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Abstract Irregular access patterns are a major problem for today’s optimizing
compilers. In this paper, a novel approach will be presented that enables transfor-
mations that were designed for regular loop structures to be applied to linked list data
structures. This is achieved by linearizing access to a linked list, after which further
data restructuring can be performed. Two subsequent optimization paths will be con-
sidered: annihilation and sublimation, which are driven by the occurring regular and
irregular access patterns in the applications. These intermediate codes are amenable
to traditional compiler optimizations targeting regular loops. In the case of sublima-
tion, a run-time step is involved which takes the access pattern into account and thus
generates a data instance specific optimized code. Both approaches are applied to a
sparse matrix multiplication algorithm and an iterative solver: preconditioned conju-
gate gradient. The resulting transformed code is evaluated using the major compilers
for the x86 platform, GCC and the Intel C compiler.

Keywords Optimizing compilers · Parallel processing · Linked list data structures

1 Introduction

Recently, the emergence of multi and many-core architectures has raised a renewed
interest in parallelizing compilers. In the past, most research has been conducted on the
optimization of array-based codes, which are relatively easy to analyze. However, this
certainly does not hold for computations using pointer structures. Pointers are often
used to represent dynamic structures. Their advantage is that they can store these
dynamic structures in a compact way. The disadvantage is that they prevent in-depth
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dependence analysis. As a consequence, the majority of the compilers in use today
will fail in optimizing loop structures that contain pointer traversals.

For instance, one very common pointer structure is the linked list. A linked list
represents a sequence of elements in which each element is in a potentially unrelated
memory location, making it impossible for the compiler to optimize the memory access
patterns. The presence of the code that accesses the linked list impedes analysis of the
code (e.g., loop-carried data dependence analysis) and thus prevents the application
of optimizing transformations such as loop interchange or even more drastic code
restructuring. The irregular access pattern also poses a problem for the CPU cache,
which cannot exploit the locality of subsequent memory references. Also computations
performed on subsequent items cannot be vectorized, if a linked list is used.

To overcome these limitations, we propose a sequence of transformations that will
allow specific pointer chain traversals to be transformed into regularly accessed array-
based codes. Such a representation is more suitable for analysis and allows the appli-
cation of many of the optimizations which were originally designed for regular arrays.
Moreover, the transformation framework described here intends to be generically
applicable to a wide range of loop structures that use linked lists, i.e., loop structures
that iterate over linked lists. The resulting intermediate form is further optimized using
two different restructuring strategies, annihilation and sublimation, both of which are
driven by array access patterns.

To illustrate the intermediate form and the two restructuring techniques we give a
simple example, which performs sparse matrix times vector multiplication (Ab). The
rows are stored using linked lists, which are traversed during the multiplication:

for(i = 0; i < m; i++) {
p = Matrix->Row[i];
while(p) {

x[i] = x[i] + p->Value * b[p->ColIndex];
p = p->next;

}
}

This linked list based implementation of matrix multiplication would then be trans-
formed into the following intermediate code:

for(i = 0; i < m; i++) {
p = Matrix->Row[i];
n = 0;
while(p) {

A[n] = p->Value;
C[n] = p->ColIndex;
p = p->next;
n++;

}
for(j = 0; j < n; j++)

x[i] = x[i] + A[j] * b[C[j]];
}
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Note that while in this example the extra overhead is still within the outer for-loop, this
can often be eliminated by hoisting the traversal code outside the outer loop. This is
described in Sect. 3.8. The inner for-loop contains two access patterns, one of which is
the pattern induced by the simple loop counter j and one which is induced by C[ j]. For
restructuring using annihilation, array B is restructured to follow the regular access
pattern j of A. This would lead to the following code:

for(i = 0; i < m; i++) {
p = Matrix->Row[i];
n = 0;
while(p) {

A[n] = p->Value;
C[n] = p->ColIndex;
p = p->next;
n++;

}
for(k = 0; k < n; k++)

B’[k] = b[C[k]];
for(j = 0; j < n; j++)

x[i] = x[i] + A[j] * B’[j];
}

In the other case, when sublimation is applied, A is restructured to follow the irreg-
ular access pattern induced by C[ j], under the assumption that this access pattern is
injective (has no duplicate values). This results in the following code:

for(i = 0; i < m; i++) {
p = Matrix->Row[i];
n = 0;
while(p) {

A[n] = p->Value;
C[n] = p->ColIndex;
p = p->next;
n++;

}
for(k = 0; k < n; k++)

A’[C[k]] = A[k];
for(j = 0; j < n; j++)

x[i] = x[i] + A’[C[j]] * b[C[j]];
}

Note that the irregularity is still present in the inner loop. However, the access patterns
of both accessed arrays are identical in this case. In Sect. 3.7, it is shown how these
loops are transformed into a fully regular intermediate code, which thereupon can be
used for analysis.

Figure 1 shows the architecture of our restructuring framework. In the first step,
the C code is converted to a normalized representation. The rest of the compile-time
part of the system concerns the identification of list traversals and the subsequent
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Fig. 1 Linked list restructuring compiler architecture

transformations to obtain an array-based intermediate code. These steps are explained
in Sect. 3.1 through 3.8. In the case of annihilation, the resulting code is directly
executable. For sublimation, the resulting intermediate must be recompiled at run-
time. The reason for this is that when applying annihilation, the exact index sequence
is known at compile time (0 ≤ i ≤ n, stride 1), but for sublimation, the content
of the index array is only known at run-time. This is explained in more detail in
Sect. 3.6. For sublimation, the resulting executable will partially execute the code,
until the point where the index patterns are known. Then the intermediate code is
recompiled, together with information from the index arrays. Section 3.9 describes
this mechanism.
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In this paper, the different steps of the transformation framework will be illustrated
by their application to a code example which performs matrix multiplication (Sect. 4).
We also perform experiments with this code and an additional code performing
Preconditioned Conjugate Gradient which both have been transformed by our pro-
totype compiler. The results of these experiments are discussed in Sect. 5. Finally, we
will discuss future directions. A brief description of this work has been published by
Groot et al. [15].

2 Related Work

Much work has been done in optimizing code to reduce latency caused by cache-
misses. Our work follows a different philosophy: the regular intermediate code that is
generated is suitable for dependence analysis. This enables a much richer set of further
optimizations, such as optimizations for the memory hierarchy, but also loop parall-
elization. While our paper does not focus on alias and shape analysis, such methods
are required to detect which traversals can be safely transformed.

One way of obtaining shape analysis relies on the structural properties of specific
recursive data structures, which can enable a wider range of optimizations. Ghiya and
Hendren proposed a pointer analysis which classifies heap directed pointers as either
a tree, a DAG or a cyclic graph [11]. This information on disjointness and cyclicity is
valuable when selecting a pointer traversal to analyze. However, as Hwang and Saltz
point out, it is not only important what the actual structure is [18], but in addition,
how it is actually traversed. They call this traversal-pattern-sensitive shape analysis.
Lattner and Adve implemented their Data Structure Analysis (DSA), which identifies
disjoint data structures [22]. DSA provides information about type-safety and connec-
tivity information which aides in the selection of suitable traversals. However, these
approaches are not alternatives to our approach, they rather are analysis tools which
can be used to assess the safety of the transformations presented in this paper. Analysis
techniques like those described here will be incorporated into a future implementation
of our framework.

Bender and Hu [1] describe an adaptive packed-memory array. This is a sparse
array structure which allows for efficient insertion and deletion of elements while pre-
serving locality. A similar approach is taken by Rubin et al. [27], who describe a data
structure that maintains groups of adjacent linked list nodes in such a way that they
are loaded into a cache line simultaneously. This concept is called virtual cache lines.
Both these approaches require a programmer to choose these specific data structures.
In our approach the compiler automatically decides on these data structures based on
the code and data on which the code operates.

Prefetching is a technique that is more easily employed by a compiler. By issuing
a prefetch instruction before other work is done in a loop, memory latency caused by
a cache-miss on a pointer traversal can be hidden, provided that the work done in the
loop body is substantial. Karlsson et al. [19] describe techniques to prefetch irregular
accessed linked structures which extends the work of Luk and Mowry [24], who men-
tion data linearization as a technique to improve prefetching efficiency and locality.
Yang and Lebeck [33] present a memory architecture which pro-actively dereferences
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pointers lower in the hierarchy to push data higher into the memory hierarchy instead
of waiting for the higher memory-level to pull the data. While these approaches do
improve performance, the linked list pattern remains in the loops which impedes
dependence analysis and hence optimizations like concurrentization and vectoriza-
tion as described by Padua and Wolfe [26] cannot often not be applied.

Other techniques that can be applied are structure splitting as proposed by Chilimbi
et al. [6], and Zhong et al. [35], who also describe the opposite transformation array
regrouping. Field reordering as described by Chilimbi et al. [6] is another method to
increase locality in recursive data structures. Structure splitting is a transformation in
which so called hot and cold regions are identified after which the structure is split
accordingly, which improves cache behavior. Array regrouping merges different arrays
into a new array of structures, which can increase locality of reference. Field reordering
clusters structure members such that their ordering matches the spatial access pattern,
which may be quite different from the definition given by the programmer. Techniques
like these are finding their way in production compilers. Hagog and Tice [16] have
described an implementation of structure splitting and structure reordering techniques
into the GCC compiler. Golovanevsky and Zaks [13] have described further progress
on the implementation.

Approaches which are related to our research are solely based on symbolic and
compile-time analysis to improve the performance of pointer-structured computa-
tions. Examples are the work of Chong and Rugina [7] and Rugina and Rinard [28],
in which access pattern analysis is performed symbolically by the compiler to obtain
bounds on memory access regions.

Most optimizations are performed at compile-time. As program behavior is dynamic,
run-time optimizations can result in more efficient code, because more complete infor-
mation is available. However, if static analysis can be done this is preferable. Rus
et al. [29] describe a framework which integrates static and dynamic memory refer-
ence analysis. This is done by generating code which will finish analysis at run-time
for cases that cannot be statically determined. Saltz et al. [30] use an inspector loop
at run-time to determine wave-fronts of concurrently executable loop iterations. This
bears some resemblance to our approach, however, our data specific memory access
pattern restructuring is a different concept. Work by Lin and Padua [23] involves the
analysis of injectiveness of indirect addressed accesses to exploit the automatic parall-
elization of irregular, indirect addressed loop structures. As such, it is different from
the work described in this paper, although it could be seen as a very limited application
of the techniques we propose. A data-centric approach is proposed by Kodukula and
Pingali [20], in which the compiler decides in which order data elements are brought
into the cache. The order in which statements are executed is therefore governed by the
order in which data is fetched. This method is only applicable to dense FORTRAN-like
codes.

The approach as described in this paper is essentially different from the other
approaches discussed above. By linearizing access to a linked list, linked list iteration
statements are transformed into simple for-loops of which the access patterns can be
restructured by applying techniques similar to those described by Zhao and Wijshoff
[34]. This leads to an intermediate code that is amenable to further optimizations which
take into account the characteristics of the underlying data structures. In the case of
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sublimation, a partial execution is required followed by a run-time recompilation of
part of the code, resulting in highly efficient code that is specialized for a particular
instance of a data structure.

3 Transformation Steps

This section describes the steps a compiler should take to transform code using a
linked list access pattern into code that is optimized for a specific instance of a linked
list. A rough outline of these steps can be found in Fig. 1. The compile-time step as
depicted should be seen as consisting of multiple transformation steps which were
grouped together because they strongly interact.

3.1 Normalization

Programming languages often contain complex expressions. In order to make transfor-
mations easier, a normalization step is performed before all other steps. In this paper,
all transformations are source-to-source transformations written for C. The normali-
zation step involves the conversion of for-loops to while-loops, expression flattening,
and common subexpression elimination. These steps lead to a form of C code that is
easier to transform.

The loop normalization results in a uniform representation for list traversals. The
following rule is used:

for(init; cond; iter) {block;} ->
{init; while(cond) {block; iter;}}

Next, all code is flattened. In this form, complicated expressions are unraveled
and their results are stored in temporary variables. Also pointer expressions that are
dereferenced are first put into a temporary variable. This process can be viewed as
creating a type of three address code for C. It drastically reduces the number of cases
to consider and enables transformations on, for instance, an array of linked lists.

The last step in the normalization phase is common subexpression elimination
which together with the flattening of expressions results in easily identifiable linked
list traversals. An example where this transformation enables simple recognition of a
linked list traversal is the following code:

/* list[x] = list[x]->Next; */
*(list + x) = (**(list + x)).Next;

Flattening all expressions results in:

temp1 = lists + x;
temp2 = lists + x;
*temp1 = (*(*temp2)).Next;

After common subexpression elimination, code in which a linked list traversal has a
simple representation results:
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temp1 = lists + x;
*temp1 = (*(*temp1)).Next;

(Note that in the examples used in this paper, non-normalized code is used to keep the
examples more readable).

3.2 Identification of Linked List Traversals

Linked list traversals can be split in two parts, a part that performs the computations
and a part that navigates through the linked list, as pointed out by Ghiya et al. [12].
The first step in identifying such loops consists of identification of possible linked list
candidates, which are structures containing members pointing to the same data struc-
ture as the containing data structure (recursive data structure). The following structure
declaration illustrates the general pattern of a recursive data structure:

struct datatype {
double data;
...
struct datatype *Next; /* Candidate */
...

};

Recursive data structures are often traversed using the following pattern:

...
node = begin_list;
...
while(node != end) {

/* Some computations */
node = node->Next;

}

Ghiya et al. [12] describe a method for identifying linked list traversals which do not
have loop carried dependences (apart from the iteration pointer itself). In this section,
the properties of this method that are essential for the safeness of the transformations
proposed are briefly reviewed.

The only exit point from the loop should be the loop condition, i.e., statements
like continue, break, goto and return are not allowed. Function calls which cannot be
analyzed (e.g., calls to libraries) are forbidden as well, as their side effects cannot be
determined.

The condition of the while-loop tests whether the end of the list has been reached.
An iteration pointer (called navigator by Ghiya et al. [12]) is identified by computing
definition chains (only using loop-resident definitions) for the loop condition. A vari-
able is considered a navigator, if it is uniquely defined by one loop-resident statement
and if this statement contains a recurrent definition of that variable. Moreover, this
statement must be executed unconditionally, i.e., it must appear at the top level of the
while-loop body. Any other variable in the loop condition must be loop-invariant, i.e.,
it should have no loop-resident definition.
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Additional checking of the navigator is necessary to guarantee that a node is not
revisited during the traversal. This means that there may not be any modifications of
the fields that are used to traverse the list. In order to prove safety of the transfor-
mations, pointer analysis techniques must be used. The work of Ghiya [10] shows
an extensive overview of pointer analysis techniques in the context of recursive data
structures.

Many linked list traversals can be handled in this manner. Another assumption that
must be made is that the while loop under consideration will terminate, which is a rea-
sonable assumption as algorithms that traverse structures should terminate. Note that
even cyclic linked lists can be handled, as the loop termination condition together with
the loop analysis guarantees that no elements will be revisited. Under these conditions,
cyclic lists do not require special attention.

3.3 Linearization

Linearization is the process of traversing a linked list and storing the pointers that
are encountered during this traversal. The original iteration loop can then be replaced
with a for-loop iterating over the newly created array. All linked list pointers are then
replaced with an array reference. Applying linearization on the loop structure from
Fig. 2 results in the following code (memory allocation/deallocation code is omitted):

i = 0;
/* Pre-initialization: linearize linked list */
while(node != end) {
A[i] = node;
node = node->Next;
i++;

}
iMax = i;
/* Substitute linearized array for

iteration pointer */
for(i = 0; i < iMax; i++) {
... = A[i]->Value * B[idx_expr];

}

The loop in which the list is linearized is called the pre-initialization loop.

3.4 Indirection Elimination

The linearization step produces an array with pointers to linked list elements. Using
these pointers, data members are accessed and used in the computation loop. This

Fig. 2 Structure of a loop using
a linked list and array B

while( node != end ) { 

... = node->Value * B[idx_expr]; 

node = node->Next; 

}
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indirection can be removed by changing the pre-initialization loop and performing
the indirection there. Thus, the pre-initialization loop will acquire an extra level of
indirection, but in the computation loop, one level of indirection is eliminated. The
code generated by the linearization step would be transformed as follows:

i = 0;
while(node != end) {

A[i] = *node; /* Do indirection here */
node = node->Next;
i++;

}
iMax = i;
for(i = 0; i < iMax; i++) {
/* Result: indirection is eliminated here */
... = A[i].Value * B[idx_expr];

}

3.5 Structure Splitting

It is inefficient to copy the entire structure in the initialization loop. Many structure
members may not be used in the computation loop and such data would unnecessarily
reside in the cache. Additionally, a non-unit stride access pattern on the arrays can pre-
vent other optimizations such as vectorization. By only copying the members which
are actually needed, these problems are circumvented. It also leads to code that is
easier to analyze. Applied to the code resulting from the indirection elimination step,
the following code is obtained:

i = 0;
while(node != end) {
A_Value[i] = (*node).Value;
node = node->Next;
i++;

}
iMax = i;
for(i = 0; i < iMax; i++) {
... = A_Value[i] * B[idx_expr];

}

3.6 Access Pattern Restructuring

The newly generated computation loop contains an array which is indexed by a new
iteration variable (i in this example). Other arrays within the same loop do not
follow the access pattern induced by this variable, although the access pattern may be
dependent on the linearized linked list. Consider the computation loop obtained in the
previous step. For readability, A_V alue is renamed to A.
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for(i = 0; i < iMax; i++) {
... = A[i] * B[idx_expr];

}

This example contains two different access patterns, namely

1. the access pattern induced by i (such a pattern always exists after linearization) and
2. the access pattern induced by idx_expr .

In order to impose the same access pattern onto both arrays, either A must be accessed
using the access pattern of B or B must be accessed using the access pattern of A. Note
that the index expression of B may originally have been dependent on the linked list.
This expression will have been converted to an array by the indirection elimination
and structure splitting step: e.g., B[A[i] → I ndex] would have been transformed to
B[A_I ndex[i]].

If the array B is remapped using the index expression idx_expr , idx_expr must
be injective (the index expression is viewed as a function of i), otherwise at least one
element becomes inaccessible. For example, consider the access patterns (1, 2) for A
and (1, 1) for B. The access pattern of B is not injective and as A[1] can contain only
one value, the original semantics of the loop cannot be reproduced.

Consider the two access pattern restructuring cases, 1 and 2, annihilation and sub-
limation, respectively. It is assumed that A is indexed using iteration counter i , with
lower and upper loop bounds i Min (=0) and i Max , respectively. B is indexed by
idx_expr , which is an injective index expression dependent on i .

1. (Annihilation) Impose the access pattern of A onto B, that is, restructure based on
the index expression of A, which is i . This restructuring is done by creating a new
array B ′ which is defined as follows:

B ′[i] = B[idx_expr ], ∀i(i Min ≤ i ≤ i Max)

This case is very intuitive: fetch the elements actually needed from the other array B
and rewrite the loop such that the restructured array is tightly packed and accessed
in the same order as A. Note that changing the access pattern of B to follow the
access pattern of A is always possible if B is not written to, since the access pattern
induced by i is injective.

2. (Sublimation) Impose the (irregular) access pattern of B onto A, that is, restructure
based on the index expression of B, which is idx_expr . This restructuring is done
by creating a new array A′ which is defined as follows:

A′[ j] =
{

A[i] if ∃i(idx_expr(i) = j)
identi t y otherwise

This case is not very intuitive: the variable j ranges from −∞ to ∞, and there-
fore this definition is only semantic. At run-time, the compiler will be able to
extract proper loop bounds from this definition. The identity value depends on the
computation in which the data is used. This is explained in the next section.
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3.7 Iteration Space Expansion

In case of sublimation, not every element of B (see previous section) is necessarily
accessed. For instance, if throughout the execution of the loop the variable idx_expr
defines the sequence (5, 50, 10), then only the elements A′[5], A′[50] and A′[10] need
to be defined.

However, if the new iteration space is defined to be the interval [−∞,∞], the other
elements of A′ must not alter the semantics of the program. Therefore, the “gaps” in
A′ should be filled with values chosen in such a way that they do not have any effect
when the code is executed. For example, when the loop executes a statement like

X = X + A′[i] ∗ Y,

then the so called identity value must be 0, as this will preserve the semantics of the
program. The resulting code will have infeasible loop bounds, but this code only serves
as an intermediate. The advantage of this approach is that information about the sparse
structure is preserved and together with input data, a compiler can determine if other
access functions can be used, for example storing diagonals of a matrix separately.
This approach has already been proven successfully on both dense FORTRAN codes
(Bik et al. [3]) and sparse codes (Zhao and Wijshoff [34]).

3.8 Loop Extraction

The pre-initialization loop that is generated is placed into the same compound state-
ment as the original linked list traversal. Therefore, the new loop could end up nested
within other loops. In order for the transformations to be efficient, the initialization loop
should be extracted from this loop. This transformation enables further optimizations
as it often results in a perfectly nested loop. If loop extraction cannot be performed,
due to dependences, another access pattern should be tried in the restructuring phase.
This section describes how loop extraction should be performed.

The pre-initialization loop uses a number of variables. Some of these are generated
replacement variables which will be used within the transformed main loop. Other vari-
ables are used for bookkeeping the pre-initialization loop, such as variables tracking
loop boundaries. All remaining variables are non-generated variables or expressions
originating from the initial code.

If an initialization loop A is contained in an outer loop O (Fig. 3), it can be extracted
using one of the following two techniques:

1. If all non-generated variables used in A are invariant over O , then A is just repeat-
ing the same operation every iteration of O . It is therefore safe to move A in front
of O without any further processing.

2. If some non-generated variables used in A are not invariant over O , but all non-
invariant variables are only dependent on a loop counter with known bounds, then
A can be extracted from O .
This requires extension of the generated variables, which is done by adding an
extra dimension to these variables, such that for every iteration the correct value is
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Before:

loop O {
loop A {
generated-variable =

original-variable;
}
/* additional code including

transformed main loop
referencing generated-variable */

}

After:

loop O’ {
loop A {
generated-variable[E] =

original-variable;
}

}
loop O {

/* additional code including
transformed main loop
referencing generated-variable[E] */

}

Fig. 3 Loop A which depends on E is extracted from O

preserved. All references to generated variables must be changed to use the new,
extended variables. A new loop O ′ can be created which uses the original loop
structure of O . Subsequently, loop A is moved from O to O ′.
Loop extraction plays a vital role in the transformation chain. If any dependence

prevents loop extraction, the restructuring code and computation code are not sepa-
rated. In the case of annihilation, this results in code where the restructuring is done
every iteration, which in itself is expensive and prevents the computation loops to
become perfectly nested (which in turn prevents further optimizations). In the case
of sublimation, the lack of separation of restructuring code and computation code
prevents recompilation and therefore this optimization path is disabled. An example
of a loop containing such a dependence is an algorithm for Preconditioned Conjugate
Gradient (PCG). Golub and Van Loan [14] provide a clear description of this algo-
rithm in their book. The algorithm, which is not discussed here in detail, contains a
sparse matrix times dense vector multiplication that is embedded in a loop. It has the
following structure:

while(...) {
...
/* Some definition of vector p */
...
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for(row = 0; row < rows; row++) {
/* Linearization code omitted */
/* Restructuring code */
for(i = 0; i < iMax; i++)

p’[i] = p[A_ColIndex[i]];

for(i = 0; i < iMax; i++)
result[row] += A_Value[i] * p’[i];

}
...

}

The redefinition of p makes the application of annihilation less attractive, because
the restructuring code cannot be moved in front of the containing while-loop. As an
alternative, sublimation can be applied (using the access pattern A_Col I ndex[i]). In
Sect. 5.2, a comparison of annihilation and sublimation is made using PCG based on
linked lists.

3.9 Run-time support

In the case that sublimation is applied, the code obtained from the previous steps
(which all are performed at compile-time) results in a code that is never executed.
A partial recompilation step is included in the run-time system where the newly gener-
ated loops are transformed. Only the computation loops are recompiled while keeping
the pre-initialization untouched. During execution of the pre-initialization loop, the
non-identity structure of the restructured array is written to a file which is used in the
recompilation step to generate instance specific optimized code.

The perfectly nested loop is recompiled using the additional non-identity structure
information. The implementation of such a compiler is discussed in depth by Bik and
Wijshoff [4, 5], and Bik [2]. This recompilation step emits restructured code which is
compiled into a shared library which in turn is loaded by the application at run-time.
Finally, the newly generated code is executed.

4 Example

The concepts described is this paper is demonstrated by using a code example of sparse
matrix multiplication. Figure 4 depicts the data structure used for the representation of
a sparse matrix. Figure 5 shows the actual C code performing the multiplication. Only
the left matrix is sparse (compressed row storage), the right matrix and the result matrix
are both dense. The rows of the sparse matrix are traversed using linked lists which
prevents optimizations such as loop interchange and vectorization. Additionally, as
linked list elements cannot be assumed to be successive elements in main memory,
performance will suffer due to cache misses.

If we consider the loops in the example code, one of these loops, the while-loop,
is a traversal of a linked list. With an n × m result matrix, this loop is executed n · m
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Fig. 4 A sparse matrix using a linked list representation

Fig. 5 Sparse matrix
multiplication

void MatrixMultiply(Matrix left,
double **right, double **result,
int cols )

{
Cell *leftCell;
int dimensions = left.Dimensions;
int row, col;
for(col=0; col<cols; col++) {
for(row=0; row<dimensions; row++) {
leftCell = left.Rows[row];
while( leftCell != NULL ) {
result[row][col] +=

leftCell->Value *
right[leftCell->ColIndex][col];

leftCell = leftCell->ColNext;
}

}
}

}

times, because the dot product of each row of the left matrix with each column of the
right matrix involves the traversal of a linked list which is relatively costly. Ideally,
the inner loop would be vectorized, however this is prevented by using the contents of
a linked list element as operand for the multiplication (le f tCell → V alue) and for
indexing of an array (le f tCell → Col I ndex).

This code can be transformed to an intermediate code which is equivalent, but uses
directly accessed arrays in the inner loop. As an initial step, linearization is applied on
the linked list which transforms the linked list traversal into a pre-initialization loop
and a computation loop.

On the resulting code, indirection elimination and structure splitting can be applied.
In the computation loop, only the members V alue and Col Next are used. These mem-
bers will be put into an array by applying structure splitting. The code produced by
these steps can be found in Fig. 6. Not all intermediate steps are shown in detail.
Memory management code is inserted to dynamically resize arrays when needed at
run-time. This is necessary, because the length of a linked list is not known a priori.
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#define INIT_ALLOC 32
void MatrixMultiply(Matrix left, double **right,

double **result, int cols )
{
Cell *leftCell;
int dimensions = left.Dimensions;
int row, col, i, j;
double **A_Value = (double **)malloc(sizeof(double *) * dimensions );
int **A_ColIndex = (int **)malloc(sizeof(int *) * dimensions );
int counter;
/***SEMANTIC_DEFINITION A_Valuep
forall i,j {

A_Valuep[i][j] = 0; }
***/
for( row = 0; row < dimensions; row++ ) {
int size = INIT_ALLOC;
A_Value[row] = (double *)malloc(sizeof(double)*size);
A_ColIndex[row] = (int *)malloc(sizeof(int)*size);
leftCell = left.Rows[row];
counter = 0;
while( leftCell != NULL ) {

if( counter == size ) {
/* Resize array */
size *= 2;
A_Value[row] = (double *)realloc(A_Value,

sizeof(double) * size );
A_ColIndex[row] = (int *)realloc(A_ColIndex,

sizeof(int)*size );
}
/* Code generated by successive application of linearization,
* indirection elimination and loop extraction (which introduced
* the extra dimension indexed by row) */
A_Value[row][counter] = (*leftCell).Value;
A_ColIndex[row][counter] = (*leftCell).ColIndex;
leftCell = leftCell->ColNext;
counter++;

}
/***RESTRUCTURE A_Value
forall i ( 0 < i < counter ) {

A_Valuep[row][A_ColIndex[i]] = A_Value[i]; }
***/

}
/* This loop will be recompiled and loaded dynamically */
/***RECOMPILE
for( col = 0; col < cols; col++ ) {
for( row = 0; row < dimensions; row++ ) {

forall j {
result[row][col] += A_Valuep[row][j] * right[j][col];

}
}

}
***/
for( row = 0; row < dimensions; row++ ) {
free( A_Value[row] ); free( A_ColIndex[row] );

}
free( A_Value ); free( A_ColIndex );

Fig. 6 Sparse matrix multiplication after loop extraction (sublimation)
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At this point, two choices can be made: either the access pattern of A_V alue is used
to restructure right (annihilation) or the access pattern of right is used to restruc-
ture A_V alue (sublimation). Memory allocation code is left out of these short code
samples.

4.1 Annihilation

In the first case, right is restructured as follows, following the definition from
Sect. 3.6:

forall (0 <= i < n) {
rightp[i] = right[A_ColIndex[i]]; }

This is the semantic definition of rightp. As annihilation can be done at compile-time,
this definition is translated into C code. rightp (right prime) is now substituted for
right in the computation loop:

forall i (0 < i < counter) {
result[row][col] += A_Value[i] * rightp[i][col]; }

4.2 Sublimation

In the second case, A_V alue is restructured to follow the access pattern of right .
This is done by defining A_V aluep as follows:

forall i {
A_Valuep[i] = 0; }

forall i (0 < i < counter) {
A_Valuep[A_ColIndex[i]] = A_Value[i]; }

Contrary to the restructuring code used by annihilation, the restructuring code emit-
ted by sublimation is a semantic definition which cannot be compiled to executable
code until the actual access pattern is known at run-time. Therefore, the definition of
the restructuring code is never really executed. It only tells the compiler that an array
element of A_V aluep that is not defined by the original array A_V alue should be
regarded as being 0. In principle, the compiler is free to materialize some of these ele-
ments at run-time, if this is beneficial (e.g., materialize an entire diagonal of a matrix,
including some zero values). Of course, other computations might require a different
identity value.

Now A_V aluep can be substituted for A_V alue:

forall i (0 < i < counter) {
result[row][col] += A_Valuep[A_ColIndex[i]] *

right[A_ColIndex[i]][col]; }
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4.3 Iteration space expansion

In order to remove the indirect addressing from the loop, change the loop control
structure such that the loop iterates over the entire iteration space that can be spanned
by the iteration variables

forall j {
result[row][col] += A_Valuep[j] * right[j][col]; }

Remember that this does not change the semantics of the program, as the “gaps” in
A_V aluep have been set to 0. However, the iteration space is now unbounded, and this
intermediate code cannot be executed. At run-time, this intermediate code is recom-
piled, using the additional indexing information. At that point, new loop structures are
generated with appropriate loop bounds.

4.4 Loop Extraction

The pre-initialization code depends on the variable row, which is not loop invariant
(the containing for-loop increases it by one every iteration). Therefore, loop extrac-
tion cannot be directly applied without eliminating this dependence. No value which
is pointed to by leftCell, either directly or indirectly (by following a pointer chain), is
modified. Therefore, loop extraction is possible if all variables dependent on le f tCell
are extended, such that for every iteration of row, the values which were copied are
stored separately. This is a form of data privatization.

The pre-initialization code is now independent of the computation loop and can be
moved in front of all containing for-loops. The resulting code is shown in Fig. 6
which is code resulting from restructuring A_V alue. The extraction of the pre-
initialization code introduces a new dimension for some variables. The definition
of the restructured variable A_V alue is adapted accordingly. This code sample also
includes memory-management code for the linearization and structure splitting steps.

An interesting issue is the determination of the loop bounds in the computation
loops. Instead of having a separate bounds for each row (for which code could be
generated), no bounds are specified at all, i.e., the entire iteration space is used. This
extends the iteration space of the computation loop but poses no further problems,
as the compiler can determine feasible loop bounds at run-time, using the fact that
any element of A_V aluep that has not been assigned a value from A_V alue has the
identity value (in this case 0).

The resulting code only traverses the linked list once per row and the computa-
tion loop has become a perfectly nested for-loop, which is easier to analyze. Loop
interchange is enabled in this case and subsequently, the inner loop can be vector-
ized. Additionally, this loop structure dramatically increases cache performance as
subsequent items are adjacent in memory.

When applying annihilation, the run-time recompilation phase is left out, as the
iteration space is defined (symbolically) at compile-time. As mentioned before, the
version resulting from restructuring A_V alue to match the access pattern of right
induced by A_Col I ndex[i] (sublimation) is not directly executable, as this code
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can have a (at least theoretically) infinite iteration space. Together with non-iden-
tity structure information the computation loop can be transformed to a data instance
specific code which can be very efficient, as will be shown in the following
section.

5 Experiments

5.1 Matrix Multiplication

The transformations described in this paper have been applied on code performing
matrix multiplication, as described in the above example. In this case, the left matrix
is a sparse n ×n-matrix and the right matrix is a dense n ×m-matrix. The result matrix
is also dense. Figure 5 shows the original algorithm.

All benchmarks have been executed using both the GNU C/FORTRAN compiler
and the Intel C/FORTRAN compiler. As the semantic definitions of the restructured
arrays are language independent, the semantic definitions are translated to FORTRAN,
for which a restructuring compiler called MT1 (Bik and Wijshoff [4, 5], and Bik [2])
exists that exploits the non-zero patterns of arrays given dense algorithm definitions.
There are five different versions of the program:

– The original program.
– Two programs generated using MTC, our prototype compiler, which performs

the compile-time part of sublimation. For the run-time recompilation, one ver-
sion uses the FORTRAN compiler to compile the code emitted by MT1 and one
program uses f2c, a FORTRAN to C compiler by Feldman et al. [9], to convert
the code emitted by MT1 back to C. The output of f2c is further compiled by the
C compiler.

– Two programs obtained using annihilation (one without further optimizations and
one with loop interchange applied).

All programs have been compiled using both the GCC and the Intel Compiler.
For sublimation, the access pattern chosen is the access pattern of right , which

leads to the following computation loop:

for(col = 0; col < cols; col++) {
for(row = 0; row < dimensions; row++) {

forall i {
result[row][col] +=

A_Valuep[row][i] * right[i][col];
}

}
}

The real bounds of the iteration space are obtained at run-time using the semantic
definition of the restructured arrays. Again, note that the version obtained using subli-
mation is an intermediate code which should not be executed. In the example shown,
a sparse matrix structure is embedded into a two dimensional array whose size in
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principle is infinite. As explained in Sect. 3.6, A_V alue is restructured to follow the
access pattern of right . The identi t y value for the multiplication followed by addi-
tion is 0. The access pattern of A_V aluep is determined in the pre-initialization loop
and can be used to restructure the loops such that this structure is taken into account
during optimization. Currently, the run-time restructuring step (sublimation) is done
by transforming the semantic definitions to FORTRAN code for which such restruc-
turing techniques have been implemented (MT1). The restructured code is compiled
and linked to the calling application at run-time.

The other versions are generated by applying annihilation, i.e., right is restructured
to follow the access pattern of A_V alue, which is i . This results in the following com-
putation loop (defined as C code):

for(col = 0; col < cols; col++) {
for(row = 0; row < dimensions; row++) {
for(i = 0; i < iMax[row]; i++) {

result[row][col] +=
A_Value[row][i] * rightp[row][i][col];

}
}

}

After applying loop interchange:

for(row = 0; row < dimensions; row++) {
for(i = 0; i < iMax[row]; i++) {
for(col = 0; col < cols; col++) {

result[row][col] +=
A_Value[row][i] * rightp[row][i][col];

}
}

}

The compilers used are GCC 4.0.2 and the Intel C and FORTRAN Compiler 9.1.
The benchmarks were executed on an Intel Pentium 4 Xeon 3.00 GHz CPU (family
15, model 4, stepping 1), 4GB of main memory running SuSE Linux 10.0. Four dif-
ferent matrices which are publicly available MatrixMarket [25]. were used, namely
sherman3, memplus, add32 and af23560. These originate from the Harwell-Boeing
Matrix Collection which is described by Duff et al. [8].

Figure 7 shows the execution times for sparse matrix times dense matrix multipli-
cation for various sizes of the right matrix using the GCC compiler. Figure 8 shows
the results for the Intel Compiler. The speedups relative to the original code (GCC
code relative to the original code compiled with GCC, Intel Compiler code relative to
the original code compiled with the Intel C compiler) when the right matrix has 3000
columns, is shown in Fig. 9.

As can be seen in Figs. 7 and 8, the run-time recompilation can take a considerable
fraction of the total execution time, but it dramatically speeds up the computation
itself. In this experiment, the code generated by applying annihilation clearly is the
fastest. Table 1 shows the initialization time needed by annihilation and sublimation.
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Fig. 7 Execution times using GNU GCC

The execution time of sublimation using FORTRAN is also plotted using the compu-
tation time only (initialization time left out) in order to compare the performance of
the computation loop only. Note that if the initialization time is not taken into account,
the code generated by sublimation shows a performance similar to that of annihilation.
Especially the Intel FORTRAN compiler emits code that is close in performance to
the code produced by annihilation. This shows that sublimation is a viable alternative
if dependences prevent the application of annihilation.

Interestingly, for GCC it does not really matter whether the FORTRAN or the C ver-
sion is used. For the Intel Compiler, in two of the four cases it makes quite a difference
whether the FORTRAN or the C version is used. For the matrices add32 and memplus
the computation loop is considerably faster, if FORTRAN is used. In principle, the
C code emitted by f2c should be the same, but apparently the FORTRAN code is
easier to analyze by a compiler. The performance of the C versions is comparable for
GCC and the Intel Compiler. Apparently, the Intel FORTRAN Compiler finds some
optimization opportunities that the GCC FORTRAN compiler does not find. It can
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Fig. 8 Execution times using the Intel Compiler
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Table 1 Mean initialization time in seconds

af23560 add32 sherman3 memplus

Sublimation GCC 10.439 3.130 3.124 4.688
Intel 8.436 3.049 3.297 4.190

Sublimation/F2C GCC 16.386 3.069 3.408 4.358
Intel 16.344 3.146 3.482 4.419

Annihilation GCC 0.073 0.006 0.005 0.029
Intel 0.074 0.006 0.005 0.029

be concluded that sublimation does generate code which is optimizable, but that not
every compiler fully exploits these opportunities.

5.2 Preconditioned Conjugate Gradient

There are cases where annihilation is not always the best option. Preconditioned con-
jugate gradient (as described by Golub and Van Loan [14]) is such an example. This
algorithm iteratively solves linear systems. In each iteration, a matrix/vector multi-
plication is performed. The matrix is constant throughout execution, but the vector
changes every iteration. Therefore, the code restructuring the vector cannot be hoisted
outside of the containing loop. In addition, this vector is used in subsequent compu-
tations which of course expect the original access pattern. Therefore, the modified
data must be copied in every iteration, to keep the restructured version up-to-date. In
principle, this can be solved by restructuring all dependent data structures, but this has
not been implemented yet. This does not mean that annihilation cannot be beneficial
for this algorithm as restructuring might enable other optimizations, amortizing the
cost of the restructuring.

First we will consider the application of sublimation. Sublimation has been applied
to a C implementation of Conjugate Gradient with a diagonal preconditioner. The
matrices used are af23560, sherman3, memplus, impcol_b and lshp3466. The algo-
rithm does not converge, except for sherman3. This is not a problem, as we are inter-
ested in the program’s behavior caused by the non-zero structure of the underlying
problem, rather than the actual solution.

Table 2 shows the execution times of the two programs generated by MTC (our
prototype compiler) performing sublimation. One version directly compiles the (at
run-time) restructured FORTRAN code, the other uses f2c to convert the restructured
code back to C (referred to as MTC/F2C). The execution times shown are the average
execution times taken over 10 runs. The significance of the difference in execution
times is determined using the Student’s t-test. The threshold used for the p-value is
0.001. The only differences found to be significant are for the combination GCC with
the matrix impcol_b. In the absolute sense, the differences are not very large and
therefore the results for the version using f2c will not be considered further.

Figure 10 shows the execution times of PCG using the different matrices. The results
for lshp3466 are shown separately in Fig. 11, as for this matrix, the program shows
some unexpected behavior. For the matrix af23560, the transformations performed
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Table 2 Execution times for preconditioned conjugate gradient

Matrix Compiler Iterations Total(pcg_mtc) Total(pcg_mtc_f2c) p-value

af23560 gcc 0 10.4369181 10.4565496 0.2332
200 13.6794500 13.6856079 0.7277
500 18.4899473 18.5281476 0.0928

1000 26.5012467 26.5199758 0.5196
icc 0 8.3799467 8.3820959 0.8543

200 11.2647890 11.2720330 0.4640
500 15.6034099 15.5978320 0.7378

1000 22.8165724 22.8604394 0.3324
impcol_b gcc 0 2.7630555 2.7659491 0.7064

1000000 7.7020608 7.8059651 0.0000*
2000000 12.6517297 12.8694533 0.0000*
5000000 27.4455029 28.0216110 0.0000*

10000000 52.1405536 53.2367686 0.0000*
icc 0 2.7902089 2.7847962 0.7141

1000000 5.7294116 5.7362139 0.1551
2000000 8.6936637 8.6937868 0.9908
5000000 17.6339414 17.5776914 0.5198

10000000 32.6823472 32.3215858 0.1807
lshp3466 gcc 0 1.9389572 1.9393990 0.8050

5000 3.1645367 3.1619932 0.9443
10000 4.4255588 4.4025642 0.6569
25000 8.2005100 8.1453305 0.7551
50000 14.0215637 14.1054011 0.7226

icc 0 1.9219801 1.9304343 0.0001
5000 2.8958285 2.9275486 0.3830

10000 3.9794020 3.8251235 0.1028
25000 6.8309266 6.9324833 0.6294
50000 11.4676299 11.6319217 0.4393

memplus gcc 0 3.6738501 3.7176453 0.1371
200 4.9385124 4.9246219 0.3406
500 6.8018818 6.8135444 0.4001

1000 9.9479365 9.8877520 0.0811
2000 16.1671235 16.2084638 0.4743

icc 0 3.1837252 3.1985074 0.6831
200 4.1646083 4.2815048 0.1062
500 5.5736581 5.5779907 0.7269

1000 7.9800528 7.9539172 0.1920
2000 12.7488172 12.7159817 0.5007

sherman3 gcc 0 3.1321917 3.1264834 0.7156
200 3.2285829 3.2185971 0.1075
500 3.3751111 3.3805490 0.6407

1000 3.6319173 3.6358024 0.8249
2000 4.1335331 4.1530528 0.7129
2865 4.6117277 4.6734273 0.4756

icc 0 3.0950571 3.0827892 0.4930
200 3.1625665 3.1744411 0.2263
500 3.3024061 3.3019816 0.9704

1000 3.5116003 3.5093471 0.9205
2000 3.9008675 3.8564076 0.2961
2865 4.2025144 4.2786232 0.1312

MTC vs. MTC/F2C
* Indicates that the observed difference is significant
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Fig. 10 Execution times for preconditioned conjugate gradient

by MTC are effective. Using both compilers, significant speedups are obtained. Both
annihilation and sublimation result in faster code, sublimation being clearly superior
in the asymptotic case. For memplus, the transformations are effective as well. Again,
sublimation outperforms annihilation in the asymptotic case. PCG converges in 2875
iterations for sherman3 and at this point the original code performs better than the
versions produced by annihilation and sublimation. Note however that in the case of
sublimation, the slope of the curve is less steep, which means that the computation
itself is faster but it cannot compensate for the time spent in the initialization. The
results are different for impcol_b. In this case, performance suffers if annihilation or
sublimation is applied. This matrix is relatively small (53 × 53) and no appropriate
access pattern can be found at run-time when sublimation is applied for this matrix,
which results in the selection of a representation completely based on an indirectly
addressed access storage scheme. This storage scheme performs worse than the linked
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Fig. 12 Mean asymptotic speedup obtained by using MTC

list representation, which uses indirect addressing as well. The Intel Compiler clearly
outperforms GCC on this matrix. For all other matrices in Fig. 10, the Intel Compiler
performs slightly better than GCC.

As mentioned before, PCG shows some abnormal behavior when the matrix lshp
3466 is used. Figure 11 shows the execution times for this matrix. In addition to the
mean execution time, the 95% confidence intervals are also shown. Both for the Intel
Compiler and GCC, there is a large variance in the execution times for the original
version. Application of annihilation resulted in a performance degradation (Fig. 12).

Interestingly, the version using sublimation does not show this behavior and is likely
to execute faster. This indicates that the transformations proposed in this paper do not
only give gains in performance, but also can result in algorithms that show more robust
behavior.

Table 3 compares the original algorithm with the version generated by MTC. In all
cases (except for the matrix lshp3466) the differences in execution times are signif-
icant. Table 4 compares the performance of the Intel Compiler and GCC. From this
data, it can be concluded that the Intel Compiler performs significantly better than
GCC.
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Table 3 Execution times for preconditioned conjugate gradient

Matrix Compiler Iterations Total(pcg) Total(pcg_mtc) p-value

af23560 gcc 0 0.0014977 10.4369181 0.0000*
200 9.0676140 13.6794500 0.0000*
500 22.6633046 18.4899473 0.0000*

1000 45.3536471 26.5012467 0.0000*
icc 0 0.0011748 8.3799467 0.0000*

200 8.6016974 11.2647890 0.0000*
500 21.4728851 15.6034099 0.0000*

1000 42.9741284 22.8165724 0.0000*
impcol_b gcc 0 0.0000489 2.7630555 0.0000*

1000000 4.1009672 7.7020608 0.0000*
2000000 7.9636513 12.6517297 0.0000*
5000000 20.1213715 27.4455029 0.0000*

10000000 40.4568902 52.1405536 0.0000*
icc 0 0.0000546 2.7902089 0.0000*

1000000 1.8692082 5.7294116 0.0000*
2000000 3.7324763 8.6936637 0.0000*
5000000 9.3331125 17.6339414 0.0000*

10000000 18.7334097 32.6823472 0.0000*
lshp3466 gcc 0 0.0002808 1.9389572 0.0000*

5000 2.0282342 3.1645367 0.0000*
10000 3.9577893 4.4255588 0.0058
25000 10.3251169 8.2005100 0.0004
50000 19.1854449 14.0215637 0.0002

icc 0 0.0002627 1.9219801 0.0000*
5000 1.2696215 2.8958285 0.0000*

10000 3.0687554 3.9794020 0.0000*
25000 6.6853483 6.8309266 0.7832
50000 13.4729768 11.4676299 0.0470

memplus gcc 0 0.0011539 3.6738501 0.0000*
200 3.3156697 4.9385124 0.0000*
500 8.2835206 6.8018818 0.0000*

1000 16.5571594 9.9479365 0.0000*
2000 33.1987006 16.1671235 0.0000*

icc 0 0.0009095 3.1837252 0.0000*
200 2.6729744 4.1646083 0.0000*
500 6.6520123 5.5736581 0.0000*

1000 13.3496854 7.9800528 0.0000*
2000 26.6269574 12.7488172 0.0000*

sherman3 gcc 0 0.0003997 3.1321917 0.0000*
200 0.1960706 3.2285829 0.0000*
500 0.5022527 3.3751111 0.0000*

1000 1.0568317 3.6319173 0.0000*
2000 2.0277288 4.1335331 0.0000*
2865 2.8716864 4.6117277 0.0000*

icc 0 0.0003540 3.0950571 0.0000*
200 0.1463178 3.1625665 0.0000*
500 0.4011187 3.3024061 0.0000*

1000 0.6927279 3.5116003 0.0000*
2000 1.4612195 3.9008675 0.0000*
2865 2.1161639 4.2025144 0.0000*

Original vs. MTC
* Indicates that the observed difference is significant
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Table 4 Execution times for preconditioned conjugate gradient

Matrix Program Iterations Total(ICC) Total(GCC) p-value

af23560 pcg 0 0.0011748 0.0014977 0.00000*
pcg 200 8.6016974 9.0676140 0.00000*
pcg 500 21.4728851 22.6633046 0.00000*
pcg 1000 42.9741284 45.3536471 0.00000*
pcg_mtc 0 8.3799467 10.4369181 0.00000*
pcg_mtc 200 11.2647890 13.6794500 0.00000*
pcg_mtc 500 15.6034099 18.4899473 0.00000*
pcg_mtc 1000 22.8165724 26.5012467 0.00000*

impcol_b pcg 0 0.0000546 0.0000489 0.00977
pcg 1000000 1.8692082 4.1009672 0.00000*
pcg 2000000 3.7324763 7.9636513 0.00000*
pcg 5000000 9.3331125 20.1213715 0.00000*
pcg 10000000 18.7334097 40.4568902 0.00000*
pcg_mtc 0 2.7902089 2.7630555 0.08049
pcg_mtc 1000000 5.7294116 7.7020608 0.00000*
pcg_mtc 2000000 8.6936637 12.6517297 0.00000*
pcg_mtc 5000000 17.6339414 27.4455029 0.00000*
pcg_mtc 10000000 32.6823472 52.1405536 0.00000*

lshp3466 pcg 0 0.0002627 0.0002808 0.00001*
pcg 5000 1.2696215 2.0282342 0.00023
pcg 10000 3.0687554 3.9577893 0.00007*
pcg 25000 6.6853483 10.3251169 0.00002*
pcg 50000 13.4729768 19.1854449 0.00021
pcg_mtc 0 1.9219801 1.9389572 0.00000*
pcg_mtc 5000 2.8958285 3.1645367 0.00000*
pcg_mtc 10000 3.9794020 4.4255588 0.00035
pcg_mtc 25000 6.8309266 8.2005100 0.00000*
pcg_mtc 50000 11.4676299 14.0215637 0.00000*

memplus pcg 0 0.0009095 0.0011539 0.00000*
pcg 200 2.6729744 3.3156697 0.00000*
pcg 500 6.6520123 8.2835206 0.00000*
pcg 1000 13.3496854 16.5571594 0.00000*
pcg 2000 26.6269574 33.1987006 0.00000*
pcg_mtc 0 3.1837252 3.6738501 0.00000*
pcg_mtc 200 4.1646083 4.9385124 0.00000*
pcg_mtc 500 5.5736581 6.8018818 0.00000*
pcg_mtc 1000 7.9800528 9.9479365 0.00000*
pcg_mtc 2000 12.7488172 16.1671235 0.00000*

sherman3 pcg 0 0.0003540 0.0003997 0.00000*
pcg 200 0.1463178 0.1960706 0.00000*
pcg 500 0.4011187 0.5022527 0.00000*
pcg 1000 0.6927279 1.0568317 0.00000*
pcg 2000 1.4612195 2.0277288 0.00000*
pcg 2865 2.1161639 2.8716864 0.00000*
pcg_mtc 0 3.0950571 3.1321917 0.11104
pcg_mtc 200 3.1625665 3.2285829 0.00000*
pcg_mtc 500 3.3024061 3.3751111 0.00000*
pcg_mtc 1000 3.5116003 3.6319173 0.00006*
pcg_mtc 2000 3.9008675 4.1335331 0.00050
pcg_mtc 2865 4.2025144 4.6117277 0.00008*

Intel Compiler vs. GCC
* Indicates that the observed difference is significant
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Speedups for the code produced by MTC have been obtained using the maxi-
mum number of iterations that data has been collected for. In addition, the asymptotic
speedup for sublimation is calculated by leaving out the initialization times. All speed-
ups are compared to the original code, using the same compiler. The results are shown
in Fig. 12. The asymptotic speedup shows that the code produced by MTC is poten-
tially faster than the original code in all cases, except for impcol_b. It also outperforms
code resulting from annihilation in nearly all cases (except for impcol_b when using
the Intel Compiler).

6 Future Work and Conclusions

The results obtained from the experiments suggest that the transformations proposed in
this paper can be very effective. Code containing pointer chains are hard to analyze and
transforming such codes to regularized codes can have major benefits. The methods
proposed here result in a code that has the following properties. (1) Loop interchange
is enabled and related data exhibits spatial locality due to linearization and structure
splitting. (2) Structure splitting reduces the amount of data that must be fetched from
memory because data that is never needed can be loaded in the CPU cache if the
linked list itself was used in the computation. (3) Loop extraction results in simpler
computation loop structures which are easier to analyze. (4) After loop extraction the
expensive traversal of a linked list is less deeply nested, removing many unneces-
sary traversals of the linked list. Together, these properties enable major performance
improvements.

The choice between annihilation and sublimation involves a trade-off. Annihilation
is relatively simple and does not need run-time support, sublimation is more compli-
cated and has significant run-time overhead. Table 1 showed how large this difference
can be. However, as the results from Sect. 5 show, sublimation can be very efficient,
depending on both the dependences which are present in the code and the underlying
data structure. Dependences may prevent moving the restructuring code across loops,
favoring another access pattern to be used for restructuring. Such trade-offs are a topic
for future research.

Although it is well known that the choice of data structures has a big influence
on the performance of algorithms, most compiler transformations do not directly tar-
get data structures but only consider the computational code. One of the reasons for
this is that especially pointer structures impose severe restrictions on standard trans-
formations. In this paper various transformations are described which directly target
the transformation of data structures and it is shown that substantial speedups can be
achieved.

We fully realize that the techniques as described in this paper are very ambitious
and still require a large research and development effort to be fully implemented in a
production type compiler. Also the code samples used in this paper only reflect algo-
rithm/kernel based codes and the question remains how the techniques will expand if
full application codes were to be considered. In principle, non-numerical algorithms
can be handled as well, but the gains in computation speed must compensate for the
initialization overhead.
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For full applications, there are various problems which need to be dealt with. These
issues will be addressed in future publications. Here, we give a short overview of some
topics that need further elaboration.

Currently, only relatively simple pointer traversals (linked list) are supported. In
future work, we plan to extend our techniques such that more complicated traversals
can be recognized and transformed to a dense representation. A good starting point for
more complicated traversal patterns is described by Hummel et al. [17], who define
possible access paths encountered during execution. This is a flexible approach that
also enables our techniques on cyclic data structures, as long as the traversal pattern
at run-time remains acyclic.

Modifications of data structures that have an impact on the traversal pattern are
not taken into account. This prevents the application of our techniques in many cases,
which potentially could benefit from them. Therefore, more research must be done on
how to permit changes of the traversal patterns. Additionally, the methods should be
expanded to include interprocedural application of our techniques, such that restruc-
turing overhead can be moved across function boundaries. A program wide approach
also allows for reuse of restructured and recompiled codes, further reducing overhead.

The restructuring techniques annihilation and sublimation must be taken to a higher
level. Multiple different access patterns (possibly indirect) should be supported and
modification of these elements must be made possible. This requires a write-back
phase in which the modified data members are written back in their original location.
The access patterns should also be propagated throughout the entire application, such
that other data structures can also be remapped, possibly eliminating the need for the
write-back stage.

Actually, the work as described in this paper might be seen as a first step in realizing
data structure independent programming. Weng et al. [31] made an attempt to separate
problem specification and and the actual data structures used for multi-dimensional
scientific datasets. Langella et al. use a distributed storage middleware to obtain loca-
tion independence [21]. All these approaches focus on a high level of granularity.
Wijshoff [32] calls for generic approaches to eliminate data structure dependence,
such that it is the compiler that is responsible for choosing good implementations. All
these views have in common that they aim to hide the actual data layout from the core
application.

The approach taken in this paper hopefully will lead to a new direction of devis-
ing future implementations of compilers as well as applications. In this case, future
applications could be developed regardless of specific data structure choices. There-
upon, advanced compilers will transform these applications into applications which
are optimized for specific data structure instances. This will not only improve effi-
ciency considerably but will also provide a simple and transparent means of defining
applications.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncom-
mercial License which permits any noncommercial use, distribution, and reproduction in any medium,
provided the original author(s) and source are credited.
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