Skip to main content

Advertisement

Log in

Flipped Classroom Versus Traditional Textbook Instruction: Assessing Accuracy and Mental Effort at Different Levels of Mathematical Complexity

  • Original research
  • Published:
Technology, Knowledge and Learning Aims and scope Submit manuscript

Abstract

Flipped classrooms are an instructional technology trend mostly incorporated in higher education settings, with growing prominence in high school and middle school (Tucker in Leveraging the power of technology to create student-centered classrooms. Corwin, Thousand Oaks, 2012). Flipped classrooms are meant to effectively combine traditional and online education by utilizing both in and out-of-class time. Despite positively reported implications of the flipped classroom instructional strategy, there is a deep shortage of literature and data that demonstrate advantages for student learning outcomes. The purpose of this preliminary study with directions for future investigations was to examine flipped classroom instruction versus a traditional classroom; specifically, an instructional video versus traditional textbook instruction to assess accuracy and mental effort at three levels of mathematical complexity. College-level nursing students who require mathematical mastery were used as a pilot test group in anticipation that this experience could be translated for larger data sets of variable age groups. Results indicated that accuracy increased and mental effort decreased with flipped instruction. Using Sweller’s cognitive load theory and Mayer’s cognitive theory of multimedia learning as theoretical frameworks, this study lends insight into designing effective instruction for learning environments that could benefit from a flipped classroom framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Atkinson, R. K. (2005). Multimedia learning in mathematics. In R. E. Mayer (Ed.), Cambridge handbook of multimedia learning (pp. 393–408). New York: Cambridge University Press.

    Chapter  Google Scholar 

  • Austin, K. A. (2009). Multimedia learning: Cognitive individual differences and display design techniques predict transfer learning with multimedia learning modules. Computers and Education, 53, 1339–1354.

    Article  Google Scholar 

  • Baddeley, A. D., & Hitch, G. J. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation: Advances in research and theory (Vol. 8, pp. 47–89). New York: Academic Press.

    Google Scholar 

  • Beckmann, J. F. (2010). Taming a beast of burden—On some issues with the conceptualisation and operationalisation of cognitive load. Learning and Instruction, 20, 250–264.

    Article  Google Scholar 

  • Berrett, D. (2012). How “flipping” the classroom can improve the traditional lecture. The Chronicle of Higher Education. Feb 19, 2012. https://chronicle.com/article/How-Flipping-the-Classroom/130857/.

  • Brown, D. L. (2006). Can you do the math? Mathematic competencies of baccalaureate degree nursing students. Nurse Educator, 31, 98–100.

    Article  Google Scholar 

  • Bull, H. (2009). Identifying maths anxiety in student nurses and focusing remedial work. Journal of Further and Higher Education, 33(1), 71–81.

    Article  Google Scholar 

  • Chi, M. T. H., & Glaser, R. (1985). Problem solving ability. In R. J. Sternberg (Ed.), Human abilities: An information processing approach (pp. 227–250). San Francisco: Freeman.

    Google Scholar 

  • Chi, M. T., Leeuw, N., Chiu, M. H., & LaVancher, C. (1994). Eliciting self-explanations improves understanding. Cognitive Science, 18(3), 439–477.

    Google Scholar 

  • Clark, R. C., & Mayer, R. E. (2011). E-Learning and the science of instruction: Proven guidelines for consumers and designers of multimedia learning (3rd ed.). San Francisco, CA: Wiley.

    Book  Google Scholar 

  • Clark, R. C., Nguyen, F., & Sweller, J. (2006). Efficiency in learning: Evidence-based guidelines to manage cognitive load (p. 27). San Francisco, CA: Wiley.

  • Cooper, G., & Sweller, J. (1987). The effects of schema acquisition and rule automation on mathematical problem-solving transfer. Journal of Educational Psychology, 79(347), 362.

    Google Scholar 

  • Costello, M. (2010). A comparison of three educational strategies for the acquisition of medication calculation skills among baccalaureate nursing students. Ph.D., Simmons College.

  • Daniel, R. C., & Embretson, S. E. (2010). Designing cognitive complexity in mathematical problem-solving items. Applied Psychological Measurement, 34, 348–364.

    Article  Google Scholar 

  • Demetry, C. (2010). Work in progressAn innovation merging “classroom flip” and team-based learning. Frontiers in Education Conference (FIE), 2010 IEEE. 27–30 Oct 2010, Washington, DC. doi:10.1109/FIE.2010.5673617.

  • Elliott, M., & Joyce, J. (2004). Mapping drug calculation skills in an undergraduate nursing curriculum. Nurse Education in Practice, 5, 225–229.

    Article  Google Scholar 

  • Fischer, G. H. (1995). The linear logistic test model: Foundations, recent developments, and applications (pp. 131–155). New York: Springer.

  • Foshay, W. R., & Silber, K. H. (2009). Handbook of improving performance in the workplace, instructional design and training delivery (1st ed.). San Francisco, CA: Wiley.

    Google Scholar 

  • Funkhouser, C., & Dennis, J. (1992). The effects of problem-solving software on problem-solving ability. Journal of Research on Computing in Education, 24, 338–347.

    Google Scholar 

  • Garnham, C., & Kaleta, R. (2002). Introduction to hybrid courses. Mar, 8. Learning Technology Center, University of Wisconsin-Milwaukee.

  • Garrison, D. R., & Kanuka, H. (2004). Blended learning: Uncovering its transformative potential in higher education. The Internet and Higher Education, 7, 95–105.

    Article  Google Scholar 

  • Gillham, D., & Chu, S. (1995). An analysis of student nurses’ medication calculation errors. Contemporary Nurses, 4, 61–64.

    Article  Google Scholar 

  • Ginns, P. (2005). Meta-analysis of the modality effect. Learning and Instruction, 15, 313–331.

    Article  Google Scholar 

  • Goldberg, M., Harvey, J. (1983). A nation at risk: The report of the national commission on excellence in education. Phi Delta Kappan, 14–18.

  • Halford, G. S., Baker, R., McCredden, J. E., & Bain, J. D. (2005). How many variables can humans process. Psychological Science, 16, 70–76.

    Article  Google Scholar 

  • Harrell, B. M. (1987). Comparing the effect upon students who are taught nursing math in the classroom with students who do not experience the nursing math course. RIE(Jan), 32.

  • Hodge, J. E. (2002). The effect of math anxiety, math self-efficacy, and computer assisted instruction on the ability of undergraduate nursing students to calculate drug dosages. Dissertation, West Virginia University.

  • Jan, S., & Rodrigues, S. (2012). Students' difficulties in comprehending mathematical word problems in language learning contexts. International Researchers.

  • Jeung, H. J., Chandler, P., & Sweller, J. (1997). The role of visual indicators in dual sensory mode instruction. Educational Psychology, 17, 329–343.

    Article  Google Scholar 

  • Johar, A. R., & Arrifin, S. R. (2001). Issues in measurement and evaluation in education. Bangi: University Kebangsaan Malaysia.

    Google Scholar 

  • Keller, W. R. (1939). The relative contribution of certain factors to individual differences in algebraic problem solving ability. The Journal of Experimental Education, 8, 26–35.

    Article  Google Scholar 

  • Leahy, W., & Sweller, J. (2011). Cognitive load theory, modality of presentation and the transient information effect. Applied Cognitive Psychology, 25(6), 943–951.

  • Mayer, R. E. (1985). Implications of cognitive psychology for instruction in mathematical problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple research perspectives (pp. 123–138). Hillsdale, NJ: Erlbaum Associates.

    Google Scholar 

  • Mayer, R. E. (2005a). Multimedia learning: Guiding visuospatial thinking with instructional animation. In P. Shah & A. Miayke (Eds.), The Cambridge handbook of visuospatial thinking. New York: Cambridge University Press.

    Google Scholar 

  • Mayer, R. E. (2005b). Principles for managing essential processing in multimedia learning: Segmenting, pretraining, and modality principles. In R. Mayer (Ed.), The Cambridge handbook of multimedia learning (pp. 169–182). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Mayer, R. E. (Ed.). (2009). Multimedia learning. Cambridge: Cambridge University Press.

    Google Scholar 

  • McLeod, J., Fisher, J., & Hoover, G. (2003). Key elements of classroom management: Managing time and space, student behavior, and instructional strategies. Alexandria, VA: ASCD.

    Google Scholar 

  • Melius, J. (2012). Math anxiety and mathematics self-efficacy in relation to medication calculation performance in nurses. Dissertation, University of North Texas.

  • Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychological Review, 63, 81–97.

    Article  Google Scholar 

  • Moreno, R. (2006). Does the modality principle hold for different media? A test of the method-affects-learning hypothesis. Journal of Computer Assisted learning, 22, 149–158.

    Article  Google Scholar 

  • Moreno, R., & Mayer, R. E. (1999). Cognitive principles of multimedia learning: The role of modality and contiguity. Journal of Educational Psychology, 91, 358–368.

    Article  Google Scholar 

  • Morris, S. (2010). A comparison of learning outcomes in a traditional lecture-based versus blended course module using a business simulation with high cognitive load. Dissertation, University of San Francisco, CA.

  • Mousavi, S. Y., Low, R., & Sweller, J. (1995). Reduction cognitive load by mixing auditor and visual presentation modes. Journal of Educational Psychology, 87, 319–334.

    Article  Google Scholar 

  • NAEP. (2009). Nation’s Report Card. Retrieved Mar 15, 2010. http://nces.ed.gov/nationsreportcard/mathematics.

  • NCTM (2010). Overview: Standards for School Mathematics. Problem Solving. Retrieved Sept 7, 2010. http://standards.nctm.org/document/chapter3/prob.htm.

  • Paas, F. (1992). Training strategies for attaining transfer of problem-solving skills in statistics: A cognitive load approach. Journal of Educational Psychology, 84, 429–434.

    Article  Google Scholar 

  • Paas, F., & van Merrienboër, J. J. (1993). The efficiency of instructional conditions: An approach to combine perceived mental effort and performance measures. Human Factors, 35, 737–743.

    Google Scholar 

  • Paas, F., & van Merrienboër, J. J. (1994a). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6, 51–71.

    Article  Google Scholar 

  • Paas, F., & van Merrienboër, J. J. (1994b). Variability of worked examples and transfer of geometrical problem-solving skills: A cognitive load approach. Journal of Educational Psychology, 86, 122–133.

    Article  Google Scholar 

  • Paas, F., Renkl, A., & Sweller, J. (2003). Cognitive load theory and instructional design: Recent developments. Educational Psychologist, 38, 1–4.

    Article  Google Scholar 

  • Paivio, A. (1986). Mental representations: A dual coding approach. Oxford: Oxford University Press.

    Google Scholar 

  • Palumbo, D. (1990). Programming language/problem-solving research: A review of relevant issues. Review of Educational Research, 60, 65–89.

    Article  Google Scholar 

  • Park, B., Moreno, R., Seufert, T., & Brünken, R. (2010). Does cognitive load moderate the seductive details effect? A multimedia study. Paper presented at the American Educational Research Association Conference, Denver, CO.

  • Schnotz, W. (2011). Colorful bouquets in multimedia research: A closer look at the modality effect. Zeitschrift fur Padagogische Psychologie, 25, 269–276.

    Article  Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Article  Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4, 295–312.

    Article  Google Scholar 

  • Sweller, J., & Cooper, G. A. (1985). The use of worked examples as a substitute for problem solving in learning algebra. Cognitive and Instruction, 2, 59–89.

    Article  Google Scholar 

  • Tabbers, H. K., Martens, R. L., & van Merrienboër, J. J. G. (2004). Multimedia instructions and cognitive load theory: Effects of modality and cueing. British Journal of Educational Psychology, 74, 71–81.

    Article  Google Scholar 

  • Tindall-Ford, S., Chandler, P., & Sweller, J. (1997). When two sensory modes are better than one. Journal of Experimental Psychology: Applied, 3, 257–287.

    Google Scholar 

  • Tucker, C. R. (2012). Blended learning in grades 4–12: Leveraging the power of technology to create student-centered classrooms. Thousand Oaks, CA: Corwin.

    Google Scholar 

  • Walsh, K. A. (2008). The relationship among mathematics anxiety, beliefs about mathematics, mathematics self-efficacy, and mathematics performance in associate degree nursing students. Nursing Education Perspectives, 29(4), 226–229.

    Google Scholar 

  • Wong, A., Leahy, W., Marcus, N., & Sweller, J. (2012). Cognitive load theory, the transient information effect and e-learning. Learning and Instruction, 22, 449–457.

    Article  Google Scholar 

  • Young, J. R. (2002). “Hybrid” teaching seeks to end the divide between traditional and online instruction. Chronicle of Higher Education, 48(28), A33–A34.

    Google Scholar 

  • Zakaria, M. J. (2002). Relationship between learning approach and problem solving on the topic of fraction. Malaysia: Universiti Kebangsaan Mayalasia.

    Google Scholar 

  • Zakaria, E., & Yusoff, N. (2009). Attitudes and problem-solving skills in algebra among Malaysian matriculation college students. European Journal of Social Sciences, 8, 232–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina V. Mattis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattis, K.V. Flipped Classroom Versus Traditional Textbook Instruction: Assessing Accuracy and Mental Effort at Different Levels of Mathematical Complexity. Tech Know Learn 20, 231–248 (2015). https://doi.org/10.1007/s10758-014-9238-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10758-014-9238-0

Keywords

Navigation