Skip to main content
Log in

AgentGeom: a multiagent system for pedagogical support in geometric proof problems

  • Published:
International Journal of Computers for Mathematical Learning Aims and scope Submit manuscript

Abstract

This paper aims, first, to describe the fundamental characteristics and workings of the AgentGeom artificial tutorial system, which is designed to help students develop knowledge and skills related to problem solving, mathematical proof in geometry, and the use of mathematical language. Following this, we indicate the manner in which a secondary school student can appropriate these abilities through interactions with the system. Our system uses strategic messages of the agent tutor in an argumentative process that collaborates with a student in the construction of a proof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aïmeur, E., El-Khoury, S., Fortuny, J. M., & Richard, P. R. (2005). An open architecture to improve the mathematical competences in high school. Actes de la ED-media world conference of association for the advancement of computing in education (pp. 3395–3402). Montréal.

  • Allen, R. J., & Trilling, L. (1997). Dynamic geometry and declarative geometric programming. In J. R. King, & D. Schattschneider (Eds.), Geometry turned on. Dynamic software in learning, teaching, and research. (pp. 193–197) Washington: MAA Notes Series.

    Google Scholar 

  • Balacheff, N. (2000). Teaching, an emergent property of eLearning environments. In Proceedings of the international conference on intelligent tutoring systems 2000. Nice. Retrieved at http://www-didactique.imag.fr/Balacheff/TextesDivers/IST2000.html.

  • Balacheff, N., & Margolinas, C. (2005). Modèle de connaissances pour le calcul de situations didactiques. In A. Mercier, & C. Margolinas (Eds.), Balises pour la didactique des mathématiques (pp. 75–106). Grenoble: La Pensée sauvage.

  • Brousseau, G. (1997). Theory of didactic situations. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Bunt, A., & Conati, C. (2002). Assessing effective exploration in open learning environments using bayesian networks. In Proceedings of the international conference on intelligent tutoring systems 2002. Biarritz. Retreived at http://www.cs.ubc.ca/%7Econati/my-papers/its2002BuntConati.pdf.

  • Cobo, P., & Fortuny, J. M. (2000). Social interactions and cognitive effects in contexts of area-comparison problem solving. Educational Studies in Mathematics, 42, 115–140.

    Article  Google Scholar 

  • Cobo, P. (1998). Análisis de los procesos cognitivos y de las interacciones sociales entre alumnos (16–17) en la resolución de problemas que comparan áreas de superficies planas. Un estudio de casos. Doctoral dissertation. Universitat Autònoma de Barcelona.

  • Cobo, P. (2004). Disseny d’agents pedagògics intel·ligents per millorar les competències estratègiques de l’alumnat en la resolució de problemes de matemàtiques. Memoria inédita de la llicencia de estudios concedida por el Departament d’Ensenyament de la Generalitat de Catalunya (DOGC, núm. 3926 de 16-7-2003).

  • Duval, R. (1995). Sémiosis et pensée humaine: registre sémiotique et apprentissages intellectuels. Berne: Peter Lang.

    Google Scholar 

  • Forman, E. (1996). Learning mathematics as participation in classroom practice: implications of sociocultural theory for educational reform. In L. Steffe, P. Nesher, P. Cobb, G. Goldin, & B. Greer (Eds.), Theories of mathematical learning (pp. 115–130). Mahwah, NJ: Lawrence Erlbaum Associates.

  • Kieran, C. (2001). The mathematical discourse of 13-year-old partnered problem solving and its relation to the mathematics that emerges. Educational Studies in Mathematics, 42, 115–140.

    Google Scholar 

  • Koedinger, K., & Anderson, J. R. (1993). Reifying implicit planning in geometry: Guidelines for model-based intelligent tutoring system design. In S. P. Lajoie, & S. J. Derry (Eds.), Computers as cognitive tools (pp. 15–46). Hillsdale, NJ: Erlbaum.

  • Laboratoire Leibniz (2003). Baghera assessment project: Designing an hybrid and emergent educational society. In S. Soury-Lavergne (Ed.), Rapport pour la commission européenne, Programme IST. Grenoble: Les Cahiers du Laboratoire Leibniz n° 81.

  • Lakatos, I. (1976). Proof and refutations. Cambridge: Cambridge University Press.

    Google Scholar 

  • Luengo, V. (1999). Cooperative agents to learn mathematical proof. In: P. Kommers, & G. Richards (Eds.), Proceedings of world conference on educational multimedia, hypermedia and telecommunications (p 1632). Chesapeake, VA: AACE.

    Google Scholar 

  • Matsuda, N., & Okamoto, T. (1998). Diagramatic reasoning for geometry ITS to teach auxiliary line constuction problems. In Proc. of the international conference on intelligent tutoring systems (pp. 244–253). Berlin: Springer.

  • Moschkovich, J. (2004). Appropriating mathematical practices: a case study of learning to use and explore functions through interaction with a tutor. Educational Studies in Mathematics, 55, 49–80.

    Article  Google Scholar 

  • Rabardel, P. (2001). Instrument mediated activity in situations. In: Blandford A., Vanderdonckt J., Gray P. (eds.), People and computers XV—interactions without frontiers (pp. 17–30). Berlin: Springer-Verlag.

    Google Scholar 

  • Richard, P. R. (2004a). Modélisation du comportement en situation de validation. Berne: Peter Lang.

    Google Scholar 

  • Richard, P. R. (2004b). L’inférence figurale: un pas de raisonnement discursivo-graphique. Educational Studies in Mathematics, 57(2), 229–263.

    Article  Google Scholar 

  • Schoenfeld, A. H. (1985). Mathematical problem solving. Orlando: Academic Press.

    Google Scholar 

  • ScreenFlash (2002). Retrieved at http:// www.unflash.com.

  • Webber, C., Bergia, L., Pesty, S., & Balacheff, N. (2002). The Baghera project: a multi-agent architecture for human learning. In Proceedings of the workshop multi-agent architectures for distributed learning environments (AIED2001) (pp. 12–17). San Antonio.

  • Winston, P. H. (1992). Artifical intelligence. New York: Addison Wesley.

    Google Scholar 

Download references

Acknowledgements

The authors are indebted to the editors and the anonymous reviewers for their helpful comments. Dr. Pedro Cobo has contributed to the development of this research thanks to a study license granted by Departament d’Ensenyament de la Generalitat de Catalunya (DOGC núm. 3926 of the 2003-07-16).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josep M. Fortuny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cobo, P., Fortuny, J.M., Puertas, E. et al. AgentGeom: a multiagent system for pedagogical support in geometric proof problems. Int J Comput Math Learning 12, 57–79 (2007). https://doi.org/10.1007/s10758-007-9111-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-007-9111-5

Keywords

Navigation