ`,

~x′` = ~x` + σ` · N
(
~0, I
)
,

and therefore holds O(1) strategy parameters:

S(1+1)-ES
` = {σ`} .

We consider the default heuristic [4] operating in a search-space of dimension n`, which updates the global step-size
according to the 1/5th success-rule: Adjustment of σ` is performed every n` mutations, whereas the success-rate is
measured over the past 10n` mutations, and the update constant is set to c = 0.817 [4].

Importantly, in the m-lev context, the upscale operator is applied to the vector of decision variables. The set

of strategy parameters, S(1+1)-ES
` , comprises the global step-size alone, which is reduced by a factor of

√
n`/n`−1

each leveling-up.

m-lev-(µW , λ)-sep-CMA-ES (denoted m-lev-sepC) The sep-CMA-ES [35] is a modern, derandomized strat-
egy, which was devised to reduce the complexity of the renowned (µW , λ)-CMA-ES into linear space and time orders

in n`. Its mutation operates with a global step-size, σ`, as well as a vector of individual step-sizes, ~d` ∈ Rn` , upon

utilizing a diagonalized matrix D` = diag
(
~d`

)
:

~x′` = ~x` + σ` ·D`N
(
~0, I
)
.

Also, in order to facilitate accumulation of past search information, two auxiliary vectors (entitled evolution paths

and denoted ~ps, ~pc) are iteratively updated and utilized in the adaptation of σ` and ~d`. This heuristic thus adheres
to the class of vector-driven mutations within ESs, since it holds O (n`) strategy parameters. In our m-lev method,
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we choose to reset the evolution paths {~ps, ~pc} each leveling-up, and therefore to define the inherited multi-level
strategy parameters as follows:

S(µW ,λ)-sepC
` =

{
σ`, ~d`

}
.

The strategy parameters are handled as follows – the upscale operator is applied to the vector of individual step-sizes,
~d`, whereas the global step-size is reduced by a factor of

√
n`/n`−1 each leveling-up. In parallel, the upscale operator

is applied to the vector of decision variables. For population sizing, our framework follows the recommended default
values:

µ` = bλ`/2c, λ` = 4 + b3 · ln(n`)c. (2)

Also, all other parameters are set to the recommended values [35] per each level `.

3 Preliminary: Quadratic Model Placed on a Grid

Artificially placing the unconstrained quadratic model (also known as the Sphere function) on a high-dimensional
grid constitutes a trivial multi-resolution use-case due to its isotropic nature and lack of local traps, and yet,
targeting it in a black-box perspective serves as a synthetic proof-of-concept for exploring the proposed multi-
level ES instantiations. In other words, the current use-case is an exercise, rather than a test-case, and it is reported
herein mainly because of the availability of ESs’ theoretical results concerning it.

Formally, the n`-dimensional Sphere is defined by means of the following objective function, subject to mini-
mization:

fSphere (~x) =

n∑̀
ı=1

x2
ı −→ min . (3)

Notably, the current formulation necessarily dictates the deterioration of the objective function values per each
leveling-up. ESs’ operation on the Sphere function is well-understood, and certain results may provide a valu-
able reference for the behavior of the proposed m-lev-1p1. In particular, we adhere to Eq. (1) for obtaining the
theoretically-optimal global step-size values.

3.1 Simulations Planning

Here, we consider minimizing the Sphere function at a final dimensionality of Nf = 104, by applying the direct
(1 + 1)-ES and (µ, λ)-sep-CMA-ES, and comparing their performance to the derived multi-level variants, m-lev-1p1
and m-lev-sepC, respectively. The initial dimensionality is set to Ni = 10.

In practice, initial candidate solutions were randomly and uniformly generated within [−5,+5]
Ni . The initial

global step-size was set to σ0 = 10
3 . All three upscale operators, (U-1)-(U-3), were tested for the multi-level ES

variants. The m-lev-sepC starts with a (5W , 10) strategy on Ni and concludes with a (15W , 31) strategy for the
full-scale problem on Nf .

Regarding termination criteria, we utilize both (tc-1) and (tc-2): the “fixed-target” was set to ε = 0.05 per (tc-

1), and the stagnation threshold was set to ϑ = 10−4 per (tc-2). The sliding-window’s size was set to w
(1+1)-ES
` =

d100 · log10(n`)e for the m-lev-1p1, and to w
(µW ,λ)-sepC
` = dλ` · log10(n`)e for the m-lev-sepC.

Reported comparisons account for the totally utilized number of function evaluations to reach the fixed-target
per (tc-1), or the number of evaluations to reach stagnation per (tc-2) as long as the objective function value is
below the fixed-target.

3.2 Practical Observation per (tc-1)

Fig. 1 presents the median runs (i.e., 50%-tile considering the number of objective function evaluations) of the
direct (1 + 1)-ES versus the m-lev-1p1, depicting the objective function and global step-size values as a function of
evaluations. Additionally, the theoretically-optimal global step-size σ∗ is calculated using Eq. (1) and depicted over
those plots. Fig. 2 presents median runs of the direct (µW , λ)-sep-CMA-ES versus the m-lev-sepC, depicting the
objective function and global step-size values as a function of evaluations. In both figures, vertical dashed lines are
displayed for the multi-level runs to represent each leveling, corresponding to the displayed n` values. Also, log-log
scales are chosen for those plots to accommodate fine observation of the leveling. Finally, Fig. 4 provides statistical
boxplots reflecting 30 runs of each m-lev variant per either (tc-1) or (tc-2), employing all three upscale operators,
alongside the direct ESs.
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Figure 1: Median runs of (1+1)-ES and m-lev-1p1 applied to fSphere with Nf = 104, using (tc-1) at a fixed-target
of ε = 0.05. [LEFT, logarithmic scale for the y-axis] the direct variant on the full-scale problem, versus [RIGHT,
log-log scale] the multi-level variant employing (U-3), starting at Ni = 10, with vertical dashed lines that represent
each leveling, corresponding to the displayed n` values (top x-axis). The objective function values (left y-axis) and
global step-size (right y-axis) are depicted as a function of the utilized evaluations. The theoretically-optimal global
step-size σ∗ is calculated using Eq. (1).
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Figure 2: Median runs of (µW , λ)-sep-CMA-ES and m-lev-sepC applied to fSphere with Nf = 104, using (tc-1) at a
fixed-target of ε = 0.05. [LEFT, logarithmic scale for the y-axis] the direct variant on the full-scale problem, versus
[RIGHT, log-log scale] the multi-level variant employing (U-2), starting at Ni = 10, with vertical dashed lines that
represent each leveling, corresponding to the displayed n` values (top x-axis). The objective function values (left
y-axis) and global step-size (right y-axis) are depicted as a function of the utilized objective function evaluations.
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Next, we discuss the statistics of the recorded runs, considering the utilized number of objective function
calls to reach ε. Average values are accompanied with t-distribution confidence intervals at the 99% level. The
direct variants required on average at least 4 · 105 function evaluations for minimizing fSphere: (1 + 1)-ES utilized
≈ 4 · 105 ± 3, 000 calls, and the (µW , λ)-sep-CMA-ES utilized ≈ 6.5 · 105 ± 1, 500 calls. The multi-level variants
required significantly fewer calls: m-lev-1p1 variants required on average ≈ 4·104±1, 000 calls, while the m-lev-sepC
required ≈ 3 ·104±300 calls. For all cases, median values were observed in practice to hit the reported mean values.
A first conclusion states that multileveling of the fSphere proved successful and obtained a speed-up of one order of
magnitude in evaluations.

A second conclusion may be drawn with regard to the global step-size of the elitist single-child m-lev-1p1.
Evidently, the strategy’s global step-size systematically follows the pattern of the optimal step-size while keeping
a steady small gap: the observed gap median for (U-1) was ≈ 3.5 · 10−5, whereas the gap median for (U-2),(U-3)
was ≈ 6 · 10−5. Importantly, both the gap and the pattern are consistently maintained throughout the multi-level
scheme.

Upon further examining Fig. 4 in light of (tc-1), it is evident that m-lev-sepC operated best on fSphere

when utilizing (U-2), unlike m-lev-1p1 which operated similarly with the three operators. Additionally, statistical
comparisons were drawn from the numerical results of the three upscale operators per each ES variant. Following
a Friedman test to ensure that at least one variant has significant differences with respect to the other, statistical
Mann-Whitney U-tests (Wilcoxon’s rank sum tests) were conducted across all approaches with a null hypothesis h0

stating that there was no performance difference between them in terms of the averages of the necessary objective
function calls. Those comparisons concluded that h0 was always rejected at the 5% significance level for the m-lev-
sepC, and thus, the good performance statement concerning (U-2) is statistically valid. At the same time, h0 was
never rejected for the m-lev-1p1, supporting the observation of similar performance. Both statements constitute a
third conclusion for this proof-of-concept when using (tc-1).

3.3 Practical Observation per (tc-2)

The utilization of (tc-2) proved successful, and the speed-up in evaluations was kept when comparing to the direct
ES. Fig. 4 encompasses the explicit statistical boxplots, depicting both (tc-1) and (tc-2) alongside the direct variants.
Clearly, the usage of (tc-2) required even fewer evaluations when compared to (tc-1): m-lev-1p1 variants required on
average ≈ 3, 175±30 calls, while the m-lev-sepC required ≈ 1.725·104±50 calls — both exhibiting tight distributions.
Further statistical tests indicated that the performance of m-lev-1p1 was significantly better than m-lev-sepC (that
is, it reached stagnation, within the global optimum, significantly faster). However, the performance of the three
upscale operators per each m-lev instantiation was observed to be similar (that is, h0 was never rejected among the
three upscale operators). Regarding m-lev-1p1, and equivalently to (tc-1), its global step-size consistently followed
the pattern of the theoretically optimal step-size σ∗, as previously observed and reported.

Nevertheless, the qualitative profile of the runs per (tc-2) was evidently different than (tc-1). Fig. 3
presents median runs, per selected upscale operators, of m-lev-1p1 alongside m-lev-sepC. The objective function
threshold per (tc-1), ε = 0.05, is depicted in Fig. 3 as a reference to reflect the quality of the attained solutions
when using the current termination criterion. Notably, both m-lev variants suffer deteriorations in objective function
values in the late stages, likely due to the combined effect of further leveling-up with a diminished step-size. This
behavior is consistent throughout all runs. It is incomparable to (tc-1), since this effect occurs deeper in the
attraction basic of the global optimum, far beyond the termination of (tc-1)-driven runs. It is explained by the
absence of stagnation in this unconstrained convex landscape until the search deeply penetrates the attraction basin.

Lastly but importantly, the deployment of (tc-2) required an effort in setting its defining parameters, {w, ϑ}, to

work, which in turn, exhibit a strong impact on the heuristic behavior. The reported configurations for w
(1+1)-ES
` and

w
(µW ,λ)-sepC
` are stable problem-dependent settings that may not be generalizable. Altogether, since this component

seems to be heavily dependent upon its defining parameters, it may necessitate the operation of hyper-parameter
tuning (e.g., by irace [26] or SMAC [24]).

4 Black-Box Test-Bed: Quantum Control Systems

The simulated control problems under investigation lie in the field of QC [46, 33, 30]. Single-objective optimization
of a QC system aims at maximizing a simulation-based observable by shaping a temporal control electric field,
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Figure 3: Median runs of m-lev-1p1 and m-lev-sepC applied to fSphere with Nf = 104, using (tc-2) at a stagnation
threshold of ϑ = 10−4, starting at Ni = 10. Vertical dashed lines represent each leveling, corresponding to the
displayed n` values (top x-axis). The objective function values (left y-axis) and global step-size (right y-axis) are
depicted as a function of the utilized evaluations. [LEFT, log-log scale] m-lev-1p1 employing (U-3), whereas the
theoretically-optimal global step-size σ∗ is calculated using Eq. (1). [RIGHT, log-log scale] m-lev-sepC employing
(U-2). The objective function threshold per (tc-1) is depicted as a reference using a dashed horizontal line.

E (t), which determines the dynamics of the quantum process as dictated by the Schrödinger equation:

i
∂ψ

∂t
= (H0 + V )ψ(t)

V = −µE(t) cos(Ω0t) ,
(4)

where H0 is the field-free system Hamiltonian, µ is the dipole moment and Ω0 is the field carrier frequency. Given
an observable operator, O, with the propagated wave function ψ solving Eq. 4, a quantum expectation value is then
defined as:

J = 〈ψ |O|ψ〉 . (5)

In an experimental laboratory setup, closed-loop learning is carried out by spectral phase modulation of φ (Ω), while
adhering to a fixed spectral amplitude A (Ω); the envelope of the electric field is described by:

E(t) = R
{∫

A (Ω) exp(iφ (Ω)) exp (−iΩt) dΩ

}
. (6)

The decision variables in such experimental control processes are mapped onto the spectral phase function, φ(Ω),
discretized at n` frequencies {Ωi}n`

i=1 that are equidistantly spaced across the bandwidth:

φ(Ω) = (φ(Ω1), φ(Ω2), ..., φ(Ωn`
)) . (7)

In practice, the pulse shaping process is implemented by a so-called Spatial Light Modulator (SLM), which can vary
the phase elements in Eq. 7. The simulated voltage applied to the th pixel in the pulse shaper must therefore be
adjusted to set the value of φ (Ω),  = 1, . . . , n`. To best simulate this experimental setup, we consider n` individual
pixels subject to rectangle-activation-functions, squ(ν), (ideally) sharply-defined and with no gaps between each
other. This is referred to as the staircase approximation. Elaboration on this so-called pixelation effect
is provided within the Appendix (A). Practically, step-function gaps between SLM pixels are responsible
for the construction of so-called parasitic replica pulses in the temporal domain, which are located at the zeros
of the sinc envelope function. Notably, strong phase variations from one pixel to another generally cause more
pronounced replica pulses, which generally result in lower, suboptimal yields [38]. This effect is a consequence of fine
discretization, which is a central aspect of the current work, combined with invariance properties due to the shaping
process (i.e., the Fourier transform in Eq. 6). This effect can be responsible for the distortion of relatively simple
QC objective functions (e.g., two-photon-absorption systems, which are considered in what follows). Importantly,
nominally easy landscapes to be globally optimized can become artificially constrained with local traps in practice,
due to this effect.

As a test-bed for our m-lev ESs’ operation, we consider three simulation-based QC systems:

9



10
3

10
4

10
5

Evaluations

a

b

c

d

e

f

g

h

i

j

k

l

m

n

direct

(tc-1)

(tc-2)

a: (1+1)-ES

b: (15,31)-sep-CMA-ES

c: (tc-1) m-lev-1p1 (U-1)

d: (tc-1) m-lev-1p1 (U-2)

e: (tc-1) m-lev-1p1 (U-3)

f: (tc-1) m-lev-sepC (U-1)

g: (tc-1) m-lev-sepC (U-2)

h: (tc-1) m-lev-sepC (U-3)

i: (tc-2) m-lev-1p1 (U-1)

j: (tc-2) m-lev-1p1 (U-2)

k: (tc-2) m-lev-1p1 (U-3)

l: (tc-2) m-lev-sepC (U-1)

m: (tc-2) m-lev-sepC (U-2)

n: (tc-2) m-lev-sepC (U-3)

Figure 4: Statistical boxplots accounting for 30 runs of minimizing the Sphere function by all 14 ESs instantiations:
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(S-1) Two-photon absorption (TPA) processes through dispersive media
(S-2) Rotational population transfer of a diatomic molecule (starting from the J = 0 rotational ground state)
(S-3) Field-free molecular alignment of a diatomic molecule (at zero Kelvin, starting from J = 0).

The primary goal of utilizing this test-bed is to validate the efficacy of the m-lev approaches and
compare it to the direct variants that operate at the finest scales.

4.1 TPA through Dispersive Media

We consider effects of dispersion on two-photon absorption processes (frequency doubling). Experimental global
optimization of such a system in a dispersive toluene medium, driven by the CMA-ES heuristic, both single- and
multi-objective, has already been accomplished (per Nd = 128) as was reported in [23]. Here, we consider its
simulated objective function [40].

To account for the effects of linear dispersion on the electric field, a propagation function is formulated by means
of a fourth-order polynomial to be discretized at the same frequencies:

k (Ω) = k2Ω2 + k3Ω3 + k4Ω4, (8)

constituting a Taylor expansion for nonabsorptive medium that discards zeroth- and first-order terms due to the
invariance properties of the Fourier transform. Then, given a control phase φ(Ω) and a dispersion term k (Ω), the
spectral intensity I2(Ω) is formulated by means of the spectral field terms:

E1(Ω) = A(Ω) exp i [φ(Ω) + k(Ω)]

E2(Ω) = E1(Ω) ∗ E1(Ω) =

∫ ∞
−∞

E1(Ω′) · E1(Ω− Ω′)dΩ′

I2(Ω) = |E2(Ω)|2.

(9)

The standard TPA objective function is subject to maximization and defined as follows:

fτ (φ, k) =

∫ ∞
−∞

I2(Ω)dΩ −→ max . (10)

Since fτ is maximized in non-dispersive processes by any phase function linear in the frequency Ω [40],

argmaxφ(Ω) {fτ (φ, k = 0)} ≡ aΩ + b ∀a, b

(and in particular by a constant phase, a = 0, ∀b), the decision variables in the current dispersive process are meant
to compensate for the function k(Ω) over the periodic domain [0, 2π]

n` .
We target this problem with the following dispersion profiles:

(TPA-0) k̂0 (Ω) : {k2 = 0, k3 = 0, k4 = 0}
(TPA-1) k̂1 (Ω) : {k2 = 5000, k3 = 0, k4 = 0}
(TPA-2) k̂2 (Ω) : {k2 = 11300, k3 = 7990, k4 = 2530}
(TPA-3) k̂3 (Ω) : {k2 = 50000, k3 = 25000, k4 = 10500}
Since the global maximum is known, by setting the decision variables to the compensating phase and calculating
the objective function value, fmax

τ,k̂
, the problem is then transformed into a normalized maximization problem with

a globally maximal unit value:

fTPA

(
φ, k̂

)
=
fτ

(
φ, k̂

)
fmax
τ,k̂

−→ max . (11)

Despite some symmetry properties of the standard TPA function, it captures the complexity of the Fourier transform
between the decision space to the evaluation space, and does not constitute a separable function [40].

4.2 Rotational Population Transfer

The computational models for calculating rotational population transfer and molecular alignment were previously
described [36], and were further considered for simulation-based single-objective [42] and multi-objective [44] opti-
mization. Two electronic states are taken into account, the ground |g〉 and off-resonant excited electronic state |e〉,
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with initial occupation of the ground J = m = 0 rotational state. The wave function is expanded in the following
fashion:

Ψ(t) =

Nrot∑
J=0

[
α

(g)
J (t)ψg,J + α

(e)
J (t)ψe,J

]
. (12)

We consider Nrot = 20, where this expansion was confirmed to give converged results in the present calculations.
The eigenvalues of H0 (i.e., a diagonal matrix) in Eq. 4 are E(J) = BrotJ(J + 1) where Brot is referred to as the
rotational constant. The expansion in Eq. 12 is utilized in Eq. 4. The (diatomic) molecule under investigation has a
rotational constant of Brot = 5cm−1. The transitions between |g〉 and |e〉 are assumed to proceed via the selection
rules of the quantum numbers ∆J = 1, ∆m = 0. The peak Rabi frequency, which plays the role of specifying the
laser intensity, is set to Ωge = 160× 1012s−1.

We consider here the problem of population transfer within the rotational framework as an optimization problem.
The objective to be maximized is defined as the probability to populate the Jtarget = 4 rotational level, |4〉 :=
|gJtarget = 4〉, upon starting in the initial ground state |0〉 := |gJ = 0〉:

J := Pr {|0〉 |4〉} .

The formal objective function value, at an observation time t = tmeasure, reads:

fRot =
∣∣∣α(g)
Jtarget=4(tmeasure)

∣∣∣2 −→ max . (13)

4.3 Molecular Alignment

The numerical modeling of rotational motion, presented in the previous section, is adopted here to the molecular
alignment problem as well. We focus on a simplified variant of the standard alignment problem, starting at zero
temperature (T = 0◦ K) and with the initial state being J = m = 0. The same characteristic parameters of the
rotational population transfer problem are set here, including the peak Rabi frequency as specified in Section 4.2.
The definition of the alignment observable corresponds to cos2 θ, where θ is the angle of the internuclear axis with
respect to the control field’s polarization axis. Consequently, the objective function is defined as follows:

fAlign = maxE(t)

〈
cos2(θ)

〉
−→ max . (14)

4.4 Implementation and Simulation Considerations

The simulations consider a femtosecond laser pulse for the three QC systems, centered at 795nm with a bandwidth
of ∆λ ∼ 28nm, to be delivered to a pulse shaper with a programmable n` pixel SLM for phase-only modulation.
The search is to be conducted in the dimensionality range of Ni = 16, Nf = 214 = 16, 384, except for the alignment
(S-3) problem which starts at Ni = 64 (it is explained by the need to shape a more complex pulse-train [42]).

Initial candidate solutions are to be randomly and uniformly generated within [0, 2π]
Ni . All simulation-based

optimization problems (S-1)-(S-3) are transformed into minimization problems. The initial global step-size is set
to σ0 = 2π

3 . Accounting for the periodic boundary conditions, a wrapping operator [37] is applied to the decision
vectors immediately after the mutation, i.e., φ (Ω) ← φ (Ω) mod2π. All three upscale operators, (U-1)-(U-3), are
tested per each instantiation to yield altogether six m-lev variants. The m-lev-sepC starts with a (6W , 12) strategy
on Ni and concludes with a (16W , 33) strategy for the full-scale problem on Nf . For the overall budget of objective
function calls, a total of 3 · 105 evaluations is granted per each run.

Regarding termination criteria, fixed-target optimization by (tc-1) is a natural choice due to the available nor-
malization of all three objective functions, and the intuitive interpretation of ε. Nevertheless, we applied preliminary
attempts to obtain a stable (tc-2) implementation over fTPA-0 , which demanded extensive efforts of hyper-parameter
tuning. Eventually, while the (tc-2)-based m-lev-1p1 variants performed similarly to (tc-1), the (tc-2)-based m-lev-
sepC variants performed much worse than (tc-1), up to an increased order of magnitude in the utilized evaluations.
In practice, all runs to be reported in Section 5 were conducted using (tc-1) with a fixed-target of
ε = 0.05.

The direct variants are run on scales, as high as possible, which enable reasonable convergence and overall
computation time. Note that the computation time of a single shaping simulation call dramatically increases with
the dimensionality n`, especially due to the required FFT procedure [32]; the latter performs de facto in O(n)
complexity, e.g., resulting in a duration of more than 6sec for a single TPA function call featuring 214 decision
variables on a state-of-the-art workstation (Dual Intel Xeon Processor E5-2670 v3). Additionally, the elapsed CPU
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ES / (S-1)-variant fTPA-0 fTPA-1 fTPA-2 fTPA-3

m-lev-1p1: (U-1) 4248.93 ±2025.56 (3966.5) 2928.6 ±1799.48 (957) 5639.87 ±2030.74 (4398) 15423.9 ±2419.53 (13255)
m-lev-1p1: (U-2) 19520.2 ±5159.73 (21853) 27004.1 ±7270.7 (25084.5) 24734.5 ±3508.5 (24589.5) 67143.3 ±19952.2 (50641.5)
m-lev-1p1: (U-3) 14710 ±5122.27 (14622.5) 15353.8 ±4084.38 (15905) 19267.1 ±3255.94 (17803.5) 52987.7 ±14513 (46169.5)

m-lev-sepC: (U-1) 2824.73 ±1310.64 (1454) 11774.5 ±24384.3 (1573) 3213.27 ±628.234 (2770) 15515 ±1633.66 (15314)
m-lev-sepC: (U-2) 11186.9 ±5203.14 (9939.5) 11359 ±3189.13 (10427) 17252.7 ±2337.42 (16956.5) 55675.9 ±9390.88 (50437)
m-lev-sepC: (U-3) 8598.9 ±1710.38 (8904) 11512.7 ±6076.62 (8715) 11752.7 ±1438.1 (12634.5) 41487.2 ±3220.31 (39874.5)

Table 2: Mean with t-distribution confidence intervals at the 99% level, as well as median values (in parentheses),
of the required evaluation calls to reach the threshold, over 30 runs, for the six m-lev ES instantiations on (S-1).
Bold entries indicate statistically-significant best performance of the utilized operator per each heuristic (m-lev-1p1,
m-lev-sepC). On this problem, utilization of (U-1) performed best, as elaborated in the text.

ES-variant/System fRot (S-2) fAlign (S-3)

m-lev-1p1: (U-1) 17505.9 ±18890.2 (724.5) 206820± 63623.4 (300000) [s.r.: 11]
m-lev-1p1: (U-2) 11723.7 ±15084.5 (1401.5) 190375± 65096.5 (300000) [s.r.: 13]
m-lev-1p1: (U-3) 5386.57 ±9028.74 (1843) 255081± 45505.7 (300000) [s.r.: 7]

m-lev-sepC: (U-1) 1510.93 ±394.46 (1353) 170958 ±66666.8 (199503) [s.r.: 15]
m-lev-sepC: (U-2) 2431.5 ±360.33 (2352) 210525 ±59172.8 (300000) [s.r.: 12]
m-lev-sepC: (U-3) 8664.73 ±12498.5 (2163) 190014 ±58004.9 (232245) [s.r.: 16]

Table 3: Mean with t-distribution confidence intervals at the 99% level, as well as median values (in parentheses) and
number of successful runs [s.r.], of the required evaluation calls to reach the threshold, over 30 runs, for all six m-lev
ES instantiations on (S-2) and only for three m-lev-sepC utilizations on (S-3). Bold entries indicate statistically-
significant best performance of the utilized operator per each heuristic (m-lev-1p1, m-lev-sepC). Utilization of (U-1)
performed best on (S-2), whereas all operators performed equally well on (S-3) — as elaborated in the text.

time for simulating (S-2) and (S-3) is roughly 5sec for a single electric field. Therefore, the incentive to apply
multileveling to this class of problems is twofold – a smaller number of total simulation calls, but at the same time,
less fine-scale simulation calls. In fact, targeting this class of problems by a direct ES over 210 decision variables
already becomes an impractical computational task that requires several days per each run using a state-of-the-art
workstation.

5 Simulation-Based Observations

Tables 2 and 3 present the statistics of the utilized simulation (evaluation) calls to reach ε = 0.05 away from the
global optimum, over 30 runs, for the six m-lev ES instantiations when targeting the three systems (an exception is
(S-3) due to its excessive computation time). In what follows, we independently examine the test-cases in detail and
conduct the aforementioned statistical protocol of a Friedman test (ensuring that at least one variant has significant
differences in performance) followed by Mann-Whitney U-tests, considering the statistical hypotheses h0 and h1 as
stated in Section 3.

5.1 TPA (S-1)

Both m-lev-1p1 and m-lev-sepC operated best on (S-1) when utilizing (U-1), by a clear margin. The statistical
comparisons using a Friedman test, followed by Mann-Whitney U-tests concluded that h0 was always rejected on
both m-lev variants. Thus, (U-1) significantly performs better on this problem. Statistical comparisons between
m-lev-1p1 and m-lev-sepC show that they performed equally well when utilizing (U-1) on the TPA case, except for
fTPA-1, where m-lev-1p1 outperformed m-lev-sepC (h0 was rejected on the latter at the 5% significance level). Fig. 5
provides the statistical boxplots reflecting the 30 runs of both m-lev instantiations when utilizing (U-1) on the TPA
systems (S-1). We note the large confidence intervals of the number of evaluations used to maximize these functions
considering the different runs. We also mention the numerical observation from Table 2 that m-lev-1p1 optimized
fTPA-1 more easily than fTPA-0 when utilizing (U-1), which is surprising to some extent. A statistical comparison
ruled out significant outperformance though, and yet we offer the following explanation for this behavior. The
m-lev-1p1 is prone to getting trapped in local optima (due to its elitist selection mechanism), which are in practice
more prominent in the staircase approximation for non-dispersive TPA in comparison to the lightly-dispersive TPA.
Fig. 6 depicts selected runs of m-lev-1p1 and m-lev-sepC on fTPA-1. The direct ESs could not converge within a
practical duration on scales larger than 210. We ran (1 + 1)-ES and (µW , λ)-sep-CMA-ES to maximize fTPA-1 on

13



10
3

10
4

10
5

Evaluations

TPA-0: m-lev-1p1

TPA-0: m-lev-sepC

TPA-1: m-lev-1p1

TPA-1: m-lev-sepC

TPA-2:m-lev-1p1

TPA-2:m-lev-sepC

TPA-3: m-lev-1p1

TPA-3: m-lev-sepC
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0 200 400 600 800 1000 1200 1400 1600

Evaluations

10-2

10-1

100

10-2

10-1

100

G
lo

b
a
l 
S

te
p
-S

iz
e

Objective function value

Objective function threshold

Global Step-Size σ

n =N =161 i
n =N =11 f 2

14
n2 n3 n4 n5 n6 n7 n8

...

1
.0

-f
T

P
A

-1

0 500 1000 1500 2000 2500

Evaluations

10-2

10-1

100

10-2

10-1

100

G
lo

b
a

l 
S

te
p

-S
iz

e

Objective function value

Objective function threshold

Global Step-Size σ

n =N =161 i
n =N =11 f 2

14
n2 n3 n4 n5 n6 n7n8n9n10

1
.0

-f
T

P
A

-1

Figure 6: Selected runs of m-lev-1p1 [LEFT, 65%-tile run] and m-lev-sepC [RIGHT, 75%-tile run] applied to fTPA-1

with Nf = 214, using (tc-1) with a target of ε = 0.05, both employing (U-1). Each run starts at Ni = 16,
with vertical dashed lines that represent each leveling, corresponding to the displayed n` values (top x-axis). The
objective function values (left y-axis, depicting 1.0− fTPA-1) and global step-size (right y-axis) are both displayed
on log-scales as a function of the utilized objective function evaluations.
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a scale of 210 = 1024 variables. Although the numerical results are not comparable to the m-lev variants, we note
that the (1 + 1)-ES reached the threshold within an average of 40504.5± 1138.87 function evaluations (median was
40525), whereas the direct (12W , 24)-sep-CMA-ES reached it within an average of 88485.6± 11370.5 evaluations
(median was 82176). To summarize, the practical proficiency of the m-lev framework is twofold: (1) solving a
high-resolution QC problem which could not be solved in its full-scale formulation within a practical run-time, and
(2) an order of magnitude improvement when applied to fTPA-1.

5.2 Rotational Population Transfer (S-2)

In addition to Table 3, Fig. 7 provides the statistical boxplots reflecting the 30 runs of each m-lev variant on fRot

(S-2). It is evident that m-lev-1p1 did not converge within the budget of 105 evaluations on multiple occasions
(reflected by the outliers), likely due to its tendency to get trapped in local optima. m-lev-sepC did not converge
on two occasions when utilizing (U-3). The statistical tests indicate that both m-lev-1p1 and m-lev-sepC operated
best on (S-2) when utilizing (U-1), while their performance using either (U-2) or (U-3) was equally good (h0 could
not be rejected). This observation is aligned with the results of the TPA runs. Comparing the two ESs on (U-1),
their performance significantly differs as h0 was rejected. Although m-lev-1p1 required function evaluations at a
median of approximately half the median of m-lev-sepC, it did not converge within the total budget on 5 out of the
30 runs. We therefore argue that m-lev-sepC is preferable for treating this use-case. Fig. 8 depicts median runs of
both m-lev-1p1 and m-lev-sepC on fRot.

To test direct behavior on a fine-scale, we ran (12W , 24)-sep-CMA-ES to maximize fRot on a scale of 210 = 1024
variables. It reached the threshold within an average of 13114.3 ±696.3 function evaluations (median was 12900).
Also in this test-case, the m-lev approach obtained an order of magnitude improvement (when considering m-lev-
sepC).

5.3 Molecular Alignment (S-3)

Due to the excessive computation time and problem difficulty, we limit the total number of simulation calls to
300,000 per run. Table 3 presents the statistics of the six m-lev instantiations on (S-3). Evidently, this problem
introduces a higher level of optimization difficulty, as the number of successful runs that meet the fixed-target is
low, typically less than half (this is also reflected in the average number of function evaluations required to meet
the target, in comparison to the other simulation-based QC systems). The statistical tests indicate that m-lev-
sepC performed equally well when utilizing (U-1), (U-2) or (U-3) (h0 could not be rejected). For m-lev-1p1, (U-2)
performed significantly better than (U-3), but equally well when compared to (U-1). We argue that m-lev-sepC is
preferable for treating this use-case, due to the higher rates of successful runs. Fig. 9 depicts the median run of
m-lev-sepC on fAlign as well as the attained solution’s field intensity.
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Figure 9: [LEFT] The median run of m-lev-sepC applied to fAlign (S-3) with Nf = 214, targeting a threshold
of ε = 0.05 and employing (U-3). The run starts at Ni = 64, with vertical dashed lines that represent each
leveling, corresponding to the displayed n` values (top x-axis). The objective function values (left y-axis, depicting
1.0−fAlign) and global step-size (right y-axis) are both displayed on log-scales as a function of the utilized objective
function evaluations. [RIGHT] The attained pulse shape for the displayed run, obtaining a

〈
cos2(θ)

〉
-alignment of

95%.
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To test direct search on a fine-scale, we ran (12W , 24)-sep-CMA-ES to maximize fAlign on a scale of 210 = 1024
variables. It reached the threshold within an average of 296023±157075 function evaluations (median was 217644),
which lies in the same order of magnitude as m-lev-sepC running on the finer-scale of 214 variables, but is worst
than m-lev-sepC (U-1).

6 Experimental Proof-of-Concept

Unlike simulation-based optimization, which is broadly exercised throughout the sciences, direct experimental opti-
mization is routinely deployed in QC experiments, but rarely elsewhere [41] – due to the expenses involved. In this
section we describe the experimental results when the m-lev proposed approach was applied to the TPA use-case,
and the laboratory setup details are provided in the Appendix (B). Importantly, the experimental QC system is
used for algorithmic validation purposes.

6.1 Algorithmic Selection

Due to the existence of noise and uncertainty in the experimental system, special attention is given to the strategy
selection. As revealed by theoretical studies [1], single-parent strategies experience difficulties in handling noisy
landscapes, in comparison to multi-parent strategies: the application of recombination in the latter case proved
highly efficient in treating excessive noise, and it is typically attributed to Beyer’s Genetic Repair Hypothesis [9].
More specifically, in the context of QC experimental optimization, the CMA-ES was observed in [43, 37] to fail
without recombination, and to perform extremely well otherwise, as expected from theory. At the same time,
elitist strategies support the survival of parents, and are likely to encounter scenarios in which highly overvaluated
objective function values are kept for long periods, causing stagnation (see, e.g., [8]). Following these considerations,
we employ only the (µW , λ)-sep-CMA-ES and m-lev-sepC strategies in the experiment.

Importantly, due to the lack of known a priori normalization, the experimental optimization is run using (tc-0),
that is, a “fixed budget” scheme. Each level is thus treated for a fixed number of iterations, yet with different
number of measurements, since the population sizes vary. Nearest-neighbor interpolation (U-1) is utilized.

6.2 Experimental Results

Fig. 10 depicts typical runs from experimental optimization targeting the maximization of the TPA signal. The
outcome of direct optimization at Nd = 640 controls, as well as the m-lev approach, are depicted in Fig. 10. In each
plot, the red (noisy) curves record the evolution of the objective function values over the entire course of optimization;
the curves are the TPA signals normalized with respect to the signal generated by the so-called transform-limited
pulse (i.e., recorded from a constant flat phase, φi = 0 for all i on the shaper). This normalization removes the
effect of the laser fluctuations to the fitness over the long period of the experiment, ensuring consistency amongst
different runs. The blue curves record the global step-size σ during each optimization run. The m-lev approach
starts from the initial grid size of Ni = n1 = 20, which doubles in the subsequent cases (i.e., n` = {40, 80, 160, 320}),
and ends up at the finest grid level of Nf = n6 = 640. For each grid level, 20 generations (iterations) are performed,
yet the population sizes differ, adhering to Eq. 2. The vertical dashed lines in Fig. 10[RIGHT] mark the boundaries
of the adjacent grid levels. Results from multiple runs suggest that the maximally attainable signal value is in the
range of 1.8 ∼ 2.0, considering experimental noise of ≈ 10%, (i.e., any TPA signal exceeding 1.8 may be considered
as achieving the maximum). At the same time, the horizontal dashed lines represent the single measurement of the
best attained signal value (2.04; independently obtained in a direct search at Nd = 160, which required at least
5000 measurements). Evidently, the m-lev approach obtained the most efficient run in terms of first reaching the
vicinity of the optimum: In this recorded run it required only ≈ 700 measurements. At the same time, the direct
search at Nd = 640 failed to locate the maximum in all the recorded experiments, even after 9000 measurements.
Notably, we associate this behavior with the curse of dimensionality.

It is also evident from Fig. 10[RIGHT] that n` = 80 is the minimally-required grid-size in order to reach the
maximum yield. Further increasing the grid-size (e.g., 160, 320, 640) does not exhibit significant yield improvements.
This additional information is normally not available from the routinely-employed direct runs at a designated
dimensionality Nd that is arbitrarily chosen. In summary, the m-lev approach performs best both in terms of yield
and speed. In fact, its efficiency could be further improved by applying an automated stopping criterion, instead
of the utilized (tc-0), which accounts for the inherent noise and uncertainty.
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Figure 10: Experimental optimization of the TPA signal in either direct Nd = 640 controls [LEFT], or in the m-lev
approach using (tc-0) [RIGHT]. The objective function values are normalized with respect to the TPA signal from
a Transform-Limited pulse (i.e., the flat phase). The horizontal dashed line is artificially depicted as a reference
representing the maximally attained signal value (2.04). This value was independently obtained in a direct search
at Nd = 160, which required at least 5000 measurements.

7 Conclusions

In this study we introduced the notion of m-lev optimization into the realm of self-adaptive ESs [16, 39]. We
articulated our assumptions, formulated the framework, and devised a set of possible termination criteria for the
automated leveling-up. We proposed instantiations for this framework by means of specific variants, and assessed the
computational benefit on simulation-based QC systems as well as a simple experimental system. We preliminarily
investigated the high-dimensional unconstrained quadratic function when artificially placed on a grid, where we also
used theoretical results concerning the optimal step-size to analyse the step-size adaptation of the proposed m-lev-
1p1 during the course of multi-leveling. Both (tc-1) and (tc-2) proved potent criteria, yet the configuration of
(tc-2) exhibited high sensitivity to the search landscape. We then carried out a systematic testing procedure on
a QC simulation-based optimization test-bed, primarily with (tc-1), where the m-lev-sepC performed very well.
Importantly, simulation-based QC systems comprising 214 decision variables, which could not be solved in their
full-scale formulation within a practical run-time, were efficiently solved by the proposed m-lev ESs. Interestingly,
the proposed m-lev-1p1 outperformed m-lev-sepC on some of the problems.

The utilization of the various upscale operators exhibited different efficacy over the simulated test-cases. Nearest-
neighbor interpolation (U-1) performed best on two out of the three systems for the two algorithmic instantiations.
On the third system, all three operators performed equally well. Generally, given a black-box multi-resolution
optimization problem, we expect the fit of the upscale operator to an m-lev-ES to be problem-dependent.

Finally, an experimental proof-of-concept of the m-lev-sepC variant on TPA optimization was successfully ac-
complished in the laboratory, using (tc-0). The algorithmic benefit was evident as the m-lev approach performed as
expected over the 640 control pixels of the pulse-shaper. The practical significance of applying the m-lev approach
will be problem-dependent (i.e., application-specific), and the illustrations show the clear prospect of enhancing
efficiency.

Primary directions of future work are (i) to investigate flexible schedules (e.g., logarithmically reducing the factor
of refinement to counteract the curse of dimensionality), (ii) to devise and assess additional upscale operators in
order to improve performance, (iii) to explore additional core solvers (e.g., the limited-memory CMA-ES [27]), (iv)
to obtain efficient automated termination that fits zero-assumption black-box settings (e.g., by considering (tc-0)
in light of the multi-armed bandit problem), and (v) to extend the m-lev notion and operation to 2D grids.
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Figure 11: Illustration of the pixelation effect occurring in pulse shapers during typical QC experiments; shaping
is carried out with 32 pixels in the domain [−π, π]. Panel (a) presents replica pulses with a moderate linear phase,
with the envelope of the replicas in a dashed curve. Panel (b) shows a steeper phase, with more pronounced replica
pulses [38]. Figure courtesy of Matthias Roth and Jonathan Roslund.

A The Pixelation Effect

The time modulation of these step-functions is attained by their inverse Fourier transform,

F−1 [squ(ν)] ∼ sinc(τ)

where the width of sinc(τ) = sin(τ)
τ is inversely proportional to the pixel width. Explicitly, the resulting temporal

electric field in this pixelation can be described by

e(t) =
∑


ẽ(t− τ) · sinc

(
πt

τ

)
, (15)

with ẽ(t) as the desired electric field, and where τ = 1
∆ν is the inverse frequency spacing per pixel. Fig. 11 provides

an illustration of the pixelation effect [38].

B Laboratory Setup

A commercial Ti:Sapphire femtosecond laser system consisting of an oscillator and a multi-pass amplifier (KMlab,
Dragon) is used to produce pulses with ∼ 25fs pulse width centered at ∼ 790nm. The laser pulses are shaped with a
dual-mask liquid crystal SLM (CRI, SLM-640), capable of simultaneous phase and amplitude modulation. A small
fraction of the shaped laser pulse is spit and focused into a GaP photodiode (Thorlab), which generates only the
TPA signal from the 790nm incident light. The laser power was adjusted with neutral density filters before entering
the photodiode to make sure that the TPA signal does not saturate. The SLM contains Nf = 640 pixels, and the
shaper is configured at a resolution of ∼ 0.2nm/pixel. We utilize phase-only modulation in the experiment, with all
the amplitudes fixed at 1. Adjacent SLM pixels are sequentially tied together in groups of g` (g` = 32, 16, 8, 4, 2)
to reduce the 640-dimensional space of spectral phases to the desired grid levels n` (n` = 20, 40, 80, 160, 320),
respectively. The QC objective function is the experimental equivalence of Eq. 10, that is, to experimentally
maximize the TPA signal by obtaining the optimal phase mask on the shaper. Ideally, the optimal phase should be
a flat phase or a linear phase, but in laboratory practice, it contains higher order nonlinear terms to compensate
for or correct those inherent in the laser system.
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Fig. 12 schematically illustrates an experimental QC learning loop [30].

Optimizer

Figure 12: The experimental quantum control learning loop. An unshaped laser pulse, approximated well by a
Gaussian, is shaped by a pixel-based modulator and applied to a molecular sample. The control variables addressed
in the laboratory by the evolution strategy are the individual pixels that determine the pulse shape. The measured
signal reflecting the molecular response constitutes the feedback for optimization by the ES.
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