Skip to main content
Log in

Computational Construction as a Means to Coordinate Representations of Infinity

  • Published:
International Journal of Computers for Mathematical Learning Aims and scope Submit manuscript

Abstract

In this paper, we describe a design experiment aimed at helping students to explore and develop concepts of infinite processes and objects. Our approach is based on the design and development of a computational microworld, which afforded students the means to construct a range of representational models (symbolic, visual and numeric) of infinity-related objects (infinite sequences, in particular). We present episodes based on four students’ activities, seeking to illustrate how the available tools mediated students’ understandings of the infinite in rich ways, allowing them to discriminate subtle process-oriented features of infinite processes. We claim that the microworld supported students in the coordination of hitherto unconnected or conflicting intuitions concerning infinity, based on a constructive articulation of different representational forms we name as ‘representational moderation’.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The best-known theory is Robinson’s semantic model, which extends the set of real numbers to include infinitely large and infinitesimal numbers in the set of hyperreal numbers (*R), where an infinitesimal is defined as a number smaller than every positive real number and bigger than every negative real number (Robinson 1974/1996). Other approaches include Nelson (1977)’s axiomatic Internal Set Theory.

  2. This is independent of the convergence or divergence of the series, although when there is convergence it is easier to think of the series as a “complete” object, e.g. when \( {\sum\limits_{n = 1}^\infty {\frac{1} {{2^{n} }}} } = 1 \).

  3. The study took place in Mexico, so all data was translated into English from Spanish.

  4. A Logo programming course was advertised in several schools across Mexico City. The course was free if students agreed to participate in the study that followed the course. Thus, the researcher never met beforehand any of the students, and did not chose them: these participants signed up for the Logo course and volunteered to participate in the study.

References

  • Abramovich, S., Brantlinger, A., & Norton, A. (1999). Exploring quadratic-like sequences through a tool kit approach. In G. Goodell (Ed.), Proceedings of the 11th Annual International Conference on Technology in Collegiate Mathematics. Reading, MA: Addison Wesley Longman.

    Google Scholar 

  • Balacheff, N. (1994). La transposition informatique. Note sur un nouveau problème pour la didactique. In M. Artigue, et al. (Eds.), Vingt ans de didactique des mathématiques en France (pp. 364–370). Grenoble: La Pensée Sauvage.

  • Cornu, B. (1986). Les Principaux Obstacles à l’Apprentissage de la Notion de Limite. Bulletin IREM-APMEP de Grenoble.

  • Cornu, B. (1991). Limits. In D. O. Tall (Ed.), Advanced mathematical thinking (pp. 153-166). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Cuoco, A., & Goldenberg, P. (1992). Mathematical induction in a visual context. Interactive Learning Environments, 2(3–4), 181–203.

    Article  Google Scholar 

  • diSessa, A. (2000). Changing minds: Computers, learning, and literacy. Cambridge, MA.: MIT Press.

    Google Scholar 

  • Dreyfus, T., & Eisenberg, T. (1990). On difficulties with diagrams: Theoretical issues. In G. Booker, P. Cobb, & T. N. De Mendicuti (Eds.), Proceedings of the 14th International Conference on the Psychology of Mathematics Education (Vol. 1, pp. 27-31). Mexico.

  • Dugdale, S. (1998). A spreadsheet investigation of sequences and series for middle grades through precalculus. Journal of Computers in Mathematics and Science Teaching, 17(2–3), 203–222.

    Google Scholar 

  • Duval, R. (1999). Representations, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for learning. In F. Hitt & M. Santos (Eds.), Proceedings 21st Conference of the North American Chapter of the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 3–26). Columbus, Ohio: ERIC Clearinghouse for Science, Mathematics, & Environmental Education.

  • Edwards, L. (1998). Embodying mathematics and science: Microworlds as representations. The Journal of Mathematical Behavior, 17, 53–78.

    Article  Google Scholar 

  • Espinoza, L., & Azcárate, C. (1995). A study on the secondary teaching system about the concept of limit. In Proceedings of the 19th International Conference for the Psychology of Mathematics Education (Vol. 2, pp. 11–17). Recife, Brazil.

  • Ferrari, E., Laganà, A., Luzi, E., & Trovini, E. (1995). Il Concetto di Infinito nell’ Intuizione Matematica. L’Insegnamento della Matematica e delle Scienze Integrate, Paderno, Italy, 18B(3), 211–235.

  • Fischbein, E. (1987). Intuition in science and mathematics. Dordrecht, Holland: Reidel.

    Google Scholar 

  • Fischbein, E., Tirosh, D., & Hess, P. (1979). The intuition of infinity. Educational Studies in Mathematics, 10, 3–40.

    Article  Google Scholar 

  • Galileo Galilei (1954). Dialogues concerning two new sciences (trans: Crew, H., & de Salvio, A.). New York: Dover Publications (Original work published 1638).

  • Garbin, S., & Azcárate, C. (2002). Infinito Actual e Inconsistencias: Acerca de las incoherencias en los esquemas conceptuales de alumnos de 16–17 años. Enseñanza De Las Ciencias, 20(1), 87–113.

    Google Scholar 

  • Harel, I., & Papert, S. (Eds.) (1991). Constructionism. Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

  • Harvey, B. (1997). Computer science logo style, Vols. 1–3. Cambridge, MA: MIT Press.

    Google Scholar 

  • Imaz, C. (1991). Infinitesimal models for real analysis. International Journal of Mathematical Education in Science and Technology, 22, 2.

    Google Scholar 

  • Jones, C. V. (1987). Las paradojas de Zenón y los primeros fundamentos de las matemáticas. Mathesis, 3(1), 3–14.

    Google Scholar 

  • Keisler, J. (1986). Elementary calculus: An approach using infinitesimals (2nd ed.). Boston, MA: Prindle, Weber & Schmidt. Retrieved 31 October, 2004, from http://www.math.wisc.edu/~keisler/calc.html.

  • Kissane, B. (2003). The calculator and the curriculum: The case of sequences and series. In W.-C. Yang, S.-C. Chu, T. de Alwis, & M.-G. Lee (Eds.), Proceedings of the 8th Asian Technology Conference in Mathematics: Technology Connecting Mathematics (pp. 357-366). Hsinchu, Taiwan: ATCM Inc.

    Google Scholar 

  • Lakoff, G., & Núñez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York: Basic Books.

    Google Scholar 

  • Mamona-Downs, J. (1987). Students interpretations of some concepts of mathematical analysis. Doctoral Dissertation, Faculty of Mathematical Studies, University of Southampton.

  • Monaghan, J. (2001). Young people’s ideas of infinity. Educational Studies in Mathematics, 48, 239–257.

    Article  Google Scholar 

  • Monaghan, J., Sun, S., & Tall, D. O. (1994). Construction of the limit concept with a computer algebra system. In J. P. da Ponte & J. F. Matos (Eds.), Proceedings of the 18th International Conference on the Psychology of Mathematics Education (pp. 279–286). Lisboa.

  • Moreno, L., & Waldegg, G. (1991). The conceptual evolution of actual mathematical infinity. Educational Studies in Mathematics, 22(5), 211–231.

    Google Scholar 

  • Nelson, E. (1977). Internal set theory: A new approach to nonstandard analysis. Bulletin of the American Mathematical Society, 83(6), 1165–1198.

    Google Scholar 

  • Noss, R., & Hoyles, C. (1996). Windows on mathematical meanings. Learning cultures and computers. Dordrecht: Kluwer Academic Press.

    Google Scholar 

  • Noss R., & Hoyles, C. (2006). Exploring mathematics through construction and collaboration. In K. R. Sawyer (Ed.), Cambridge handbook of the learning sciences (pp. 389–405). Cambridge: Cambridge University Press.

    Google Scholar 

  • Núñez E., R. (1993). En Deçà du Transfini. Aspects psychocognitifs sous-jacents au concept d’infini en mathématiques (Vol. 4. Fribourg, Suisse: Éditions Universitaires).

  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.

    Google Scholar 

  • Robinson, A. (1974/1996). Non-standard analysis. Revised edition. Princeton, NJ: Princeton University Press. (Original work published 1974).

  • Sacristán, A. I. (1991). Los Obstáculos de la intuición en el aprendizaje de procesos infinitos. Educación Matemática, 3(1), 5–18.

    Google Scholar 

  • Sacristán, A. I. (1997). Windows on the infinite: Creating meanings in a logo-based microworld. Doctoral Dissertation, Institute of Education, University of London, UK. Retrieved 8 December, 2007, from http://www.matedu.cinvestav.mx/∼asacristan/PhDSacristan97.pdf.

  • Schwarzenberger, R. L. E., & Tall, D. O. (1978). Conflicts in the learning of real numbers and limits. Mathematics Teaching, 82, 44–49.

    Google Scholar 

  • Sierpinska, A. (1987). Humanities students and epistemological obstacles related to limits. Educational Studies in Mathematics, 18, 371-397.

    Article  Google Scholar 

  • Sierpinska, A., & Viwegier, M. (1989). How and when attitudes towards mathematics and infinity become constituted into obstacles in students? In Proceedings of the 13th International Conference on the Psychology of Mathematics Education (Vol. 3, pp. 166–173). Paris, France.

  • Struik, D. J. (1967). A concise history of mathematics. New York: Dover Publications.

    Google Scholar 

  • Tall, D. O. (1980). The notion of infinite measuring number and its relevance in the intuition of infinity. Educational Studies in Mathematics, 11, 271–284.

    Article  Google Scholar 

  • Tall, D. O. (1986). Building and testing a cognitive approach to the calculus using interactive computer graphics. Doctoral dissertation. University of Warwick, UK.

  • Tall, D. (2001). Natural and formal infinities. Educational Studies in Mathematics, 48, 199-238.

    Article  Google Scholar 

  • Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference to limits and continuity. Educational Studies in Mathematics, 12, 151–169.

    Article  Google Scholar 

  • Tirosh, D., & Tsamir, P. (1996). The role of representations in students’ intuitive thinking about infinity. International Journal of Mathematics Education in Science and Technology, 27(1), 33–40.

    Article  Google Scholar 

  • Tsamir, P. (1999). The transition from the comparison of finite to the comparison of infinite sets: Teaching prospective teachers. Educational Studies in Mathematics, 38(1–3), 209–234.

    Article  Google Scholar 

  • Tsamir, P. (2001). When ‘The Same’ is not perceived as such: The case of infinite sets. Educational Studies in Mathematics, 48, 289–307.

    Article  Google Scholar 

  • Waldegg, G. (1987). Esquemas de Respuesta ante el Infinito Matemático. Transferencia de la Operatividad de lo Finito a lo Infinito. Doctoral dissertation. Centre for Research and Advanced Studies, Mexico.

  • Waldegg, G. (1993). La comparaison des ensembles infinis: un cas de résistance à l’instruction. Annales de Didactique et de Sciences cognitives, 5, 19–36.

    Google Scholar 

  • Wilensky, U. (1991). Abstract meditations on the concrete, and concrete implications for mathematics education. In I. Harel & S. Papert (Eds.), Constructionism (pp. 193–204). Norwood, NJ: Ablex Publishing Corporation.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana Isabel Sacristán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sacristán, A.I., Noss, R. Computational Construction as a Means to Coordinate Representations of Infinity. Int J Comput Math Learning 13, 47–70 (2008). https://doi.org/10.1007/s10758-008-9127-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-008-9127-5

Keywords

Navigation