Skip to main content
Log in

On-Line Testing of Lab-on-Chip Using Reconfigurable Digital-Microfluidic Compactors

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Dependability is an important system attribute for microfluidic lab-on-chip devices. On-line testing offers a promising method for detecting defects, fluidic abnormalities, and bioassay malfunctions during chip operation. However, previous techniques for reading test outcomes and analyzing pulse sequences are cumbersome, sensitive to the calibration of capacitive sensors, and error-prone. We present a built-in self-test (BIST) method for on-line testing of digital microfluidic lab-on-chip. This method utilizes microfluidic compactors based on droplet-based AND gates, which are implemented using digital microfluidics. An optimization method is proposed to schedule logic AND operations in the compactor to minimize the end time for the compaction procedure. Dynamic reconfiguration of these compactors ensures low area overhead and it allows BIST to be interleaved with bioassays in functional mode. We evaluate the on-line testing method using a multiplexed in vitro diagnostics bioassay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bardell P.H., McAnney W.H., Savir J.: Built-in Test for VLSI: Pseudo-Random Techniques. Wiley, New York (1987)

    Google Scholar 

  2. Bohringer K.F.: Modeling and controlling parallel tasks in droplet-based microfluidic systems. IEEE Trans. CAD 25, 334–344 (2006)

    Google Scholar 

  3. Chakrabarty K., Su F.: Digital Microfluidic Biochips: Synthesis, Testing, and Reconfiguration Techniques. CRC Press, Boca, Raton, FL (2006)

    Google Scholar 

  4. Fair R.B. et al.: Chemical and biological applications of digital-microfluidic devices. IEEE Des. Test Comput. 24, 10–24 (2007)

    Article  Google Scholar 

  5. Griffith E.J., Akella S., Goldberg M.K.: Performance characterization of a reconfigurable planar-array digital microfluidic system. IEEE Trans. CAD 25, 345–357 (2006)

    Google Scholar 

  6. Kerkhoff H.G.: Testing microelectronic biofluidic systems. IEEE Des. Test Comput. 24, 72–82 (2007)

    Article  Google Scholar 

  7. Kerkhoff, H.G., Acar, M.: Testable design and testing of micro-electrofluidic arrays. Proc. VTS, pp. 403–409 (2003)

  8. Marr D.W.M., Munakata T.: Micro/nanofluidic computing. Comm. ACM 50, 64–68 (2007)

    Article  Google Scholar 

  9. Paik, P., Pamula, V.K., Pollack, M.G., Chakrabarty, K.: Coplanar digital microfluidics using standard printed circuit board processes. MicroTAS (2005)

  10. Pollack, M.G.: Electrowetting-based microactuation of droplets for digital microfluidics, PhD thesis, Duke University (2001)

  11. Ricketts, A.J., Irick, K., Vijaykrishnan, N., Irwin, M.J.: Priority scheduling in digital microfluidics-based biochips. Proc. DATE Conf., pp. 329–334 (2006)

  12. Silicon Biosystems. www.siliconbiosystems.com

  13. Srinivasan, V., Pamula, V.K., Pollack, M.G., Fair, R.B.: Clinical diagnositics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. Proc. MicroTAS, pp. 1287–1290 (2003)

  14. Su, F., Ozev, S., Chakrabarty, K.: Testing of droplet-based microelectrofluidic systems. Proc. IEEE ITC, pp. 1192–1200 (2003)

  15. Su, F., Ozev, S., Chakrabarty, K.: Concurrent testing of droplet-based microfluidic systems for multiplexed biomedical assays. Proc. ITC, pp. 883–892 (2004)

  16. Su F., Chakrabarty K., Fair R.B.: Microfluidics-based biochips: technology issues, implementation platforms, and design automation challenges. IEEE Trans. CAD 25, 211–223 (2006)

    Google Scholar 

  17. Su F., Ozev S., Chakrabarty K.: Test planning and test resource optimization for droplet-based microfluidic systems. J. Elect. Test Theory Appl. 22, 199–210 (2006)

    Article  Google Scholar 

  18. Su F., Hwang W., Mukherjee A., Chakrabarty K.: Testing and diagnosis of realistic defects in digital microfluidic biochips. JETTA 23, 219–233 (2007)

    Google Scholar 

  19. Xu, T., Chakrabarty, K.: Functional testing of digital microfluidic biochips. Proc. ITC (2007)

  20. Xu T., Chakrabarty K.: Parallel scan-like test and multiple-defect diagnosis for digital microfluidic biochips. IEEE Trans. Biomed. Circ. Sys. 1, 148–158 (2007)

    Article  Google Scholar 

  21. Xu, T. et al: Design and optimization of a digital microfluidic biochip for protein crystallization. Proc. ICCAD (2008)

  22. Yuh P.H., Yang C.L., Chang C.W.: Placement of defect-tolerant digital microfluidic biochips using the T-tree formulation. ACM J. Emerg. Tech. Comput. Sys. 3, 13.1–13.32 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Chakrabarty, K. On-Line Testing of Lab-on-Chip Using Reconfigurable Digital-Microfluidic Compactors. Int J Parallel Prog 37, 370–388 (2009). https://doi.org/10.1007/s10766-009-0103-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-009-0103-z

Keywords

Navigation