N
N

N

HAL

open science

Register Saturation in Instruction Level Parallelism
Sid Touati

» To cite this version:

Sid Touati. Register Saturation in Instruction Level Parallelism. International Journal of Parallel
Programming, 2005, 33 (4), pp.393-449. 10.1007/s10766-005-6466-x . hal-00130633

HAL Id: hal-00130633
https://hal.science/hal-00130633

Submitted on 28 Sep 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00130633
https://hal.archives-ouvertes.fr

Register Saturation in Instruction Level Parallelism

Sid-Ahmed-Ali TOUATI
University of Versailles, PRiSM laboratory, France
touati @rismuvsqg.fr

Abstract

The registers constraints are usually taken into accouminduthe scheduling pass of an acyclic data dependence graph
(DAG): any schedule of the instructions inside a basic blocdist bound the register requirement under a certain linmitthis
work, we show how to handle the register pressure beforentetiction scheduling of a DAG. We mathematically study an
approach which consists in managing the exact upper-bodititkoregister need for all the valid schedules of a considere
DAG, independently of the functional unit constraints. \Ak this computed limit the register saturation (RS) of tha@®@

Its aim is to detect possible obsolete register constraints, when RS does not exceed the number of availableeegist

If it does, we add some serial edges to the original DAG suahttie worst register need does not exceed the number of
available registers. We propose an appropriate matherabficmalism for this problem. Our generic processor moa&ks

into account superscalar, VLIW and EPIC/IA64 architectur®ur deeper analysis of the problem and our formal methods
enable us to provide nearly optimal heuristics and stragsdor register optimization in the face of ILP.

Keywords Register Requirement, Register Pressure, Instructioelllarallelism, Integer Linear Programming, Optimiz-
ing Compilation.

1 Introduction

The introduction of instruction level parallelism (ILP)$ieendered the classical techniques of register allocébiose-
guential code semantics inadequate. In [16], the authawesth that there is a phase ordering problem between cléssica
register allocation techniques and ILP instruction scliadu If a classical register allocation is done early, theaduced
false dependences inhibit instruction scheduling fromaeting a schedule with high amount of ILP. However, thisaon
sion does not prevent a compiler from effectively perforgwam early register allocation, with the condition that theaator
is sensitive to the scheduler, as done in [2, 18, 20, 23, 75, 26

Some other studies [5, 8, 16, 24, 28] claim that it is bettesdimbine instruction scheduling and register allocatioa in
single complex pass, arguing that applying each methodatghahas a negative influence on the efficiency of the other.
However, we think that this phase ordering problem arisdyg ibtthe applied first pass (ILP scheduler or register altocp
is “selfish”. Indeed, we can effectively decouple registemstraints from instruction scheduling if enough care keta In
this paper, we show how we can treat register constraints®esttheduling, and we explain why we think that our methods
provide better techniques than the existing solutions.

The principal reason for handling register constraintobefnstruction scheduling is that register allocation @renim-
portant as an optimization issue than code scheduling.ig hiscause performance is far more sensitive to memory seses
than to fine-grain scheduling (memory gap): a cache miss miapit the processor from achieving a high dynamic ILP,
even if the scheduler has extracted it at compile time. Eiamiexpect spill code to exhibit high locality, and hencehk
produces cache hits, this cannot be asserted at compileltilsesery hard for a compiler to guarantee the existenceavé d
inside a memory hierarchy level. Consequently, it is diffibtmreally guarantee the latency of a memory operation atgite
time. So, the schedule of the instructions computed by tihgpder wouldn’t act in harmony with the dynamic execution of

[Register Saturation Computation }

——

[Register Saturation Reductio@

Figure 1. Early Register Pressure Management

the hardware. The authors in [15] relate that about 66% oliegipn execution times are spent satisfying memory retgie
Furthermore, memory requests exhibit a high potential tmflicts, even if they are data independent. These confliets a
due to micro-architectural restrictions and simplificagon the memory disambiguation mechanisms (load/storeeg)end
possible banking structure in cache levels [21]. Theseiplessonflicts may cause severe performance degradatianieve
the presence of high levels of ILP, and even if the data istéatan the cache [22]. Of course, our claim that spill code is
more damaging than a weak static ILP extraction is more apjat for those architectures where memory access laisncy
very long compared to the delay of calculation. This is theeda almost all high performance processors. If memoryssce
delay is not critical, the register saturation concept maybeless.

Another reason for handling register constraints priorltB kcheduling is that register constraints are much more-com
plex than resource constraints. Scheduling under resagustraints is a performance issue. Given a data dependence
graph (DDG), we are sure to find at least one valid schedularigrunderlying hardware properties (a sequential schedule
in extreme casd,e., no ILP). However, scheduling a DDG with a limited number egisters is more complex. Unless we
generate superscalar codes with sequential semanticsanvetguarantee in the case of VLIW the existence of at least
one schedule. In some cases, we must introduce spill codéemze we change the problem (the input DDG). Also, a
combined pass of scheduling with register allocation presan important drawback if not enough registers are availa
During scheduling, we may need to insert load-store opatatif not enough free registers exist. We cannot guarahiee t
existence of a valid issue time for these introduced memecegsses in already scheduled code; resource or data degende
constraints may prohibit all possible issue slots insigesttheduled code. This fact forces an iterative processheitsding
followed by spilling until reaching a solution. Even if wercaxperimentally reduce the backtracking as in [31], tlasaitive
aspect adds a high algorithmic complexity factor to a pategnating both register allocation and scheduling. As fawe
know, there is no formal solution that effectively solvesthroblem.

The above arguments suggest that we consider new ways odffiareljister pressure before starting the scheduling pro-
cess. The scheduler should be freed from register conttisirthat the schedule does not suffer from excessiveigatiah.
This article synthesizes our contributions from [29, 30]e Budy the concept of register saturation (RS), which preve
DAG from producing an excessive number of simultaneouskyVialues for all the valid schedules. Our pre-pass analyzes
DAG (with respect to control flow) to deduce the maximum regiseed among all schedules. We call this limit tbgister
saturation(RS), because the register need can reach this limit butrexeeed it. If RS exceeds the number of available
registers, we introduce new edges in the DAG to reduce RSluagrated in Figure 1. In this paper, we give some theoret-
ical results on RS and provide exact (optimal) and approteémaethods for the problems of computing and reducing RS.
After our RS analysis pass, the DAG is free from register trairsts and can be sent to the scheduler and the registeatiio

This article is organized as follows. Section 2 presentsAG and processor model which can be used for most of
existing ILP architectures (superscalar, VLIW, EPIC/IA68ection 3 provides some theoretical results on comptiiadRS
that prove the NP-completeness of this problem. Sectioredgmts an algorithmic heuristics for computing RS. Conmguti

the optimal RS by integer linear programming (intLP) is givie Section 5. Our intLP formulation use the linear writiniy o
logical formulas >, <>, V) and the max operaton{ax(x,y)) by introducing extra binary variables. If the RS exceeds
the number of available registers, RS must be reduced. de6tiproves that this problem is NP-hard. An algorithmic
heuristics for reducing RS is given in Section 7 and an exatitm@l solution is presented in Section 8. Section 9 preseunt
large range of experiments, which show that our heuristieshaarly optimal in practice. Before concluding, in Seatid

we discuss why the RS concept is a better way to handle registestraints prior to ILP scheduling compared to register
minimization. To enhance readability, only the most impattformal proofs are presented in this paper. The complete
theoretical proofs are provided in the cited references.

2 DAG and Processor Model

ADAG G = (V, E,) in our study represents the data dependences between tia¢iopgand any other serial constraints.
Each operatiom has a strictly positive latendy:t(«). The DAG is defined by its set of nodes (operatidris)ts set of edges
(data dependences and serial constraibts) {(u, v)| u,v € V}, andd such that(e) is the latency of the edgein terms
of processor clock cycles. We assume that the initial DAGa&ios only edges with positive latencies. This assumpson i
useful for some formal proofs. However, we will see in latect®ons (when reducing RS) that we can insert new edges with
non-positive latencies.

A scheduler of G is a function which gives an integer execution (issue) tioreshch operation:

oisvalid <= Ve = (u,v) € E, o(v) —o(u) > d(e)

The set of all valid acyclic schedules of G is denoted1§y+).

To simplify the writing of some mathematical formulas, we@se that the DAG has one sourcde) @nd one sink ().
If not, we introduce two fictitious nod€s, 1) representing nops (evicted at the end of the RS analysis)adilex virtual
serial edge:; = (T, s) to each source with(e;) = 0, and an edges; = (¢, L) from each sink with the latency of the sink
operationd(es) = lat(t). The total schedule time of a schedule is th&n). The null latency of an added edgeis not
inconsistent with our assumption that latencies must hetlgtpositive because the added virtual serial edges derist
in the original DAG. Furthermore, we can avoid introducihgse virtual nodes without any impact on our theoreticalystu
since their purpose is only to simplify some mathematicakesgsions.

We consider a target RISC-style architecture with multiglgister types, wheré denotes the set of register types (for
instance,7 = {int, float}). We differentiate between statements and precedencérams, based on whether they refer
to values to be stored in registers or not.

e Vi C V is the set of statements (operations) which define values &idsed in registers of typee 7. We simply
call such statementsalues We assume that each statemerg V5 ; writes into at most one register of a type 7.
Statements which define multiple values with different sypee accepted in our model if they do not define more than
one value of a single type. We denoteddythe value of type defined by the operatiomn.

e . C Eisthe set of data flow dependence edges through a value of tyf¥e. We call thenflow edges.

e Allthe edges inE — Er ., i.e. edges which are not data flow dependences, are csdieal edges.

Basically, there are three types of ILP codes : superscéldyV and EPIC. Superscalar codes can be simply considered
as linear sequential programs. Even if the compiler try toegate efficient superscalar codes, the processor is tlygieni
responsible for dynamically extracting ILP at executiondi So, code generation for such ILP codes write sequemted,o
as if they would be executed by a sequential processor. HaweiZIW codes contain information about parallel operatio
The compiler has the task of statically extracting ILP anehtigenerating the code by compacting the parallel opemation
into Very Long Instructions WordsThe processor executes such instructions (containing nmalependent operations) se-
guentially. So, the compiler has the complete control oftjxeamic execution of VLIW codes (except dynamic eventshsuc
as cache misses, exceptions, etc.). EPIC codes have a ganthat may be considered as a mixture between VLIW and
superscalar: while the compiler include information abihir in the code, the processor can use such ILP information at
execution time, or can simply execute sequentially the ranog From the compiler point of view, an EPIC processor can be
viewed as a sequential (superscalar) or as VLIW processor.

fload [i1], fRa

fload [i2], fRs

fload [i3], fRe

frult fR,, fRy,, fRa
imultadd fR,, fRp, fRec, iRe
ftoint fR., iRy

iadd iR,, 4, iR;
frultaddsetz fRy,, iR;, fRe,
fdiv fRd, iRe, th

gs? faddsetbnz fR;, 1, fR;,
grlg; ? fsub fRy, 1, fRy

O hTQ M OO0 T
PN NN NN N N R

=

(a) code before scheduling and register allocation (b) the DDGG () PK(G)

Figure 2. DAG Model

To accommodate static issue VLIW and EPIC/IA64 processovghich the hardware pipeline steps are visible to com-
pilers (we allow for dynamically scheduled superscalarcpssors as well), we assume that reading from and writirg int
a register may be delayed from the beginning of the schedule, tand these delays are visible to the compiler (archi-
tecturally visible). We define two delay (offset) functiofis; andd,, . in which: the read cycle of’ from a register of
typet is o(u) + &,+(u), and the write cycle of.’ into a register of typée is o(u) + d,+(u). By definition, we have
Ore(u) < i (u) < lat(u). Forinstance, according to superscalar and EPIC/IA64 sedeanticsy, , andd,, ; are equal
to zero. This is because, according to the semantics proagiehe vendors, such codes can be considered as sequential
(linear). Any register written by operatianat time slotc in the code, that register is assumed as busy at the progrigpo
(no delay is architecturally visible). The same remark kaldhen reading from registers.

Figure 2.b gives the DAG that we use in this paper construitted the code of part (a). In this example, we focus on
the floating point registers: the values and flow edges asstitited by bold lines. We assume for instance that each read
occurs exactly at the schedule time and each write at thedireadution stepd.(v) = 0, d,,(u) = lat(u) — 1). The nodes
with non-bold lines are any other operations that do noteairito registers (as stores), or write into registers of unsiered
types. The edges with non-bold lines represent the precedsonstraints that are not flow dependences through regjiste
such as data dependences through memory, or through rsgi$tenconsidered types, or any other serial constraints.

Notation and Definitions on DAGs

In this paper, we use the following notations for a given DAG= (V, E) (as those usually used in lattices and orders
algebra):

e I'f(u) = {v € V|(u,v) € E} successors af in the graphG;

o I'.(u) = {v e V|(v,u) € E'} predecessors af in the graphG;

o Ve = (u,v) € E source(e) =u Atarget(e) = v. u,v are callecendpoints
e Vu,v €V : u<wv<= Japath(u,...,v)inG,

o Vu,v €V : ullv <= —(u < v) A—=(v <u). vwandv are said to bparallel;

e VueV Tu={veVjp=uVv<u}u'sascendantsincluding In other terms, a nodeis an ascendant of a node
v iff uw = v orif there exists a path from to v;

evVueV | u={veVv=uVu<v}u'sdescendants including In other terms, a node is a descendant of a
nodev iff uw = v or if there exists a path fromto u;

e two edgeg, ¢’ areadjacentff they share an endpoint;

e A C V is an antichain iff all nodes belonging th are parallel. Formallyd C V is an antichain irGG iff Yu,v €
A, ullv;

e AM is amaximalantichain iff its size in terms of number of nodes is maxinfrarmally, AM is amaximalantichain
VA antichain inG, |A] < |AM];

o theextendedAG G\E' of G generated by the edges g8t C V2 is the DAG obtained frond’ after adding the edges
in /. As a consequence, any valid schedulé&6fs necessarily a valid schedule f6t

¢ =G\F = (G C3(G)

e an extended graph has a similar definition as above, but dgtisastricted to be a DAG;

o letl; = [a1,b1] € Nandl, = [ag, b2] C N be two integer intervals. We say thatis beforel,, noted byl; < I, iff
b1 < as. We say thatl; finishesls iff b; = bo.

3 Some Theoretical Results on Computing Register Saturatio

In this section, we study some formal properties of regis&turation in order to help us compute it algorithmicallgr F
clarity and without loss of generality, let us focus on a &nggister type. Accordingly, our notation beconiés for the
set of values of the implicit type we considéiy, for the set of flow edges through a register of that type, &nandd,, for
reading/writing delays. Also, we use the notatiofor both the operatiom and the value it produces.

3.1 Register Need of a Schedule

Given a DAGG = (V, E, ¢), avalueu € Vj is alive from the point just after the writing clock cycle ofuntil the point
of its last use (consumption). Values which are not read ior are still alive when exiting the DAG are assumed to be kept
in registers as exit values. We model these exit values bgidering that the bottom node consumes them. We define the
set of consumers for each values Vi as:

[{veV|(u,v) € Eg} if 3(u,v) € Eg
Cons(u) = { i otherwise

Given a schedule € X(G), the last consumption of a value is called the killing daté aated :

Vu € Vg, kill,(u) = max (o(v) + 6.(v))

veCons(u)

All the consumers of; whose reading time is equal to the killing datewoére called the killers ofi*. We assume that a
value written at instantin a register is available one step later. That is to say, éraffonu reads from a register at instant
7 while operationw is writing in the same register at the same timejoes not get’s result but, gets the value previously
stored in the register. Then, thtetime interval LT, (v) of a valueu according tar is o (u) + 6., (u), kill,(u)]. Thisinterval
is left-open by convention only and can be changed withoyttansequence on our mathematical study.

Given the lifetime intervals of all the values, the registeed ofs is the maximum number of values simultaneously alive:

RN’ (G) = Ogrg?&) [vsae (7))

wherevsa, (i) = {u € Vg|i € LT,(u)} is the set of values alive at time stepA maximal set of values simultaneously
alive are callecexcessive valuedn other terms, if the register need at time sidp maximal, then all the values alive at
this time step are called excessive values. Figure 3 is amebeeof a valid schedule for the previous DAG that needs three
FP registers. The bars represent the lifetime intervfds.f} are the killers ofb. {a,b,d} is a set of FP excessive values
since they are the maximum number of values simultaneolisy @f type float. 9 is a FP excessive clock cycle since at this
time there are three FP values simultaneously alive. Nateviie may have more than one set of excessive values, since the
register need may be defined with many sets of values sinadtasty alive.

Iwhile it is evident that a killer is unique in the case of lineades (superscalar), VLIW codes may leads to multipletsiper value.

. - ﬂ ffffffffffff B s the write cycle of the valu
| _LlLTe) LT

RN°(G) =3
Figure 3. Register Need of Acyclic Schedules

3.2 Register Saturation Problem

The RS is the maximal register need for all the valid schexlafehe DAG:

RS(G) = RN°(G
(@) e (@)

We callo asaturating scheduldf RN?(G) = RS(G). In this section, we study how to computes'(G). We will see that

this problem comes down to answering the questiwhith operation must kill this value’ AWhen looking for saturating
schedules, we do not worry about the total schedule time a@uis only to prove that the register need can reach the RS but
cannot exceed it. Minimizing the total schedule time is éd&®d in Section 6 when we reduce the RS. Furthermore, we wil
prove that, for the purpose of maximizing the register némuking for only one suitable killer of a value is sufficiemtther
than looking for a group of killers: for any schedule thatigss more than one killer for a valug we can build another
schedule with at least the same register need such thatahiswis killed by only one consumer. Therefore, the purpose of
this section is to select a suitable killer for each valuerifeo to saturate the register requirement.

Since we do not assume any schedule, the lifetime intervalsa defined yet, so we cannot know at which date a value is
killed. However, we can deduce which consumerS'ims(u) are impossible killers for the value If v;, v € Cons(u) and
Japath(v; - - -v2), v1 is always scheduled beforg by at leastat(v;) processor cycles. Then can never be the last reader
of u (remember our assumption of positive latencies in theahi®AG). We can consequently deduce which consumers can
“potentially” kill a value (possible killers). We denote byills(u) the set of operations which can kill a valuee Vig:

pkilla(u) = {v € Cons(u)| | v N Cons(u) = {v}}

A potential killing operation for a value is simply a consumer af that is neither a descendant nor an ascendant of another
consumer ofu. One can check that all operationsyihill;(u) are parallel inG. Any operation which does not belong to
pkillg(u) can never kill the value. The following lemma proves that for any valueand for any schedule, there exists

a potential killerv that is a killer ofu according too. Furthermore, for any potential killar of a valueu, there exists a
scheduler that makes a killer of w.

Lemma 1 Given a DAGG = (V, E,), thenVu € Vi

Vo € X(G), Fvepkillag(u): o)+ 6-(v) = kill,(u) (1)
Vo € pkillg(u), Fo € X(G): killo(u) =o(v) + §-(v) (2)

(b) G
Figure 4. Each Potential Killing Operation can Kill the Valu e
Proof:

The proof of (1) is directly derived from the definition pkill. Since
v € pkill(u) = P’ € Cons(u) v <’
then the killing date oft must be the schedule date of some operatiop&ifi (u). Let us prove that
Yu € Vg, B’ € Cons(u) — pkill(u), Jo € 2(G) : killy(u) = o(v') + 5, (V)
Suppose the converse is true.
F'" € Cons(u) — pkill(u) = v € pkill(u)]v’ <wv
Letip(v’,v) be the longest path fromf to v.
sincelp(v’,v) > lat(v') > 6, (v") = o(v) — o (v') > 6,.(v)
Sinced, (v) > 0:
o) +6,(v) — o) > 6,.(v') = a(v) + §.-(v) > a(v) + 6,.(v)

Then
killy(u) > o(v) + 0-(v) > o(v") + 6, (v)

In order to prove (2) we create an extended DAG = G\ *', for eachv € pkill(u), to enforcev to be the last
read of the value. Vv’ € pkill(u)—{v}, we add a serial edgefrom v’ to v with latencyd(e) = 6, (v") — §,-(v).
Then, any schedule € X(GY) ensuresr(v) + 6, (v) > o(v') + 6, (v") which meanskill,(u) = o(v). Let's
prove thatG¥ is still a DAG. Suppose the converse is true, Ju € Vi, Jv € pkill(u) such thaiGY is cyclic.
LetC = (v,---,v',v) be this cycle where the introduced edgéu§ v). We know that all the potential killing
operationgkill(u) of a valueu are parallel inG. However, before introducing this edge, a path= v ~» v’
means that < v’ in G which is a contradiction.

Figure 4 shows the two extended DAGs associated wiffhe original DAG is presented in Figure 4. Here, we
assume that all read delay are nelhas two potential killing operation:, i }, so we have two extended DAG:
G¥ ensures thatKkills e, andG§, that ensures that Kills e.

A potential killing DAGof G, notedPK (G) = (V, Epk), is built to model the potential killing relations betwedret
operations, (see Figure 2.c), where:
Eprx = {(u,v)|u e Vg Av € pkillg(u)}

There may be more than one operation candidate for killinglae: Next, we prove that looking for a unique suitable kille
for each value is sufficient for maximizing the register neth@ next theorem proves that for any schedule that assigns m
than one Kkiller for a value, we can build another schedulé aitleast the same register need such that this value id kille
only one consumer. Consequently, our formal study will léaka unique killer for each value instead of looking for agpo
of killers.

Theorem 1 LetG = (V, E,) be a DAG and a schedute € X(G). If there is at least one excessive value that has more
than one killer according te, then there exists another schedulec 3(G) such that:

RN (G) > RN°(G)

and each excessive value is killed by a unique killer acogrtih o'

Proof:

We suppose that there exists a scheduie ¥ (G) with at least one excessive value that has more than one kille
Jdo € 3X(G), Jue EVI(G): |killersy(u)] > 1

whereEV?(G) is a set of excessive values assumings a schedule fak. We show in this proof how to build
a new schedule’ € X(G) such thatu is killed by a unique killer an@’ needs at least as many registersras
does.

Suppose that hasj killers according tar, and we note them:
killersy(u) = {k1,....k;}

with kill,(u) = o(k1) + 6,(k1) = --- = o(k;) + 6.(k;). We choose one killer within this set to be the only
one killer ofu according tas’, sayk;. We builds’ by “shifting” down k; and all its descendants with a strictly
positive factor, say 1:

ov)+1 ifvelk

/ _
eV o(v) = { o(v) otherwise

Now, we prove that” is valid and needs at least as many registers dses, and that; is the only killer ofu

according tas’.

o' isvalid: we can easily check that any dependevice- (v1, v2) € F is satisfied by':

1. if bothvy, vy €] kq, then
o' (vg) — o' (v1) = o(va) —a(v1) > d(e)

2. inthe case where, €| k1 A vy €] ky
o' (v2) — o' (v1) = o(v2) + 1 — a(v1) > 6(e)

3. thecase of; €] k1 A vo €| k1 is impossible because the edge: (v1,v2) exists;
4. in the case where both, v, €] ki, then

o' (v2) — o' (v1) = o(v2) + 1 —o(v1) — 1> 6(e)

RN° > RN?: lett be an excessive clock cycle accordingrtd.e, a clock cycle where the excessive values
are simultaneously alive during it:

Yo e EV(Q) : te LT,(v)

=Y EEVI(GQ): o(v) +8,(v) <t < killy(v)

Here, we want to prove that these excessive values accam@ingre still alive duringt according tas’. Any
valuev € EV?(G) has the same definition datedhas ino, this is because only k; nodes have been shifted
down and :

Yo € EVI(G) —{u}: vl k

otherwiseLT, (u) < LT,(v) which is in contradiction with,, v € EV?(G). Then
Yo e EV(G): o' (v)=0cv)
However, the killing date of any excessive value EV?((G) could be increased by the translation factor 1:
Yo e EV(G): killy(v) < killy: (v)
which gives
Vo € EVO(G): o' (v) <t < killy(v)
= RN’ > |EV?(G)| = RN°(G)

ky is the unique killer of u: sincek; € pkillg(u), there is no other potential killer € pkill(u) A k # k;
such ask €] k1. Otherwisek; cannot kill w (pkill operations property). In this cas€(k) = o(k) while
o'(k1) = o(k) + 1. We conclude

Vk € pkillg(u) — {k1} o' (k1) + 6,(k1) > o' (k) + 6, (k) = killersy: (u) = {ki1}

Finally, generalizing to an arbitrary number of excessiakies likeu (those that have more than one killer and
that are simultaneously alive with) is obviously done by iteratively building new/ schedule for each of these
values. However, we must take a precaution. Indeed, if wat &t excessive valug, by shifting down one

of its killers, and then we proceed to another excessiveevajy we cannot guarantee that shifting dowsis
killer would not shift down othet;; consumers (and hencg, becomes killed by multiple consumers). To break
this recursivity, we proceed as follows. When we treat aressive value: by shifting down its killerk(v), we

add an edge to the DAG from each potential killerofexceptk(u)) to k(u). Hence, when we iterate over the
remaining excessive values, any shifting down action waiiays guarantee the existence of a unique killer for
the previously treated values. The added edges does nadirtie a cycle since they define a strict order between
the potential killing nodes.

_l

Corollary 1 GivenaDDGG = (V, E, ¢), there is always a saturating schedule @mith the property that each saturating
value has a unique killer.

Proof:

Direct consequence of Theorem 1.

@

(a) PK (G) with k (0) G, (©) DVi(G)) B(G)

Figure 5. Valid Killing Function and Bipartite Decompositi on

ﬁ@

(a) An arbitrary DAG G with a killing function (b) The extended graph associated with the killing func

Figure 6. An Example of an Invalid Killing Function

Let us begin by assumingldlling function, k&, which guarantees that an operatiog pkill;(u) is the killer ofu € Vi.
If we assume that () is the unique killer ofu € Vi, we must always verify the following assertion:

Vo € pkillg(u) — {k(u)} : o(v) + 6,(v) < o(k(u)) + 0, (k(u)) (3)

There is a family of schedules that ensures this assertionrder to define them, we extedglby new serial edges that
force all the potential killing operations of each valueo be scheduled beforg«). This leads us to define an extended
DAG associated wittk and denoted: ., = G\ “* where:

By = {e = (v, k(u)|u € Vi v € phillg(u) — {k(u)} with 6(e) = 6,(v) — 6 (k(u)) + 1}

Then, any schedule € X(G_) ensures Property 3. The necessary existence of such a $elisdfines the condition
for avalid killing function
k is a valid killing function<= G_,, is acyclic

Figure 5 gives an example of a valid killing functiénThis function is illustrated by bold edges in part (a), wheach target
of a bold edge Kkills its source. Part (b) is the DAG associatitid k.

According to our definition, invalid killing functions mayxist. Figure 6 is an example, where Part (a) illustrates an
arbitrary DAG with a killing function (the source of each Hatdge is killed by its sink). Part (b) shows that the extended
graph associated with the killing function is cyclic. Acdorg to our definition, the killing function defined in Par) fan’'t
valid.

Provided a valid killing functionk, we can deduce the values which can never be simultaneoligyfar any o €
Y(G_y). Let [r (u) =] un Vg be the set of the descendant operatiofig € V' that are values. We call thedescendant
values

Lemma 2 Given a DAGG = (V, E, §) and a valid killing functiork, then:

10

1. the descendant values/gfu) cannot be simultaneously alive with

Yu € Vg, Vo € X(G_k), Yv €lg k(u) : LTy(u) < LT,(v) 4)

2. there exists a valid schedule which makes any values asceddant ok(u) simultaneously alive with, i.e. Yu €
Vg, Jo € Z(G_p):

Yo € (U lr v’) —lrk(u): LTy(u)NLT,(v)# ¢ (5)

v’ Epkillg (u)

Proof:

A complete proof is given in [30], Appendix A, Section A.1phge 253.
|

We define a DAG which models the values that can never be simesiusly alive when assumitgaas a killing function.
Thedisjoint value DAGof G associated witht, and denotedVj, (G) = (Vr, Epv) is defined by:

Epy = {(u,v)lu,v € Vg A v ElR k(u)}

Any edge(u, v) in DV}, (G) means that’s lifetime interval is always before’s lifetime interval according to any schedule
of G_, see Figure 5.c (this DAG is simplified by transitive redan)i. This definition permits us to state Theorem 2 as
follows.

Theorem 2 Given a DAGG = (V, E, §) and a valid killing functiork, let AM), be a maximal antichain in the disjoint value
DAG DVi(G). Then:

e the register need of any schedule@f,, is always less than or equal to the size of a maximal antichmaibV}, (G).
Formally,
Vo € X(G_g), RN (G) < |AMy]|

e there is always a schedule which makes all the values in thigmal antichain simultaneously alive. Formally,

30 € X(G_r), RN(G) = |AM;|

Proof:

First property Let us begin by proving that:
Vo € X(G_y) : RN (G) < |AMy|

DV (G), the disjoint value DAG, models the order between valudilife in any schedule af_, .. The defini-
tion of the disjoint value DAG states thetr € X(G_.x), Vu,v € Vg:

u<vin DVi(G) <= u < k(u) <vin G_y
If v = k(u), theno(u) +d,(u) < o(v)+4,(v), because of true data dependence. By hypothesis on DAG model
we haved,.(v) < §,,(v), theno(u) + 6, (u) < o(v) + 6, (v). In the case where # k(u), any path fromk (u)
to v is a data dependence path with strictly positive integenieies. We deduce that:

Vo € B(G=i) o(k(u) +6r(k(w) < a(v) + 6uw(v)

11

Thatis,
killy(u) < o(v) 4 0y (v)

We deduce that the following assertion is correct:

Vo € X(G_g) u~vinDVy(G) = LT,(u)NLT,(v)=¢

We rewrite it: Vo € X(G_)

LT,(u)NLT,(v) # ¢ = ullvin DVi(G)
= {u,v} €wsa’(c),c € LT,(u) N LT,(v)

Then, any values simultaneously alive foe ¥(G_, ;) belong to an antichain iDV;,(G):
Y0 < ¢ < 7, dA an antichain oDV, (G) wvsa”(c) C A

SinceRN?(G_ 1) = maxo<c<z [vsa’ (c)| andjvsa? (c¢)| < |AMj]|, we conclude thaRN?(G) = maxo<.<z |vsa’(c)| <
|AM|.

Second PropertyNow, given a set of excessive valudd/;, we must prove that:
Jdo € ¥(G_k) : RN°(G) = |AM|

We have to build a schedutesuch thatRN? (G) = | AMy|. For this purpose, we considét_ in order to en-
sure the Killing relation, and we add some serial edges toreathe values idl M, in order to be simultaneously
alive. This leads us to a new extended DAG= Gﬂk\E' and

Vo € X(G") Yu,v € AMj, : LT,(u)N LT, (v) # ¢

A sufficient condition that two values, v in AM;, must satisfy to be simultaneously alive for any schedule of
G_is

[v <u < k(v) ANlp(v,u) > 6y (v) — 0 (u) A

A Ip(u, k() > Guy(u) — Mk(v))} (6)
v [u < v < k(u) A Ip(u,v) > Gu(w) — duw(v) A

A Ip(v, Ek(u)) > Gu(v) — 6, (k(u))} 7)
v [k(u) = k(v)} 8)

with Ip(u, v) for u,v € V denoting the longest path fromto v.
These conditions ensure thét € X(G_) Yu,v € Vg:

u,v satisfy (6) = o(u) + du(u) > o(v) + §(v)
Ao(k()) +6.(k(v)) > o(u) + 6w (u)

u,vsatisfy (7) = o(v) + 5y (v) > o(u) + dy(u)
Ao(k(u)) + 6.(k(w) > o(v) + §,(v)

u
u,v satisfy (8) = kill,(u) = kill,(v)

u,v satisfy Cond. (6) — -
u,v satisfy Cond. (7) — -
u, v satisfy Cond. (8) = LT, (u)finishesLT, (v)

12

If two values inu, v € AM;, do not satisfy any of these conditions, then we use Algorithmenforce them. This
algorithm uses the boolean functiosag- (u, v) to check if two values, v satisfy one of the above conditions.
We add iteratively serial edges until all valuesAi/;, satisfy one of these conditions. The added serial edges
do not introduce a cycle and any schedalef G’ hasRN°(G') = |AMy|. All this is proved by Lemma 3, as
follows.

Algorithm 1 Extended’_,; to enforce values to be simultaneously alive
Require: a valid killing functionk
construct the extended graph..,, associated witlk
G’ — G_, {the final extended graph is initializéd
search for a maximal antichaiM}, in the disjoint value DAGDV}(G)
forall w € AM}, do
forall v € AMy| u # v do
if —vsag(u,v) then
if u|lvin G then
if =(k(u) <wv)then
add the serial edges = (u,v),e’ = (v,k(u)) to G’ with §(e) = §,(u) — 6 (v) @andd(e’) = d,(v) —
6r(k(uw)) +1
else{—(k(v) < u) certainly}
add the serial edges = (v,u),e¢’ = (u,k(v)) to G’ with d(e) = 0 (v) — dy(u) andd(e’) = 0 (u) —
br(k(v)) +1
end if
else
if v < uthen
add the serial edges= (v,u) ande’ = (u, k(v)) to G’ with 6(e) = d,,(v) — 6y (u) andd(e’) = §y(u) —
6r(k(v)) +1
else{u < v}
add the serial edges= (u,v) ande’ = (v, k(u)) to G’ with §(e) = 6, (u) — 6 (v) @andd(e’) = 0., (v) —
O (k(u)) +1;
end if
end if
end if
end for
end for

Lemma 3 LetG = (V, E,) be a DAG. Let be a killing function and4d 1/, be a maximal antichain in the disjoint value
DAG DVj,(G). The extended grapi’ = G\ produced by Algorithm 1 has the two following properties:

1. ita DAG;
2. for any schedule of G’, the lifetime intervals of any two values belonging to theximal antichainAM,, interfere.
Formally,
Vu,v € AMy, VYo € 3(G') : LT,(u) N LT,(v) # ¢
Proof:

We proceed by induction. We prove that after exiting Algamit1, G’ is still a DAG. We also prove that the
algorithm makes all values id M, satisfying one of the conditions (6), (7) or (8). For thistlasndition, if
two values do not satisfy it in the DAG _ x, they cannot satisfy it id7’: this is because the killing operations

13

v v

@ impossible (wx. 7 impossible

(a) u <v <k(u) (b) v < u <k(v)

Figure 7. Making Values Simultaneously Alive

has been fixed it ;. So, if u,v do not satisfy Condition (8), Algorithm 1 can only force themsatisfy
Condition (6) or Condition (7).

We prove also the following property
Vu,v € AM —(k(v) <uVk(u) <v)inG
which is the same as proving that Algorithm 1 guaranteesaihatlues inA M, are forced to be simultaneously
alive inG":
Bu,v € AMy|u ~ vin DVi(G)

Initially, this is correct because, v € AM, = u €| k(v) Av €| r k(u). Inthis proof, we not&’, the graph
built after exiting iteratiori. Suppose that after exiting iteration- 1, G;_, is still a DAG and

Vu,v € AMy, = (k(v) <u V k(u) <v)inGi_,

Let u; andwv; be the two chosen values at iteratibwhich do not satisfy any of the conditions. Let us prove
now thatG’, is still a DAG and the two chosen values, v; € AM; satisfy one of the conditions after exiting
iteration:. Furthermore, we prove that after exiting this iteration

Bw € AM|k(u;) <w V k(v;) <win G,
Our algorithm introduces serial edges in four cases:

1. u;||v; in G_,, then

o if =(k(u;) < v;), the two introduced edges= (u;,v;),e’ = (v;, k(u;)) cannot introduce a cycle,
because,; < k(u;)in G}_,, see Figure 7.a. Now they are satisfying Cond. (7). Als@rafitroducing
these edges, the following property is satisfied:

Pw € AMylk(u;) <w V k(v;) <win G}
Suppose the converse is true,,
Jw € AMy|k(u;) <w V k(v;) < win G

If k(u;) < win G, = k(u;) < win G_, because we have notintroduced a serial edge (),
which is impossible because of induction hypothesis.

If k(v;) < win G}, = k(v;) < win G}_, because we have not introduced a serial edge frtm),
which is also impossible because of induction hypothesis;

14

e else—(k(v;) < u;) certainly, because otherwise
v < k(v;) < ui Ay < k(ug) < v = u; < v; Av; <y in G, (impossible)

Then the introduced edges= (v;,u;),e¢’ = (u;, k(v;)) cannot introduce any cycle because<
k(v;) in G;_,, see Figure 7.b. Now they are satisfying Cond. (6). Alse@rafitroducing these edges,
the following property is satisfied:

Pw € AMylk(u;) <w V k(v;) <win G

The proof is similar to the above case;
2. if v; < w; in G;_,, then by induction hypothesis(k(v;) < u;) in G;_,. The two introduced edges
e = (v;,u;) ande’ = (u;, k(v;)) cannot cause any cycle. Now they are satisfying Cond. (630 Adfter
introducing these edges,
Pw € AMy|k(u;) < w V k(v;) <win G,

The proof is similar to the case above;
3. u; < v; in G)_4, this case is similar to above. Now they are satisfying C¢ng.

After n = |AM,|? iterations, we conclude that :
Yu,v € AM}, u,v satisfy one of the conditions (6), (7) or (8)

and theWu, v € AMj, Vo € (G") LTy (u) N LT, (v) # ¢

Theorem 2 allows us to rewrite the RS formula as

RS(G) =

= max
k avalid killing function

AMy|

whereA M, is a maximal antichain iV} (G). We refer to the problem of finding such a killing function be maximizing
maximal antichaimproblem (MMA). We call each solution for the MMA problemsaturating killing function and AN,

its saturating values A saturating killing function means a killing function tharoduces a saturated register need. The
saturating values are the values that are simultaneousg; aind their number reaches the maximal possible registed.
Unfortunately,

Theorem 3 Given a DAGG = (V, E, ¢), computing a saturating killing function is NP-complete.

Proof:

A complete proofis given in [30], Appendix A, Section A.1gage 253.

Corollary 2 Given a DAGG = (V, E,), computing the register saturation is NP-complete.

Proof:

A complete proofis given in [30], Appendix A, Section A.1gage 257.

15

4 A Heuristics for Computing the RS

This section presents our heuristics to approximate anmgpti by another valid killing functiork*. An optimal k is
simply a killing function that defines the optimal registatigation. We have to choose a killing operation for eaclhieal
such that we maximize the parallel valuesii (G). Our heuristics compute a valid killing function by focugion the
potential killing DAG PK (G), starting from source nodes to sinks. Our aim is to selecbagpf killing operations for a
group of parents that keeps as many descendant values sipassible. The main steps of our heuristics are:

1. decompose the potential killing DABK () into connected bipartite components;
2. for each bipartite component, search for the best satgrkilling set (defined below);

3. choose a killing operation within the saturating killisgt (defined below).

We decompose the potential killing DAG into connected Hipacomponents (CBC) in order to choose a common saturating
killing set for a group of parents. Our purpose is to have aimarm number of children and their descendant’s values
simultaneously alive with their parent’s values. A CBEC= (S, Te, Eep) is @ partition of a subset of operations into two
disjoint sets where:

e ., C Epk is asubset of the potential killing relations;
e S, C Vg is the set of the parent values, such that each parent igl killeat least one operation if;
e T, C V isthe set of the children, such that any operatioffiincan potentially kill at least one value 8.

A bipartite decomposition of the potential killing graph< (G) is the set (see Figure 5.d)
B(G) ={cb= (Sev, Tev, Ecp)| Ve € Epi Icb € B(G) : e € Eg}
Note that the parents, as well as the children, are parabaé the potential killing DAG@ K (G). Formally,
Veb € B(G) Vs, s € Sy Vt,t' € Ty o s||s’ At[|t in PK(G)

A saturating killing setSK S(cb) of a bipartite component) = (S, Tes, Ecp,) is @ subset of childref’, C Tr,. Such
subset provides a unique killer for each value present i, of parents. Such unique killer is chosen so as to minimize
the number of descendant values of all the killerslip. The dual consequence is to get a maximal number of values
simultaneously alive with the parent values belongingin

Definition 1 (Saturating Killing Set) Given a DAGG = (V, E, d), a saturating killing setS K S(cb) of a connected bipar-
tite componentb € B(G) is a subsef”, C T, such that:

1. killing constraints: each parent must be killed

U T = Sa

teT’

cb

2. objective function: minimize the number of descendaneseofT,

min| | J |rtl

teT’,

Unfortunately, computing a SKS is also NP-complete (th@piothe same as Theorem 3's proof).

16

A Heuristics for Finding a SKS Intuitively and according to Lemma 2, we should choose aatdfchildren in a bipartite
component that would kill the greatest number of parentdenminimizing the number of descendant values. We define a
cost functiorp that enables us to choose the best candidate child. Givgraditeé componentb = (S, Tes, E) @nd a set

Y of (cumulated) descendant values and a’saif not (yet) killed parents, the cost of a chilec 7, is :

T, (H)NX]|

[REOY] if [RtUY #¢
pxy(t) =

', ()N X| otherwise

The first case enables us to select the child which coversrdeagt number of non-killed parents, with a corresponding
minimum number of descendant values. If there are no desceéndlues, then we choose the child that covers the most
non-killed parents.

Algorithm 2 Greedy%: a heuristics for the MMA problem
Require: aDAGG = (V, E,)
for all valuesu € Vi do
k*(u) = L {all values are initially non killegl
end for
build B(G) the bipartite decomposition @K (G).
for all bipartite componenth = (S, Ty, Ecpy) € B(G) do
X := S, {all parents are initially uncovered
Y := ¢ {initially, no cumulated descendant valjyes
SKS*(chb) :== ¢
while X £ ¢ do {build the SKS forcb}
select the child € T.;, with the maximal cospx v (t)
SKS*(cb) := SKS*(cb) U {t}
X := X —T'_,(t){remove covered parerjts
Y := YU | g t {update the cumulated descendent vajues
end while
forall ¢t € SK.S*(cb) do {in decreasing cost ordpr
for all parents € I'_, (¢) do
if £*(s) = L then {kill non killed parents of }
k*(s):=1
end if
end for
end for
end for

Algorithm 2 gives a greedy heuristics that searches for gr@gmationS K S* and computes a killing functioh* in
polynomial time. Our heuristics has the following property

Corollary 3 LetG = (V, E,) be a DAG. IfPK (G) is a tree, then Greedj-computes an optimal register saturation with
a polynomial time complexity.

Proof:

Trivially, each value has at most one possible killer, there is only one choice for the killing function. Then,
the saturating values are simply the sources of the potddiiting DAG PK (G). Expression trees for instances
belong to this class of DAGS, because their potential IgIDAGs are trees.

17

(a) PK(G) with k* (b) DV« (G)

Figure 8. Example of Computing the Register Saturation

Since the approximated killing functioki* is valid, Theorem 2 ensures that we can always find a validdsdbewhich
requires exacthyf AMy-| registers. Consequently, our heuristics do not computepgemubound of the optimal register
saturation, and the optimal RS can be greater than the onputechby Greedye. A conservative heuristic which computes

a solution exceeding the optimal RS cannot ensure the exsstef a valid schedule which reaches the computed limit, and
hence it would imply an unnecessary RS reduction processamaste of registers. The validity of the killing function is
a key condition because it ensures the existence of a regliteation requiring exactlyA M. | registers. As a summary,
here are our steps to compute the RS:

1. apply Greedyt onG. The result is a valid killing functio®*;
2. construct the disjoint value DAGV,- (G);

3. find a maximal antichaidl M}~ of DV} (G) using Dilworth decomposition [11]. The approximated sesaturating
values is the nodes belonging4d\/;.-. The approximated RS is equal BR6*(G) = |AMy-| < RS(G).

Figure 8.a shows a saturating killing functiéh computed by Greedy: bold edges mean that each source is killed by its
sink. Each killer is labeled by its cogt Part (b) gives the disjoint value DAG associated with The Saturating values are
{a,b,c,d, f,j,k},sothe RSis 7.

5 Exact Register Saturation Computation

First, if |V |, the total number of values of tygeis less than or equal t8;, the number of available registers of type
then we are sure that any schedule cannot require morgWhai < R registers. Otherwise, we must compute the register
saturation (RS).

Let RN/ (G) denote the register need of register tyggven a schedule € 3(G), which is equal to the maximal number
of values of type simultaneously alive. The RS of a register tyger a DAG G is the maximal register need of typamong
all valid schedules ofy:

RS{(G) = arenzaz)é) RNY (G)

Below, we give the set of variables and constraints of antaréeger linear programming (intLP) formulation for com-
puting the optimalRS;(G). Our intLP formulation expresses the logical operaters(V, <) and the max operator
(maz(x,y)) by introducing extra binary variables. However, expregshese additional operators requires that we bound
the domain of the integer variables, as explained below.

5.1 Expressing Logical Operators by Integer Programming

In [17], the authors show how to model the disjunctive opmrat Consider the problem:

maximize (or minimize)f (x)
subjectto g(x) >0 V h(z) >0

18

By introducing a binary variable € {0, 1}, this disjunction is equivalent to:

whereg andh are two known non null finite lower bounds fgrandh respectively. We deduce the linear constraints of any
other logical operator:

1. g(x) > 0 = h(x) > 0 can be writtery(z) < 0V h(z) >0
2. g(z) > 0 <= h(z) > 0 can be written(g(z) > 0 A h(z) > 0) V (h(z) < 0A g(z) < 0)

T2>2Y= 2=z

Also, z = max(z,y) can be wntten{ y> o=y

Thanks to the use of binary variables for expressing logipatators, our intLP formulation of register constrairdatins
a polynomial number of variables and constraints,it depends only on the number of nodes and edges of the ind@t D
Unfortunately, this is not the case of the existing techagun the literature where the number of variables and caimstr
is pseudo-polynomial, since this number depends on thé soteedule time. The following section presents our intLP
formulation of RS computation.

5.2 Scheduling Variables

For all operations: € V, we define the integer variabtg, > 0 that identifies the schedule time for each operation. Note
that these schedule variables do not represent the finatislshender resource constraints (that will be computed afiie
RS pass), they only represent intermediate variables foirauP formulation. The first linear constraints are thobatt
describe precedence relations (the constraints that eriserexistence of at least one valid schedule), so we witibetlire
intLP system:
Ve = (u,v) € E: oy — 0y > 0(e)

In order to bound the domain set of our variables, we defiree worst possible schedule time. We cho@ssufficiently
large, where for instanc€ =) | __, d(e) is a suitable worst total schedule time (the extreme casesefjaential schedule,
i.e, no ILP). Then, we write the following constraint:

g S T

As a consequence, we deduce for any V:
e 0, > 0, = LongestPathTo(u) is the shortest schedule time;

e 0, <7, =T — LongestPathFrom(u) is the longest schedule time according to the worst totaédcle timeT.
5.3 Register Need Constraints

Interference Graph The lifetime interval of a value’ of typet is (given a schedule)

LT, (u') =]o, + Owy(u), max (O’v + 57,715(1)))]
veCons(ut)

That is, we assume that a value written at insteinta register is available one step later. Thus, if an opemnatireads from
a register at instantc while another operation is writing to ther at the same timey does not get’s result, but rather gets
the value previously stored in Note that these semantics are explicitly chosen and eddodée definition of LT, (u?),
and are not a limitation of the model.

We define for each value’ the variablek,: > 0 which computes its killing date (the last time thétis read). Since our
variable domains are bounded (assuming a fifijtave know thatt,,: is bounded by the two following finite schedule times:

VteT,Vu' € Vg, : kyt < kyt < kyt

where

19

o kyt = 0y + 0u,¢(u) is the first possible definition date af;
e kyt = maX,econs(ut) (v + 0r,4(v)) is the latest possible killing date af.

We use the linear constraints of the max operator to comigutas explained in Section 5.1. We write into the intLP system:

Yut € Ve Kyt = vecn(}g;{(ut) (Uv + 5r,t(v))

Now, we can considefl; the undirected interference graph @Gffor the register type. For any pair of distinct values
u',v' € Vg1, we define a binary variablé, , € {0,1} such that it is set to 1 if the two lifetimes intervals of typiaterfere:
Vt € T, V coupleu?, vt € Vg

u,v

" 1 if LT, (u") N LT, (v") # ¢
S = .
0 otherwise

The number of variables, , is the number of combinations of two values amo¥ig |, i.e., (|Vr:| x (|Vr:| —1))/2.
LT, (u') N LT,(v") = ¢ means that one of the two lifetime intervals is “before” thlees, i.e.,
(LT, (u') < LT,(v")) v (LT,(v') < LT,(u")), where< denotes the “before” relation in interval algebra. Then hage
to express the following constraints:
st o, =1<= ~(LT,(u") < LT,(v") vV LT,(v") < LT,(u"))

u,v

whereLT, (u') < LT, (v') iff k., < o, + du.+(v). The negation of this constraintis: > o, + 8, +(v), i.e,,
kyt — 0y = 0uwi(v) — 1 > 0. Sinces!, , € {0, 1}, these variables are constrained as follows :

st >1 —

u, v =

kut — Oy — 5w,t(v) —1 Z 0
bt — 0y — S i(u) —1>0

Given three logical expressiofi®, @, S), (P < (Q A S)) is equivalent to the expressidi* A Q A S) V (=P A —-Q) V
(—P A —S). We write these two disjunctions with linear constraintdrityoducing binary variables [30]) and by computing
the finite lower bounds of the linear functions.

Maximal Clique in the Interference Graph The maximum number of values of typsimultaneously alive corresponds
to a maximal clique inf; = (Vr,, &;), where(u,v") € &, iff their lifetime intervals interfere{/, , = 1). For simplicity,
rather than considering the interference graph itself, vedqp to consider its complementary graffj = (Vi 4, ;) where
(ut,v?) € & iff their lifetime intervals donotinterfere ¢, , = 0). Then, the maximum number of values of typgimulta-

u,v

neously alive corresponds to a maximal independent s&t in

To write the constraints that describe independent sejs (€ define a binary variable,: € {0,1} for each value
z,+ € Vg, such thatr,: = 1if ' belongs to some IS dff;. We express in the model the following linear constraints:

Vayt, Tyt € VRt Shy=0= 2y + 1z, <1

This equations means that if two nodeandwv are connected if7’, then one and only one of them may belong to a given
IS.

5.4 Linear Objective Function and General Remarks

The register requirement of typds a maximal IS inf}, i.e., the maximal)
typet is computed by:

wteV , Lut- Thus, the register saturation of

Maximize >
ut€Vg.¢

The total number of integer variables in the intLP formudatis bounded by)(|V|?), and the total number of constraints
is at mostO(|E| + |V|?). Note that our intLP formulation may be optimized by consiiig that:

20

e anedge = (u,v) in the initial DAG is redundant for the scheduling consttaiand can be safely ignoredjf(u, v) >
d(e) wherelp(u, v) denotes the longest path framo v (with the condition that this edge doesn’t belong to thigjest
path);

e two values(u’,v") € Vg, can never be simultaneously alive iff for all the possibleestules, one value is always
defined after the killing date of the other. This is the casmif of the two following conditions is satisfied:

Vo' € Cons(vh) : Ip(v',u) > 6,(v") — 6y (u)
Vo Vu' € Cons(ut) 1 Ip(u',v) > 6p(u') — 8, (v)

The next section explores the problem of reducing RS if ieexds the number of available registers.
6 The Complexity of Register Saturation Reduction

In the case where the register saturati®f; (G)) exceeds the number of available registBisof the typet, then we
must add extra serial edges into the DA&Go reduceRS;(G) below this limit. The added edges must save ILP as much as
possible by taking care of the critical path. We note/yhe set of extra edges that we add®do build a new extended
DAG, namelyG = G\ ”, such thatkS;(G) < R;. We want to first solve the formal problem stated below.

Definition 2 (ReduceRS Problem)LetG = (V, £, §) be a DAG. LelR; andP be two positive integers. Does there exist an
extended DDG = G\ of G such that: B

RS(G) <Ry
and

Critical Path(G) < P
Note that an extended DDG may contain a cycle (as we will ge€)]avhile an extended DAG is restricted to stay a DAG.
Theorem 4 The ReduceRS problem is NP-hard.

Proof:

We prove that ReduceRS problem reduces from the problemheideding under register constraints (SRC). Let
us start by defining the latter problem. For the sake of glawe assume that the considered register tyjze
implicit (we do not include in our notations inside this proof).

Definition 3 (SRC problem) Let G = (V, E, ¢) be a DAG,R be a positive integer, an® be a length. Does
there exist a valid schedutee ¥(G) such that:

RN°(G) <R

and
total schedule time< P

The SRC problem has been proven NP-hard in [13]. Now we progetuivalence of ReduceRS and SRC in
terms of computational complexity.

1. ReduceRS= SRC .
Let G be a solution for the ReduceRS problem. Then trivially, aay $oon as possible” schedules X(G) is
a solution for SRC.

2. SRC = ReduceRS

Let o be a solution for SR,e,, RN (G) < R with a total schedule time of P. We build an extended DDG
G by adding serial edges to impose the same precedence nslatiadefined by on the value lifetimes of any
schedule of5. Then,Yu,v € Vi|LT,(u) < LT,(v) we add the following edges:

21

e If v € Cons(u), add serial edges from the readersidexceptv) to v; the set of added edges is:
{e=(u',v)| v € Cons(u) — {v}}
e Otherwise, add serial edges from a¥ readers ta; the set of added edges is:
{e=(u',v)| v € Cons(u)}

The latency of these added edges has to be assigned basedtarg#t architecture. There are two cases:

1. in the case of superscalar codes, there are sequent@bkeathntics. So, the latency of each added edge is
setto 1;

2. in the case of VLIW or EPIC/IA64, there are reading and wgtoffsets. Thus, for each added edge
e = (u/,v), the latency is set td(e) = 0, (u') — 0., (v).

Indeed, the added edges and the chosen latencies forcdltverig assertion:
LT,(u) < LT,(v) = VYo' € X(G): LT, (u) < LT, (v)

Then, for all values not simultaneously alive accordingrtathere is no schedule’ of G that makes them
simultaneously alive. Formally, :

—\(Elu, v € Vi, LT, () < LT,(v), 30’ € X(G)| LTy (u) N LTy (v) # ¢)

In other words, we ensure that any schedul&okill guarantee the precedence relations between thertiteti
intervals of G accordings. Consequently, any schedutéof G cannot require more than the register need of
and

RS(G)=RN°(G) <R

A solution for the SRC problem may create a cycle in the solutif ReduceRS. We are sure that if any cycle
is introduced inG, then it must be non-positive because there exists at leastaid schedule € 3(G). Con-
sequently, a solution of the ReduceRS problem may produgele ®DG. We will see later how to eliminate
these solutions.

With regard to the critical path af, the introduced serial edges ensure that at least>(G). Since there exists
such a schedule with a total timéP, the critical path ofz cannot be longer thah.

_l

The next section provides an algorithmic heuristics thastto reduce RS below a limit. This section follows the ideas
and notations used in Section 4.

7 An Algorithmic Heuristics for Reducing the Register Saturation

For clarity and without loss of generality, let us focus orlyomne register typ&. Then, our notations beconig; for
the set of values of the implicit type we considgl; for the set of flow edges through a register of that typeandd,, for
reading/writing delays, an@ N (G) for the register need of the type we consider. Also, we usattationu for both the
operationu and the value of the considered type it produces.

In this section we build an extended DAG = G\ ¥ such that the RS is limited by a strictly positive integerrraer of
available registers) with the respect of the critical pa#it R be this limit. Then :

Vo € B(G) : RN°(G) < RS(G) <R

2If more than one register type exists, we apply our algoritmeach type.

22

(a) the DDGG (b) PK(Q) ©a—d
Figure 9. Value Serialization

This section presents a heuristics that adds serial edgesvtent some saturating valuesdi/,, (according to a saturating
killing function &) from being simultaneously alive for any schedule. Also,tale care not to increase the critical path, if

possible.
Serializing two values:;, v € Vz means that the killing ofi must always be carried out before the definitionvpfor
vice-versaas illustrated by Figure 9. A value serialization— v for two valuesu, v € Vg is defined by:

e if v € pkillg(u) then add the serial edgés = (v/,v)|v’ € pkillg(u) — {v}}. Textually, this means that if is a
potential killer ofu, the value serialization — v means to add a serial edge from any potential killet ¢¢xceptv)
to v itself, see Figure 9.c.

e otherwise add the serial edg¢s = (u/,v)|u’ € pkilla(u) A =(v < u')} Textually, this means that if is not a
potential killer ofu, the value serialization — v means to add a serial edge from any potential killex &b v itself,
see Figure 9.d.

The latency of these added edges has to be chosen dependhegtarget codes. We have two cases:
1. in the case of superscalar codes, the semantics is sejugnot the latency of each added edge is set to 1;

2. inthe case of VLIW or EPIC/IA64, there exist reading andtiwg offsets. Thus, for each added edge= (v, v), the
latency is settd(e) = 6, (u') — (V).

In order to not violate the DAG property (we must not introdwccycle), some serializations must be filtered out. The
condition for applying: — v is thatVv’ € pkillg(u) : = (v < v"). We chose the best serialization within the set of all the
possible serializations by using a cost functigin — v) = (w;,ws), such that:

e w = i1 — o tries to predict how much RS would be reduced (in the best)d¢hse carry out this value serialization,
where

— u1 is the number of saturating values serialized aitérwe carry out this value serialization — v;
— ue is the predicted number afs descendant values that can become simultaneously allileyyw

e wy is the predicted increase in the critical path.

Our heuristics is described in Algorithm 3. It iterates \akerializations within the saturating values until we getltmit R
or until no more serializations are possible (or none is etgrbto reduce the RS). One can check that if there is no gessib
value serialization in the original DAG, our algorithm ext the first iteration of the outer while-loop. If it succeethen
any schedule ofi needs at mosR registers. If not, it still decreases the original RS, anastlimits the register need.
Introducing and minimizing the spill code is another NP-g@dete problem studied in [3, 4, 9, 10, 27] and is not addressed
in this article.

Now, we explain how to compute the prediction parametgrs.,, w,. We noteG; the extended DAG of step k; its
saturating function, and M, its saturating values anigk, u the descendant valuesfn G;:

30n EPIC/IA64 architectures, a writer and a reader can bedsdbe at the same instruction group, so the writing delayasclly considered as zero.

23

1. (u— v)ensuresthat; 1 (u) < vin Giy1. Accordingto Lemma 2y, = | [g, v NAMj,
values inG; which cannot be simultaneously alive withn G;1;

is the number of saturating

2. new saturating values could be introduced @tQ; : if v € pkilla(u), we forcek; ;1 (u) = v. According to Lemma 2,

p2 = U e |-lev

’ g [] ——
v €pkille; (u)

is the number of values which could be simultaneously aliith win G, 1. o = 0 otherwise;

3. if we carry out(u — v) in@, the introduced serial edges could enlarge the criticdi.pagtip;(v’, v) be the longest
path going fromv’ to v in G;. The new longest path i;. 1 going through the serialized nodes is:

max Ipi(T,v") + Ipi(v, L) +6(e)
introducede= (v’ ,v)
5(e)>1p; (v',v)

If this path is greater than the critical path@h, thenws, is the difference between them, 0 otherwise.

Algorithm 3 Value Serialization Heuristics
Require: aDAGG = (V, E,) and a strictly positive integeR
G =G
computeA M, saturating values af;
while |[AM}| > R do
construct the sdt/;, of all admissible serializations between saturating &inel M}, with their costs @1, w»);
if B(u — v) € Ulwi(u — v) > 0then {no more possible RS reductipn
exit;
end if
X :={(u—v) € Ulwz(u — v) = 0} {the set of value serializations that do not increase thiatipath
if X # ¢then
choose a value serializatign — v) in X with the minimum cosR — wy;
else
choose a value serializatign — v) in X with the minimum costvs;
end if
carry out the serializatiotw. — v) in G;
compute the new saturating valuda/, of G;
end while
ensure potential killing operations propeftyheck longest paths between pkill operatipns

At the end of the algorithm, we apply a general check step soienthe potential killing property proved in Lemma 1 (page
6) for the original DAG. Lemma 1 proves that the operationscivido not belong tgkilis(u) cannot kill the valueu.
After adding the serial edges that buill we may violate this assertion because we introduce somesedith negative
latencies. If this assertion is not verified, the computeciy be incorrect. To overcome this problem, we must guaeante
the following assertionyu € Vg, Yo' € Cons(u) — pkillg(u) :

Jv € pkillg(w)|v' <vin G = Ipg(v',v) > 6,(v') — 6,(v) 9)

In fact, this problem occurs if we create a pattdrfrom v’ to v wherev, v’ € pkillg(u). If assertion (9) is not verified, we
add a serial edge= (v/, v) with §(e¢) = 4,.(v") — §,-(v) + 1 as illustrated in Figure 10: after two value serializatioising
step 1 and 2, assertion (9) is forced to be verified during 3tep

Example 1 Figure 11 gives an example of reducing the RS of our initiaGRigure 2 page 4) from 7 to 4 registers. Remem-
ber that the saturating values 6f are AM;, = {a,b, ¢, d, f, j, k}. Part (a) shows all the possible value serializations withi
these saturating values. Our heuristics selects> f as a candidate, since it is expected to eliminate 3 satugatadues

24

®@ 0 O 6 O
% &6 Cg‘
-2
©® O
initial DAG 1)b—d 2)a — f (3) ensure pkill property foe and f

Figure 10. Checking the Potential Killers Property

@Q ®© ©
© © © O
() @ O
o)~ -
(a) all the possible value serializations (b) G (c) PK(G) with k* (d) DV« (G)

Figure 11. Register Saturation Reduction

without increasing the critical path. The maximal introeéddongest path through this serialization(is, a, d, f, k, L) = 8,
which is less than the original critical path (26). The exded DAGG is presented in part (b) where the value serialization
a — fis introduced: we add the serial edgés f) and(d, f) with a -4 latency. Finally, we add the serial eddesf) and

(d, f) with a unit latency to ensure the:ili5(b) property. The whole critical path does not increase and R&dsiced to 4.
Part (c) gives a saturating killing function fa#, presented with bold edges IPK (G). DV (G) is presented in part (d) to
show that the new RS is 4 floating point registers.

After providing an approximate algorithm for RS reductidhe next section presents an optimal exact method using
integer linear programming.

8 An Optimal Method for RS Reduction

The proof of Theorem 4 gives the intuition for our optimalg@dn for the ReduceRS problem using integer programming.
It is computed in two steps:

1. we first compute a valid schedutesuch that the register need of types maximized but does not exce®&], while
the total schedule time is bounded. Again, this scheduléferent from the final one to be computed under resource
constraints;

2. then, we add serial edges as described by the proof of @edr This results in an extended DDG that has a bounded
register saturation with a minimized critical path.

In order to compute such a minimal schedule that does notreemqore tharR; registers, we use our intLP formulation
previously defined in Section 5 that maximizes the regisesdn We keep all the constraints and variables of Section 5,
except those that compute a maximal independent set. Nowseva binary variable’ . for each value:’ which is set to 1
if the valueu! is stored in the register Since there ar®&; available registers, we have at mgigt x R; variables. Sinc&;
is a constant in our problem (the number of registers in thgetamachine), the number of these variable®{§V|).

The intLP system tries to build a coloring of the interferergraph with exactlyR,; colors (the maximal number of
available registers). If no solution can be found wRl registers, then solve another intLP after decremeri@pduntil to
1). If no final solution can be found when reaching one avéglabgister, then the register saturation cannot be redaocdd
spilling is unavoidable. The variable$, are computed using the following constraints.

25

e avalueu! is stored in only one register of tyge
Ry
Yt e T,Vu! € Ve Zx;t =1
1=1

e if two values interfere, then they cannot share the samsteyi

Vt e T, Vcoupleu',v' € Vg, s, >1= (zl, +2l, <1, Vi=1,..Ry)

u,v = ot

There are atmosD(V? x R;) = O(V?) such constraints.
e The objective function minimizes the total schedule time:
Minimiseo ;.

As explained before, our DAG and processor model includetingrand reading offsets. Consequently, in some cases,
the optimal RS reduction may need to introduce non-positjes into the original DAG. Even if such non-positive @&l
do not prevent the graph from being scheduled, they stilaw#othe DAG property and impose hard scheduling constaint
that may not be satisfiable under resource constraints iauthsequent instruction scheduling pass. We must elimguatie
optimal solutions as explained in the following section.

Eliminating Cycles with Non-positive Latencies

As presented in the proof of Theorem 4, the latency of any deédigec = (v, v) is equal tod(e) = 6. (u') — 5, (v) in
the case of VLIW code. Thus, & (u") < §,,(v) thend(e) becomes non-positive, producing possible non-positiztesy

Remember that the purpose of the register saturation daa&ye ensure in the first steps of compilation that any sakeed
of a given DAG will not require more registers than those de. The scheduling phase is mainly constrained by ressur
(functional units) of the target architecture. If the exded DDG produced by the register saturation reduction casitanon-
positive cycle, we cannot guarantee the existence of a stdadder resource constraints. This is because non-pesitcles
introduce some “not later than” scheduling constraintsolvimay not be satisfied in the presence of resource consfraint

For instance, let us assume a zero weighted cycle betweeopgemtions: andv. Theoretically, any schedule such that
o(u) = o(v) satisfies this zero weighted cycle. However, if we have auesoconstraint that prohibits these two operations
from being scheduled at the same clock cycle, then there V&l schedule that meets these constraints. When we reduce
the register saturation, we must ensure than there is alvagbedule for any resource constraints. The following gtam
gives an illustration.

Example 2 We use Figure 12 in this example. The register saturatiom®fDAG in Part (1) is equal to 3 (easy to see that
we can scheduléa, b, ¢} to be simultaneously alive). Here we assume that the reaatidgnriting delays are equal to zero.
Let ask the question: does there exist an extended DDG ofAl@&ib Part (1) with a RS equal to two while the critical path
is equal to eight ? The answer is yes. The extended DDG ismiessen Part (3). The VLIW schedule in Part (2) shows that
it requires two registers while its total schedule time isi@lto 8. As can be seen, the extended DDG constructed fram thi
schedule has a null cycle betweeandd. We can easily see that we cannot construct any extended DibGuwa cycle,
since the minimal register need of the DAG is 2: the lifetimesrvals of the valuesandd must be necessary serialized after
the intervals ol andb if we want to require only two registers. These two lifetimieivals serializations are responsible
for introducing the null cycle betweenandd. Now, if we accept the extended DDG of Part (3) as a solutiancannot
guarantee the existence of a schedule under any resour&traoris. For instance, if andd cannot be scheduled in parallel
because of resource conflicts, then no valid schedule eXi&sio admit such situation in the process of RS reduction.

Note that the problem of non-positive cycles does not adssuperscalar (sequential) codes because all the inteadedges
have a positive latency equal to 1. As example, the miningaster saturation (in the case of superscalar codes) of &@ D
in Figure 12.(1) is equal to 3 (instead of 2 in the case of VLIvdes). The superscalar schedule is presented in Part (#) wit
its corresponding extended DAG in Part (5).

To eliminate this problem of non-positive cycles, we imptse restriction that the extended graghmust be a DAG.
This is done by guaranteeing the existence of a topologarafer the extended graph. Therefore, we add some variables
and constraints to the optimal intLP system.

4Such constraints are similar to real time constraints, tveannot always be satisfied.

26

LT(@) LT(b)

pacid |l mmo
R TSR K R
i
(1) DAG Example (2) Optimal VLIW code (3) Optimal Extended DDG
LT(a)
0 LT(b)
[E— @ ®
e 4ic 8 @

(4) Optimal Superscalar Code (5) Optimal Extended DAG

Figure 12. Example of Non-positive Cycles

We define integer variables that hold a topological ordedhthe graph. For each € V, we associate an integer
variabled,,, such that for any two nodesandw, d,, < d,, means that. is topologically sorted before.

We bound the topological sort by the number of nodés= V' : d, < |V]|

We write the topological sort constraints for each edge endtiginal DAG:Ve = (u,v) € E: d, <d,

If we add a serial edge in the extended DDG, we must satisfioph@ogical sort constraints. If two lifetime intervals
LT,(u") andLT,(v") do not interfere with each other, serial edges will be intreed.Vu, v € Vi,

— if v € Cons(u'), serial edges will be added from thés other readers to. We then write the constraints:
LT,(u') < LT,(v") = (Vu' € Cons(u') — {v} 1 dw < dv)

That is,
v+ 0wt (V) —kyr > 0= (Vu’ € Cons(u') — {v} : dw < dv)

— if v & Cons(u'), serial edges will be added from alk readers ta. We then write the constraints:

LT,(u") < LT,(v") = (Vu' € Cons(u') : dy < dv)

That is,
Oy + 0t (V) — kyr > 0= (Vu' € Cons(u') : dy < dv)
Note that these constraints may be optimized by considénadact that some values can never interfere, see Sectlon 5.
We add at mos(|V'|?) variables and(|V | +| E|) constraints to guarantee that reducing RS always producasyelic
extended DAG. Again, these constraints are only added favWand EPIC codes, not for superscalar codes.

We continue in the next section with the result of our experital implementation.

27

9 Experiments

This section presents our experimental results from som&®Bxtracted from SpecFP, whetstone, livermore and lin-
pack. Such graphs can be explored in [30]. These DDGs are thas have been used in the prior studies [12, 19]. In our
experiments, we focus on floating point registers and weragghat we target superscalar codes. The DAGs used for the
experiments are the loop bodies. This section presentsomafwding analysis.

Before starting the presentation of our experiments, welavbke to argue why we chose to evaluate our method using
graphs instead of implementing it inside a real compilersti-since our study focuses on register optimization in BD@e
decide to check the efficiency of our heuristics on somesgalgraphs extracted from real codes. This way of evalnatio
that does not require a complete implementation inside gpdenallows us to isolate our contribution by demonstrgtine
efficiency of our heuristics on DDGs. If we include our heticis inside an existing optimizing compiler, it would be dar
to isolate our contribution, since the optimizing compdatpasses are numerous nowadays, and their interactidregtfer
they are with the hardware or with other compilation passes)difficult to analyze. In other words, for any value of the
resulted speedup (positive or negative), it is very hardettify that the speedup gain or loss results directly ang tnoim
our heuristics. It is possible that the interaction withesticompilation passes may inhibit or accentuate the pedooa
gain. So, we think that it is better for us to concentrate dtaragion on graphs.

Second, we think that our experiments are realistic becaus¢heoretical model takes into account VLIW, EPIC and
superscalar codes. Usually, not all register optimizatiethods, even those implemented inside compilers, workhfese
three types of program semantics. Third and last, our empanis clearly demonstrates nearly optimal results, whscmi
important aspect in our case of combinatorial problems.

9.1 Computing RS

The first experiments check the efficiency of our Greédglgorithm compared to optimal RS (computed by integer
programming). The next section summarizes our results.

9.1.1 Optimal vs. Approximated Methods

Let RS denote the optimal register saturation computed by inth®,/aS* the approximated RS as computed by our heuris-
tics. The experimental results show that our approximaerghm is very efficient: in almost all cases, it computeseixact
register saturation. The maximal experimental error is€l, the optimal register saturation is one larger than theratiin
computed by our heuristics. We have unrolled the loops tcese register pressure in order to study the efficiency of ou
heuristics in larger DAGs. DAGs are the bodies of these denldbops: the number of nodes in these unrolled loops ranges
from 4 to 120.

Our approximated algorithm clearly computes nearly optistdutions in polynomial time. In the 134 DAGs used in
this study (up to 120 nodes per DAG), we do not reach RS opitiyrial only 7 cases. Our worst empirical error isil.,
RS* < RS < RS*+1.

After evaluating the efficiency of our method, we use it toexmentally study the RS behavior in unrolled loops.

9.1.2 RS Behavior in Unrolled Loops

In this experiment, we study the RS evolution as a functiothefunrolling degree in each loop. Figure 13 shows the plots
of RS (computed by our heuristics) versus the unrolling degri_oops are unrolled from 1 to 20 times, producing DAGs
with between 4 to 400 nodes, which is sufficient to study théoBigavior in real applications. As we expect, RS is evidently
a non-decreasing function: since unrolling a loop produnese values because of loop bodies duplication, RS could not
decrease. The RS versus the unrolling factor produces déidmrtbat can be one of the two following cases:

1. constant or non strictly increasing because of recudata dependences;
2. linear in the case of, for instance, fully parallel loops.

If the number of available registers is bounded, we must k@ pinder control. The next section summarizes our results.

28

Register Saturation Register Saturation

Register Saturation

lin-ddot —+—"-
liv-loopl --->%~ 1
liv-loop23 % 4
liv-loop&k @~ 1

10 12 14 16 18
Unrolling factor

spec-fp-loopl—+—=
spec-spice-loopt---g--
spec-spice-loopl0g*----
spec-spice-loop2 & E
g

10 12
Unrolling factor

14 16 18

T T T T T T T T T
spec-spice-loop?7—+—4
spec-spice-loop8--—-x"
spec-spice-loop9g#---
spec-tom-loopil*-& b
g ¥
SR
X

P
E‘X

Juy

p=

10 12 14 16 18
Unrolling factor

Register Saturation Register Saturation

Register Saturation

40
36
32
28
24
20
16
12

spec-dod-loop2----—
spec-dod-loop3--#--
spec-dod-loopZz

s'pec-éod-lc;opl—%' ' y

10 12 14 16 18
Unrolling factor

T T T
spec-spice-loop4—<"~

spec-spice-loop5x"x-—
spec-spice-loop6--a
X

L%

spec-spice-loop3—— |

L
¥ i

4 6 8 10 12 14 16 18
Unrolling factor

whet-loopl RS+
whet-loop2 -
whet-loop3 -

4 6 8 10 12 14 16 18
Unrolling factor

Figure 13. RS Evolution in Unrolled Loops

29

9.2 Reducing RS

In this section, we experimentally study our techniquesrémtucing RS under critical path constraints. At first, we
investigate the efficiency of our heuristics versus theratiresults.

9.2.1 (Approximated) Value Serialization Heuristics verss Optimal RS Reduction

Let us begin by stressing our heuristics to check their Ations. We consider DAGs of loop bodies and try to reduce the
register saturation to the lowest possible value. This iseday setting the number of available registBrs= 1. Our value
serialization heuristics get sub-optimal results for onlgf the 27 DAGs used in the experiment. The optimally rediR8d

is less than our heuristics results by two registers in thest\case.

In the second set of experiments, we unroll the loops withtiplelfactors (up to 6, with up to 80 node DAGs) and we try
to reduce their RS under a limit computed as the first powerlo2r than the original RS. For example, if the original RS
is 12 then we reduce it to 8, etc.

Here, we also get a maximal experimental error of 2 registers

We didn’t check for larger unrolling degrees because comguiptimal RS reduction of larger DAGs is computational
intractable. We think that the experiments that we havegoeréd are sufficient to study the efficiency of our stratefiles
number of nodes in all these unrolled loops ranges from 4 jJo 80

After evaluating the efficiency of value serialization, weelit to investigate unrolled loops.

9.2.2 Value Serialization Heuristics Behavior in UnrolledLoops

We study the limit of RS reduction versus the degree of loolling (we consider the DAG of the loop bodies after
unrolling). Figure 14 plots RS reduced to 32 registers usimgheuristics on various loops with unroll factors rangiram

1to 20. In almost all practical cases, RS is maintained utideB2-register limit, except for Livermore-loop23. In tltase,
RS is maintained under 32 until the loop is unrolled by a faofdl2. After that, the register pressure is sufficientlythig
always keep the register need above 32. The reason is shabedtbintrinsic data dependences properties (intrinsicster
pressurei.e., register sufficiency) and our heuristics limitations. BRannot be reduced below the limit, we have to insert
spill operations, which is outside the scope of this papespAcial remark is that reduced RS in unrolled loops is not an
increasing function. That s, if we reduce the RSp > R in the loop unrollech times, and tdR, > R in the loop unrolled

n + 1 times, this does not necessary mean Rat< R, (see Livermore-loop23 in Figure 14). The explanation ig &
more independent nodes are available in a DAG, the mordigatian opportunities are possible. Consequently, tegilts

in more freedom and more choices for our heuristics.

9.3 ILP Loss after RS Reduction
In this last section, we study the ILP lost due to RS reductitve evaluate the maximal theoretical ILP of a DAG
G = (V,E,0) as:

V]
ILP =
(@) Critical Path(Q)

The ratio used for expressing the ILP loss is
original ILP — new ILP

original ILP
We start by examining the efficiency of the value serial@atieuristics in terms of ILP loss.

9.4 Optimal versus Approximated ILP Loss

Let us examine the ILP loss in our experiments. Results calebemposed into five families, depending on the obtained
RS and ILP loss after reduction. We denote®§ andIL P the RS reduction and ILP loss resulting from optimal intLP
programs; we denote b S* and/ L P* the RS reduction and ILP loss resulting from our heuristidsen, the five families
of results are the following.

30

Register Saturation Register Saturation

Register Saturation

32

28

32

lin-ddot —+—*

liv-loopl ,,,,X,?,;,
liv-loop23 *% i
liv-loop5 - |

8 10 12 14 16 18
Unrolling factor

o~ spec-fp-loopl—+—
/ spec-spice-loopl-----
& spec-spice-loopl0---*---
" spec-spice-loop2--8

8 10 12 14 16 18
Unrolling factor

pec-spice-lgop7——
spec-spice~loop8-----
spec-spicé-loop9--- -
spec-tom-loopl &
X

8 10 12 14 16 18
Unrolling factor

Figure 14. RS Reduction in Unrolled Loops (

Register Saturation Register Saturation

Register Saturation

32

28

24

20

16

12

32

28

24

20

16

12

31

spec-dod-loopl—+—
spec-dod-loop2------
spec-dod-loop3---*---
spec-dod-loop7-&

2 6 8 10 12 14 16 18
Unrolling factor
I T BS'SEC-SSice-Igopsw—o—w
L spec-spice-loop4-->--— |
& Spec-spice-loop5---x----
" spec-spice-loop6--o
L gy |
//, o
L N j
/ K
/ I
// "’*’
i r 3 i
/ e
// <’,*'
{ ¥
VA " |
/l /4.%,
/ ¥
. "
H ; ¥ |
jal
L s |
e
2 6 8 10 12 14 16 18
Unrolling factor
I I Whelt-loop')l_n_a;gfqST_,iT
whet-loop2 ---»---
| whetiloop3 %]
X
i /X/ .
//X/
L X |
/)(/
L X |
/X/

6 8 10 12 14 16 18
Unrolling factor

R = 32)

1. Inthe case wherBS = RS*, our algorithm succeeds in optimally reducing RS. Then]ltfeloss may be:

(@) ILP = ILP~* (family 1). Our algorithm succeeds in optimally reducing ®igh the optimal ILP loss. 72.22%
of all the results belong to this family.

(b) ILP < ILP* (family 2). Our algorithm succeeds in optimally reducing B& with sub-optimal ILP loss.
18.5% of all the results belong to this family.

(c) ILP > ILP*is not possible.

2. Inthe case wherBS > RS*, our algorithm did not succeed in optimally reducing RS. Titae ILP loss may be:

(@) ILP = ILP~* (family 3). Our algorithm has sub-optimal RS reduction bptimal ILP loss. 4.63% of all the
results belong to this family.

(b) ILP < ILP~* (family 4). Our algorithm has sub-optimal RS reduction wstib-optimal ILP loss. Less than 1%
of all the results belong to this family.

(c) ILP > ILP* (family 5). Our algorithm has sub-optimal RS reduction buthvsuperoptimal ILP loss. This
case is interesting: since our algorithm has sub-optimaid@8ction, it has extra registers which allow more ILP.
3.7% of all the results belong to this family.

3. The case wherS < RS* is impossible because our heuristics compute a iahd.

Clearly, our RS reduction algorithm is very efficient: in nasses, it optimally reduces RS with optimal ILP loss.
Sub-optimal ILP loss is, in most cases, accompanied by @RS reduction, while sub-optimal RS reduction is mostly
accompanied bguperoptimal ILP loss. We get both sub-optimal ILP loss and spbroal RS reducing in less than 1% of
the cases.

Having established the efficiency of value serializatioa,uge it to study ILP loss in unrolled loops.
9.5 ILP Loss after RS reduction in Unrolled Loops

We unroll the loops up to 20 times to get larger DAGs (up to 46@as). We try to maintain their RS under 32 FP registers.
Figure 15 plots ILP loss according to unrolling degree. Irstraases, our heuristics do not produce a loss ofileRcritical
paths do not increase. However, in some cases, ILP loss@s@e# (the case of spec-spice-loop8) in order to maintain a
RS under 32.

As in the RS reduction experiments, the ILP loss is not areasing function. The explanation is that the more indepen-
dent nodes are available in the DAG, the more lifetime irdeserialization opportunities are possible. Our heursstiave
more freedom to choose the best interval serializationrttiaimizes critical path growth. We note that, in these eipents,
some operations have long specified latencies (up to 17 féPadivision). These long latencies can dramatically ingeea
the critical path, since we may introduce serial edges tlagmtwo long paths.

Before concluding, we wish to argue that the RS approach istiebway to satisfy register constraints before ILP
scheduling than existing register need minimization apphes.

10 Related Work and Discussion

The literature contains a lot of techniques for minimizihg tregister requirement in superscalar (sequential) ctidgs
are sensitive to ILP scheduling [2, 18, 20, 23, 25, 26]. Gilmefer to combine ILP scheduling with register allocation
[5, 8, 16, 24, 28]. All these techniques try to minimize thgiséer requirement. In our method, we use the contrary aggro
: we maximize the register requirement in order to minimize humber of edges added to the DAG, as previously done by
Berson [6]. Minimizing the register requirement is an irdgr@ly worse technique than saturating the register remerg for
many reasons, which we explain below.

32

ILP loss

ILP loss

ILP loss

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

0.8

0.6

0.4

0.2

lin-ddot —+—
liv-loopl --->---
liv-loop23 -~
liv-loop5 &

ILP loss

2 4 6 8 10 12 14 16 18 20
Unrolling factor

spec-fp-loopl—+—

spec-spice-loopL-----

spec-spice-loop10---*----
spec-spice-loop2 &

ILP loss

2 4 6 8 10 12 14 16 18 20
Unrolling factor

spec-spice-loop7—+—
spec-spice-loop8--»---
spec-spice-loop9-------

spec-tom-loopl-—-&--

ILP loss

2 4 6 8 10 12 14 16 18 20
Unrolling factor

Figure 15. ILP Loss in Unrolled Loops (

33

0.8 —

0.6

0.4

0.2}

spec-dod-loopl—+—
spec-dod-loop2------
spec-dod-loop3---*---
spec-dod-loop7-&

0.8 —

8 10 12 14 16 18
Unrolling factor

20

0.6

0.4

0.2}

spec-spice-loop3—+—
spec-spice-loop4-----
spec-spice-loop5------
spec-spice-loop6 &

8 10 12 14 16 18
Unrolling factor

20

0.8 —

0.6

0.4

0.2}

' whét-loo'pl_ilb_los's—é
whet-loop2 ---»---
whet-loop3 -+

8 10 12 14 16 18
Unrolling factor

R = 32)

20

1 1 1 1@? 1 ?P
O 0O 0 oN O O
17 17 S 17
'
1
O.)
O
1
O O O O
(a) Intial DAG (b) Minimal Register Need (c) RS Reduction wil

available registers

Figure 16. RS Reduction vs. Minimal Register Requirement

Case where register constraints are obsoleteGiven a DAG, we do not need to add serial edges if the RS doesxaetd
the number of available registers. Unfortunately, the mination approach adds extra edges if the register reqeinéoan

be further reduced, even if RS does not exceed the limit. istance, look at Figure 16, where bold circles are the vdtues
be stored in registers and bold edges are the flow dependehuesnitial DAG has a register saturation equal to 4 : this is
because we can schedule the 4 operatiens, ¢, d} so as to produce 4 values simultaneously alive. If the psmrdsas at
least 4 registers, then the DAG is not modified before thedualiveg pass. However, with a minimization approach, the new
DAG in Part (b) is restricted to not require more than 2 reagiSt regardless the number of available registers. The DAG in
Part (b) is more restrictive than the initial DAG, which istlenmodified by the RS analysis pass.

How many edges are introduced If the inherent data dependences of a DAG produce resgictgister pressure for an

ILP scheduler (when RS exceeds the number of availableteggjsthe minimization approach adds more edges than the
RS reduction approach. This is because our method intredudy the necessary number of edges to reduce RS below the
register limit. However, the minimization approachesdiie reduce the register need to the lowest possible levés.ig hot

an appropriate approach, since it does not fully utilizeax@lable registers. For instance, look at Figure 16 andrassve

have 3 registers available. Part (c) shows the new DAG prediby the RS reduction pass: here, RS is reduced from 4 to 3,
and hence we have fewer serialization edges than those geddiy the minimization approach presented in Part (b). gJsin
the RS approach, the final allocator could use 1, 2 or 3 ragistepending on the schedule. Using a register minimization
approach, the scheduler could use only 1 or 2 registers. é¢jéhe RS approach helps the scheduler make better use of the
available registers.

When both methods are equivalent If the target processor is superscalar with out-of-ordeceion, and if its dynamic
scheduler is optimal and the register renaming hardwarehasfinite number of hidden registers, both methods (RS and
register need minimization) should be equivalent. Withatikd number of hidden registers for renaming, and a subvapbt
runtime scheduler, our RS method is likely to produce betbele because it makes better use of the available registers.

Our methods apply for explicit reading/writing offsets Our DAG and processor model allows for explicit delays when
reading from and writing into registers. Thus, our methocthizre generic than existing techniques, and can be applied to
superscalar, VLIW and EPIC architectures. For the last tases, special care must be taken when reducing RS: we must
prohibit non-positive cycles in the resulting DAGs.

In the case of a global scheduler Our model assumes that there is only one possible definiBorgdue. This assumption
is correctinside a basic bloc (BB)e., if the code does not contain branches. In the case of a gtobédol flow graph (CFG),

5Here, we minimize the register requirement under critithpconstraints.

34

(a) original DAG (b) DV} (G) such{e, h} (c) DV (G) such{d}

is the saturating killing set is the optimal minimum killing set

Figure 17. URSA Drawback

a static data dependence analysis may result in some valithesare than one definition because it cannot determinehwhic
execution path is taken. We show in [30] how to extend RS aimlp a global acyclic CFG (excluding loops), and its
interaction with a global instruction scheduler that maymoperations from one BB to another.

Comparison to URSA Our work is an extension to URSA [6, 7]. Their minimum Killirsgt technique tries to saturate
the register requirement in a DAG by keeping the values a&/tong as possible: the authors proceed by keeping as many
children in a bipartite component alive as possible by catinguihe minimum set which Kills all the parent’s values. sEir
since the authors did not formalize the RS problem, we caityegise examples to show that a minimum Kkilling set does
not saturate the register need, even if the solution is gdtifigure. 17 shows an example where the RS computed by our
heuristics (Part (b)) is 6 where the optimal solution for UR@elds a RS of 5 (Part (c)). This is because URSA did not
take into account the descendant values while computingiliirey sets. Second, the validity of the killing functioa an
important condition to compute the RS and unfortunatelyasincluded in URSA. We showed in Section 3 that invalid
killing functions exist. So, the proofin [7] about the NPrapleteness of RS computation is incomplete, since theyalid n
prove the validity of the computed killing function. Finglthe URSA DAG model did not differentiate between the types
values and did not take into account delays in reading frodweariting into the registers file.

Resource constraints Our experimental results are presented in the form of jdatesnents about critical path length and
register requirement. Can anything formal be said abouhimas with finite resources ? Since our techniques assuméénfi
resources, it is theoretically possible that edges indeaeecrease register pressure might lead to unbalancetidnal unit
usage. Thus, edges might accidentally dictate bursts @ftatjer, all memory, or all floating point operations.

Let us answer this possible limitation. First, our work fean data dependence graphs. Thus, a schedule can certainly
be found on a machine with finite resources. Reporting resaoonflicts at the graph level can only be done with simple
resource descriptions (no structural hazares,a FU is used during a contiguous interval of time), as donBdxgon in [6]
and Pinter in [26]. This strategy gives exactly the sametimiias scheduling under resource and register constramfst
is nothing but a combined approach of scheduling and reg#itzation. Second, the FU usage may be decreased edpecial
if we try to minimize the register requirement. In our frama, we saturate the register requirement, thus the RS @once
helps us reduce the number of serialization edges addee 0AKS. Third and last, we give priority to register consttain
over ILP scheduler (but we are still sensitive to this labEgause we believe that spill code is more damaging to pedioce
than a weak ILP extraction.

The methods of [6, 26] combine resource and register cdnsdrarheir methods are only studied for superscalar codes
with a unique register type, while our method works for VLIBRIC and superscalar codes with multiple register types.
Furthermore, we did not read any experimental results tigdilight if the heuristics of [6, 26] are near or far from the
optimal, while we propose nearly optimal heuristics.

11 Conclusion

In this paper, we formally study the register saturation)(R&ion to manage register pressure in acyclic data depmede
graphs (DAGSs). RS helps to avoid inserting spill code befios&ruction scheduling and register allocation steps. Alebe
that register constraints must be taken into account béfé&rscheduling, but by using the RS concept instead of thetiaxgi

35

strategies that minimize the register need. Otherwisesubsequent ILP scheduler is restricted even if enoughtezgisxist.

We give many fundamental results regarding the RS computatirst, we prove that choosing an appropriated unique
killer is sufficient to saturate the register need. Secorgl pvwove that fixing a unique killer per value allows to optityal
compute the register saturation with polynomial time alfpons. If a unique killer is not fixed per value, we prove that
computing the register saturation of a DAG is NP-completinégeneral case (except for expression trees for instaAce)
exact formulation using integer programming and an efficigaproximate algorithm are presented. Our formal mathealat
modeling and theoretical study enable us to give nearlynwgdtheuristics.

Our experiments show that register constraints may be etisgi many codes, and can therefore be ignored in order to
simplify the instruction scheduling process. The heuwsstie use manage to reduce RS in most cases while some ILR is los
in few DAGSs.

If RS exceeds the number of available registers, we mustesiduvhile minimizing the increase to the critical path. We
prove that this is an NP-hard problem. An optimal exact Rsicidn method based on integer programming is presented, as
well as an efficient approximate algorithm. If we assumeingibffsets (such as those in VLIW and EPIC codes), some op-
timal solutions may require the insertion of non-positiyeles in the original DAG. These cycles may prevent the eden
DDG from being scheduled in the presence of resource contstraA sufficient and necessary condition to overcome this
problem is to guarantee the existence of a topological sothke extended graph. This is done by adding new constr@ints
the intLP formulation.

The size complexity of our intLP formulations depends ohly size of the input DAG (quadratic on the number of edges
and nodes). This is better than the size complexity of thstiexg technique in the literature that model register c@iists
[1, 13, 14]. Indeed, these exact intLP systems have a sizpleaity that depends on a worst-case total schedule tinterfac
which does not depend on the size of the input DAG. Thus, thelting size complexity is pseudo-polynomial, and not
polynomial as in our intLP system.

An important problem (left for a future work) is the inseri@f minimal spill code in data dependence graphs. The
existing studies insert spill operations either in seqia¢cbdes (regardless on FUs usage), or by iterating ILP cidirey
followed by spilling. We think that this problem must be takiato account at the data dependence graph level in order to
break this iterative problem.

Acknowledgement

We would like to thank Alain Darte fronEcole Normale Supérieur de Lyon and Francois Thomasset iNRIA-
Rocquencourt for their help to improve this work.

References

[1] E. Altman. Optimal Software Pipelining with Functional Units and Ragrs PhD thesis, McGill University, Montreal, Oct. 1995.

[2] W. Ambrosch, M. A. Ertl, F. Beer, and A. Krall. DependerCenscious Global Register Allocatiorecture Notes in Computer
Science782:129-?7?, 1994.

[3] P. Bergner, P. Dahl, D. Engebretsen, and M. O’Keefe. |€atle Minimization via Interference Region SpillingCM SIG-PLAN
Notices 32(5):287-295, May 1997. Proceedings of Programming uagg Design and Implementation (PLDI'97).

[4] D. Bernstein, D. Q. Goldin, M. C. Golumbic, H. Krawczyk, Mansour, I. Nahshon, and R. Y. Pinter. Spill Code Minimiaat
Techniques for Optimizing CompilersSIGPLAN Notices24(7):258-263, July 1989. Proceedings of the ACM SIGPLAN ’
Conference on Programming Language Design and Impleni@mtat

[5] D. Bernstein, J. M. Jaffe, and M. Rodeh. Scheduling Arigtic and Load Operations in parallel with No SpillirglAM Journal on
Computing 18(6):1098-1127, Dec. 1989.

[6] D. A. Berson.Unification of Register Allocation and Instruction Scheadglin Compilers for Fine-Grain Parallel Architecturd>hD
thesis, Pittsburgh University, 1996.

[7] D. A. Berson, R. Gupta, and M. Soffa. URSA: A Unified ReSmuAllocator for Registers and Functional Units in VLIW Aitgc-
tures. InConference on Architectures and Compilation TechniqueBife and Medium Grain Parallelisppages 243-254, Orlando,
Florida, Jan. 1993.

36

[8] T. S. Brasier, P. H. Sweany, S. J. Beaty, and S. Carr. CRA@ractical Framework for Combining Instruction Schedgliand
Register Assignment. IRarallel Architectures and Compilation Techniques (PAGS), 1995.

[9] D. Callahan and B. Koblenz. Register Allocation via Hiexhical Graph ColoringSIGPLAN Notices26(6):192-203, June 1991.
Proceedings of the ACM SIGPLAN '91 Conference on Prograngnhianguage Design and Implementation.

[10] G.J. Chaitin. Register Allocation and Spilling via @raColoring. ACM SIG-PLAN Notices 7(6):98-105, June 1982. Proceedings
of the SIGPLAN '82 Symposium on Compiler Construction.

[11] P. Crawley and R. P. DilworthAlgebraic Theory of LatticesPrentice Hall, Englewood Cliffs, 1973.

[12] D.de Werra, C. Eisenbeis, S. Lelait, and B. Marmol. OrrapgB-Theoretical Model for Cyclic Register Allocatiddiscrete Applied
Mathematics93(2-3):191-203, July 1999.

[13] C. Eisenbeis, F. Gasperoni, and U. SchwiegelshohracAting Registers in Multiple Instruction-Issuing Prag@s. InProceedings
of the IFIP WG 10.3 Working Conference on Parallel Architees and Compilation Techniques, PACT,'§&ages 290-293. ACM
Press, June 27-29, 1995.

[14] C. Eisenbeis and A. Sawaya. Optimal Loop Parallelratinder Register Constraints. &ixth Workshop on Compilers for Parallel
Computers CPC’96, pages 245-259, Aachen - Germany, Dec. 1996.

[15] W.fen Lin, S. K. Reinhardt, and D. Burger. Reducing DRAMBItencies with an Integrated Memory Hierarchy DesignPtaceed-
ings of the 7th International Symposium on High-Perforrea@omputer ArchitecturéNuevo Leone, Mexico, Jan. 2001.

[16] S. M. Freudenberger and J. C. Ruttenberg. Phase OglefiRegister Allocation and Instruction Scheduling.Gode Generation
— Concepts, Tools, Techniques. Proceedings of the Inferret\Workshop on Code Generatiopages 146-172, London, 1992.
Springer-Verlag.

[17] R. S. Garfinkel and G. L. Nemhausémteger ProgrammingJohn Wiley & Sons, New York, 1972. Series in Decision andt@un

[18] J. R. Goodman and W.-C. Hsu. Code Scheduling and Rediiteation in Large Basic Blocks. I©€onference Proceedings 1988
International Conference on Supercomputipgges 442—-452, St. Malo, France, July 1988.

[19] R. Govindarajan, E. R. Altman, and G. R. Gao. MinimiziRggister Requirements under Resource-Constrained Rzisr&
Software Pipelining. IMICRO27 pages 85-94, Dec. 1994.

[20] R. Govindarajan, H. Yang, J. N. Amaral, C. Zhang, and GGRo. Minimum Register Instruction Sequencing to Reduagidter
Spills in Out-of-Order Issue Superscalar ArchitectUEeEE Transactions on Computerpages 4—20, 2003.

[21] W. Jalby, C. Lemuet, and S.-A.-A. Touati. Improving ldd&tore Queues Usage in Scientific Computing.Ploceedings of the
International Conference on Parallel Processing (ICPPQf#ages 38-45, Montréal, Canada, Aug. 2004. IEEE.

[22] W. Jalby, C. Lemuet, and S.-A.-A. Touati. An Efficient Mery Operations Optimization Technique for Vector Loopdtamium 2
ProcessorsConucurrency and Computation: Practice and Experier2@4 (to appear). Wiley Interscience.

[23] J. JanssenCompilers Strategies for Transport Triggered ArchiteeguPhD thesis, Delft University, Netherlands, 2001.

[24] W. M. Meleis. Dural-Issue Scheduling for Binary TreeghwSpills and Pipelined LoadsSIAM J. Comput.30(6):1921-1941, Mar.
2001.

[25] C. Norris and L. L. Pollock. A Scheduler-Sensitive GibtiRegister Allocator. In IEEE, editoGupercomputing 93 Proceedings:
Portland, Oregon pages 804-813, 1109 Spring Street, Suite 300, Silver §pMD 20910, USA, Nov. 1993. IEEE Computer
Society Press.

[26] S. S. Pinter. Register Allocation with Instruction ®chuling: A New Approach.SIGPLAN Notices28(6):248—-257, June 1993.
Proceedings of the SIGPLAN '93 Conference on Programmingguage Design and Implementation.

[27] M. Poletto and V. Sarkar. Linear Scan Register AllogcatiACM Transactions on Programming Languages and Syst2n(s):895—
913, Sept. 1999.

[28] R. Silvera, J. Wang, G. R. Gao, and R. Govindarajan. AifegPressure Sensitive Instruction Scheduler for Dycaissue
Processors. IRroceedings of the 1997 International Conference on Pal@chitectures and Compilation Techniques (PACT-97)
pages 78-89, San Francisco, California, Nov. 1997. IEEE filoen Society Press.

[29] S.-A.-A. Touati. Register Saturation in Superscaled &LIW Codes. InProceedings of The International Conference on Compiler
Construction Lecture Notes in Computer Science. Springer-Verlag, 201.

[30] S.-A.-A. Touati. Register Pressure in Instruction Level ParallelismBhD thesis, Université de Versailles, France, June 2002.
ftp.inria.fr/INRIA/Projects/a3/touati/thesis.

[31] J. Zalamea, J. Llosa, E. Ayguadé, and M. Valero. Modetheduling with Integrated Register Spilling for ClustekIW Archi-
tectures. InProceedings of the 34th International Symposium on Miabigecture (MICRO-34)pages 160-169, Austin, Texas,
Dec. 2001.

37

