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Abstract Even though computing systems have increased the number of transis-
tors, the switching speed, and the number of processors, most programs exhibit limited
speedup due to the serial dependencies of existing algorithms. Analysis of intrinsically
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parallel systems such as brain circuitry have led to the identification of novel architec-
ture designs, and also new algorithms than can exploit the features of modern multipro-
cessor systems. In this article we describe the details of a brain derived vision (BDV)
algorithm that is derived from the anatomical structure, and physiological operating
principles of thalamo-cortical brain circuits. We show that many characteristics of the
BDV algorithm lend themselves to implementation on IBM CELL architecture, and
yield impressive speedups that equal or exceed the performance of specialized solu-
tions such as FPGAs. Mapping this algorithm to the IBM CELL is non-trivial, and we
suggest various approaches to deal with parallelism, task granularity, communication,
and memory locality. We also show that a cluster of three PS3s (or more) containing
IBM CELL processors provides a promising platform for brain derived algorithms,
exhibiting speedup of more than 140× over a desktop PC implementation, and thus
enabling real-time object recognition for robotic systems.

Keywords IBM CELL · Biological computer vision · Parallel algorithms · Cognitive
computing

Abbreviations
BDV Brain derived vision
B-U Bottom-up engine
FD Feature detector
LST Line segment triples

1 Introduction

Our brains outperform engineering methods across a wide range of tasks, from per-
ception and learning to higher level cognitive processing. The computing field is
recognizing that biology is a valuable source of inspiration for solving problems in
architecture, integration, and nanoscale systems [1]. Also, understanding and imple-
menting brain-like systems in silicon is one of the grand challenges of the 21st century
[2]. Recognizing this researchers are increasingly investigating brain mechanisms as
models for novel algorithmic and architectural approaches [3–11].

The human brain contains billions of low-precision processing elements (neurons)
that store memories in a highly distributed fashion via their connections (synapses),
without a central processor. These brain circuits are organized into specific archi-
tectures that can perform complex and quite understandable algorithms, conferring
unexpectedly powerful functions to the resulting composed circuits [8,12].

A key aspect of the power of brain circuit architectures is their massive parallelism
that apparently provides a method for using large numbers of low-precision processing
elements to compute complex calculations in relatively few serial steps. For instance,
neurons are remarkably slow, taking milliseconds to compute or transmit information,
yet animals recognize visual objects in a fraction of a second; i.e., the entire compu-
tation is carried out using millions of neurons but less than 100 serial steps [13]. In
contrast, except for few applications, parallelization of serial code typically elicits very
limited speedup, due to Amdahl’s Law [14]; and even the task of identifying the pos-
sible amount of speedup for a given task may require a significant investment of time.
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Brain systems constitute massively parallel architectures that carry out intrinsically
parallel algorithms, rather than parallelizations of inherently serial methods. Algo-
rithms derived from the operating rules of the brain circuits thus have correspondingly
few serial dependencies, and are well poised to take advantage of parallel hardware
such as multicore processors, graphics processors, etc.

In this article we present a comprehensive overview of one type of brain-derived
vision (BDV) algorithm, based on studies of the mammalian visual system, and appli-
cable to real-world visual object recognition tasks [5]. As expected from a brain-
derived method, the system is highly parallel, and computationally efficient. We
demonstrate its implementation in the IBM Cell processor [15,16] and in small clus-
ters of these processors as in Sony Playstation 3 systems.1 In this article we make
two important contributions: first, we present the detailed computational model of the
bottom-up engine in the BDV algorithm by extending our previous article [7]; second,
we also show the various trade-offs in the implementation and performance prediction
of this model on IBM CELL.

2 Background

The brain is a non-homogeneous structure with various regions or sub-structures whose
computation emerged through an evolutionary approach, rather than using the formal
notion of Boolean algebra [18]. Among the various structures, the outer surface of the
brain called the cerebral cortex forms a critical part in the brain for cognitive func-
tions. The structure of different cortex circuits are surprisingly similar, even though
different parts of the cortex are responsible for various cognitive functionality like
audition, vision, sensation, decision making, and motor control. Various theories and
models have been postulated by the computational neuroscience community about the
underlying mechanisms that are involved in the behavior of cortex. In this article we
demonstrate a practical realization of a brain derived vision algorithm inspired by the
anatomical structure and physiological operation of the brain. We would like to stress
that the algorithm presented here is a simplified model of the human vision. The actual
human vision, even at the V1 stage, is extremely complicated and many things are
unknown [19].

Many interesting computational principles can be derived by understanding how
the visual pathway of the brain achieves object recognition and scene understanding.
We briefly look at the elements of the visual pathway that will be helpful for deriving
our simplified vision algorithm. Light enters the visual pathway by activating the rod
and cone receptor cells in the retina. Further processing is done by the last stage of
retinal cells called the ganglion cells [20]. These cells respond to a specific pattern of
light, called the receptive field of the cell. Two kinds of receptive field exist in these
cells, namely on-center/off-surround and off-center/on-surround. The responses from
these cells are based on the difference in light between the center and the surround
region. Thus a uniform light pattern will evoke a very low response compared to a well

1 Some early results were also presented at 2007 CELL/B.E. University Challenge, and won the first prize.
The B-U engine source code can be obtained from SourceForge [17].

123



348 Int J Parallel Prog (2009) 37:345–369

Input Image

(B) Receptive
filed

(A) Center-surround
neuron cells

synapsc

(C) Simple neuron cell
FD1: 00010100

(E) Complex
neural cell

(F) Receptive
filed with 3

line segments

(D) Receptive filed
 of oblique slit type

Fig. 1 Initial stages of the visual pathway in brain architecture: We do not show the photo receptors (rods
and cones) in this figure. Cells indicated as (a) corresponds to the ganglial cells having the receptive field
shown in (b). The simple cells (c) are the first layer of the cortex and have a simple receptive field (d) which
is sensitive to line orientations. The simple cells reads many inputs from neurons in the previous layer and
send the output to many complex cells. The receptive field of a complex cell is indicated in (f) which in our
case is a combination of three line segments. The LGN cells are not indicated because its receptive field is
similar to the ganglial cells

placed bright spot or line or an edge passing through the center of the cell’s receptive
field. We can also observe from Fig. 1 that the edge of the chair in the input image
triggers a group of neurons because the line falls at the center of their receptive field.
The axons of the ganglion cells bundle together as the optic nerve, and proceed to
the lateral geniculate nucleus (LGN). Here the path bifurcates, and one path proceeds
to superior colliculus and other path to the primary visual cortex. The neurons in the
primary visual cortex can be broadly classified into Simple cells and Complex cells
[20]. Both these cells are orientation specific cells, meaning they best respond to a
particularly orientated stimulus. We show two simple cells that respond to lines of
different orientation (Fig. 1d). If the stimulus orientation changes more than 10–20◦
then the response of the simple cells decreases drastically. At about 90◦ the simple
cells give no response. While the simple cells respond to specifically oriented lines or
edges, the complex cells exhibit more interesting characteristics, such as larger recep-
tive field, directional selectivity (responds to one direction of movement of a line or
edge), more complex organization of lines, crossing detection, and length tuning. All
these properties of complex cells are achieved by appropriately connecting a group
of simple cells. Receptive fields of cells in visual area V2 is shown to exhibit similar
kind of response for complex features [21]. In Fig. 1 we show a complex cell (E) that
responds to a specific pattern which is a combination of three line segments shown in
(F). Thus a hierarchical organization of complex cells can be used to encode or decode
complex shape, patterns and other details present in the image (see Fig. 2). The actual
human visual system goes beyond complex cells in V2 to higher layers like V3, V4
(tuned to spatial frequency and color) and MT (tuned for perception of motion). These
aspects are not represented in our current model.

The visual pathway that we briefly described above can be converted to a com-
putational model by modeling and encoding the different elements (complex cells,
synapses, etc.) using a suitable abstraction. In our BDV algorithm we employ a sim-
plified visual cortex abstraction model that is based on line segments and the encoding
scheme by means of sparse bit vectors [22]. We now describe some principles used
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Fig. 2 Hierarchical organization of the BDV algorithm into the Bottom-Up unit (Layer 2) and hierarchical
nodes (Layers 3, 4). The algorithm is operating to recognize number 8 in a hierarchical fashion. Each
element in Layer 2 corresponds to a feature detector (FD). A group of FD in Layer 2 triggers an element in
the higher layers. Each FD in this figure corresponds to a complex cell

in the BDV computational model. A given set of input neurons (pattern) activates
a particular neuron and this set is loosely referred in our article as feature detector
vector (FD). Hence the property of the neuron (simple or complex) can be represented
by the feature detector vector because the neuron fires only for that specific set of
input pattern or feature (see Fig. 1d). Any two shapes are considered similar based
on the number of activated neurons shared in their activation patterns. As a result of
sparse population codes [23], most neurons are inactive; this concept is represented
in a highly simplified form as sparse bit-vectors. The intrinsic random connectiv-
ity tends to select some areas of neurons to respond to some input features. These
neurons train via increments to their synaptic connections, solidifying their connec-
tion based on preferences to specific input features. After a simulated developmental
phase, synapses are either present or absent and each neurons level of activation can
be represented as a bit vector. Also each complex cell characteristic can be represented
as a feature detector vector (FD). When many complex neuronal cells (FDs) are trig-
gered only some selected neurons are allowed to proceed to trigger the next stage in the
hierarchy, and this is achieved by local inhibition of other neurons. Neurons activate
local inhibitory cells that in turn deactivate their neighbors; the resulting competition
among neurons is often modeled as the K best (most activated) “winners” take all
or kWTA [24,25]. More details of the FD and kWTA will be presented in Sect. 3.
Some of the neurological underpinnings presented in this article are not completely
new, especially the concept of hierarchical models is very commonly used in various
vision algorithms. But the main contribution of our approach lies in efficient coding,
hierarchical representation and recognition of complex shapes using a simple sparse
bit-vector scheme.

We now describe other computational models inspired from human vision system.
Stringer and Rolls [26] presented a four-layer feed-forward network model called
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VisNet, which is based on primate ventral visual system. The model employs trace
learning rule which uses the temporal proximity of patterns for implementing view
invariant object recognition. Riesenhuber and Poggio [10,27] demonstrated a feed-
forward model having a hierarchy of feature detector layers. Each element of the
feature detector layer is modeled based on the tuning properties of cell in the visual
system. This feed-forward model was demonstrated to perform a range of object rec-
ognition tasks, and was also found to be invariant to scale and position. George and
Hawkins [28] demonstrated a hierarchical Bayesian model for pattern recognition in-
spired from some of the characteristics of visual cortex. In contrast to other approaches
our approach is based on sparse bit-vector which is most suitable for implementation
on hardware or SIMD based processors. For the rest of this paper we mainly con-
centrate on the details of our brain derived vision algorithm using sparse bit-vector
representations, and its implementation on the CELL processor. For more details on
biological validity and different types of brain inspired algorithms the reader is directed
to other sources [5,22].

3 Algorithm

The BDV algorithm can be divided into two components: the bottom-up (B-U) engine,
and hierarchical nodes. The B-U engine models some of the functionality of the ini-
tial stages of the visual pathway that is illustrated in Fig. 1. Basically the B-U engine
extract shapes from the input images, and measures how similar each shape is to a
reference set of shapes. The resulting match values, along with the shape’s size and
position, are fed to a set of nodes that are organized into separate layers. The layers are
organized hierarchically, so that the first layer receives input from the B-U engine; the
second layer receives input from the first, and so on (see Fig. 2). Each node recognizes
a shape by first combining multiple input shapes into a single more complex shape,
resulting in a hierarchical organization. This enables later layers to recognize larger
shapes, and eventually entire objects. From our initial studies we identified that the
B-U layer constitutes the major portion of the computation, and hence in the remaining
section we mainly focus on the details and performance of the B-U engine in the BDV
algorithm.

Two operations namely line extraction and line segment triple coding are important
in the understanding of the BDV algorithm. These operations characterize the behav-
ior of the visual pathway until the first stage of the complex cells. Before we explain
the steps in the BDV algorithm we examine the functionality of these two operations.

• Line extraction: In this pre-processing step, the input image is converted to
a gray scale image, and the edges are extracted using the Canny edge detector. The
line segments are then derived from the edge detected image by starting a line at an
edge, and gradually moving the second end point along that edge until the average
distance between the edge and the line segment gets too high. The processed image
in Fig. 3 shows the lines extracted from an image in an office scene. Next, line seg-
ments are joined together into groups, called line-triplets (indicated as extracted
shapes in Fig. 3), such that each group contains three different line segments. The
number of unique line segment groups is n-choose − 3(= n!/(6 ∗ (n − 3)!), where
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Algorithm 1 B-U computation in the BDV algorithm: The PC captures a viedo frame, and extract 400 to
600 line segments and groups them into 20,000 to 100,000 line triples. PC then sends encoded line triples
to some nodes in the cluster. For each line triple (encoded as 160-bit LSH vector), the B-U engine generates
a list of best matching shapes, threshold, and maximum of the match value

n is the number of line segments in the image. This results in an explosion of
line-triplets when there are many line segments in the image. To keep this man-
ageable, a filter is used based on how close the line segments are to their center. A
line-triples center is calculated as the average x and y values of the six end points
that makeup the line-triple. Next, the average distance between the end points and
the midpoint is calculated, which is called the line triples shape size or shape scale.
An example for various data that is extracted from the shape is shown in Fig. 3.

• Line coding: The vision system attempts to create a scale-invariant represen-
tation of the line-triplets by encoding angle relationships between the line end
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Fig. 3 Overall flow of bottom-up part in the BDV algorithm. Features or shapes are extracted by the bot-
tom-up engine in the form of small groups of line segments. Each shapes size and position is extracted,
along with its similarity to each shape in a reference set. This information is used by the hierarchical layers
in the BDV algorithm

points (see Fig. 4 for an example). Each angle of the end points will be between
0 and 90◦. Rather than using a floating point number, we compress this to a sin-
gle integer between 0 and 56 (inclusive).2 In the end, we have a list of angles,
each from 0 to 56, sorted in a special order that encode relationships between
end points. The representation is made translation invariant by suitably choosing
the origin. The representation is scale-invariant because the angle relationships
do not change if the line segments are zoomed in or out. Thus if we zoom the
example in Fig. 4 two times, the resulting encoding would remain the same. This
representation of line-segment triple is termed as Line segment hash vector (LSH
vector) [5]. The encoding process is based upon the ordering of the line-segment
triples and the angles taken by each line segment triples. If for example the second
segment shown in Fig. 4 goes along the 45◦ line further, then at some point the
ordering would change because of other lines present in the line segment triples
and a new code will be generated. Also, if any one of the line angles changes by
more than (90/57) degrees either due to change in length or actual change in angle
then a new code value will be generated by the LSH line coding approach.
The above two steps (line extraction and line coding) form the primitive operations
in our algorithm. We now discuss the details of the various stages of the B-U com-
putation in the BDV algorithm. The pseudo-code listing is shown in Algorithm 1
and the functional model of the BDV algorithm is shown in Fig. 7. During each
iteration of the B-U computation, the Input Stage reads a new encoded line segment
triple data, and passes the data to the remaining stages. The input line segment
triple can come from either a pre-processed file stored locally or from another PC
connected to a camera. The details of the remaining stages are described below
(the line number in the description corresponds to listing shown in Algorithm 1).

• FD1 stage (Lines 3–14): In the FD1 step each angle encoded line seg-
ment triple is compared against a table of reference line triplets (see Fig. 5 for
an example). Each element of the table is called the feature detector vector 1
(“FD1”) or reference vector set. The FD1 table is created during the simulated

2 57 different angles can be represented by an 8-hot of 64 bit-vector, where the 8-hot bits are contiguous.
This allows dot-product of different angles, and similar angles have a higher dot-product. This was a desir-
able feature based on the biological plausibility of sparse encodings and bit-vector dot-product. The number
of hot bits was chosen to be eight because this allows non-zero dot-products between angles that differ by
up to 26 degrees, which seemed reasonable.
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Fig. 4 Line segment triple coding: The process of converting the line segment triples into a vector of
quantized angles. The resulting code is scale-invariant because the angle remains the same if we zoom in
or out

developmental period, during which the line-triplets were taken randomly from
many different images and gradually added to a table until the count reached 8000.3

More specifically, a line-triplet was added if it did not have a very good match with
any of the shapes already in the set. The effect is that when new shapes are matched
against the 8000, they will match at least one very well. Two line segment triplets
consisting of lists of angles a and b can be compared to get a single match value
using the expression, match = ∑n

i=1 max(8 − |(a[i] − b[i]|, 0). This equation
simulates the dot-product of angles (explained in Footnote 2). The result is that
comparing similarly shaped line triplets results in higher matches. Very different
looking line-triplet shapes result in lower matches. The resulting match value for
each of the line segment is passed on to the next stage of computation.

• kWTA stage (Line 15–18): Neurons activate local inhibitory cells that in
turn deactivate their neighbors; the resulting competition among neurons is often
modeled as the K best (most activated) winners-take-all or kWTA (see Fig. 5 where
K = 3). The kWTA effect occurs after the comparison of the 8000 FD1s with a new
input line-triplet. The 8000 FD1 matches are analyzed and the highest K matches
are considered active. This is represented in an 8,000 bit vector by setting 500 bits
to ON (when K = 500),4 corresponding to those shapes that matched best. We
shall call this new 500-of-8,000 bit vector, the “mid-vector”, because it occurs in
the middle of a two stage process. kWTA computation provides high robustness,
and variation tolerance compared to single winner-take-all computation.

• FD2 Stage (Line 19–24): This stage uses the mid-vector as input to a
set of 1,000 bit-vectors (called “FD2s”), each 8,000 bits in length (see Fig. 6).

3 We assumed an inhibitory neuron connection density of 10% of excitory neuron. And each inhibitory
neuron is connected roughly to 1000 other neurons yielding a total of 10000 complex neuron cell. Each of
this neuron represents a feature detector in the FD1 stage. The object detection performance did not change
with 8000 elements.
4 Assuming only 6% of the neuron is firing after FD1 stage, hence approximately 480 will be active out of
8000 neurons giving an activity density of 6% [25].
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Fig. 5 FD1 Stage and kWTA stage: The quantized vector of angles is compared to each vector from the
reference set of line-triplets (FD1s) and their match values are computed. Last, the top K (in this case,
K = 3) match values are set to 1, and all others to 0, resulting in the mid-vector representation
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Fig. 6 FD2 Stage: The mid-vector from previous stage is compared against FD2’s and sorted based on the
match value. Also the match value can be converted to a vector of probabilities

The mid-vector is dot-product with each FD2 to determine how well each FD2
matches the input. As a second step, the match values are sorted, so that each
FD2 is assigned its index in the sorted list of matches starting from highest match
to the lowest. This index is called the FD2s “rank” value. If an FD2 has a rank
value of x , it means that it was the x th highest matching FD2 for that input. These
place values are converted to a probability based on previously collected statis-
tics. The results including the list of matching FD2 are transferred to the PC or
stored locally by the Output Stage for further processing. All objects that need
to be recognized are a combination of elements of FD2, and located at specific
relative distances with respect to each other. To enable recognition, an early pro-
totype of the hierarchical node was implemented, built to serve the very simple
purpose of creating expected locations of particular shapes inside a recognizable
object relative to other shapes within that object. The approach presented above is
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useful for recognition of object with a limited change in 3D perspective. If the 3D
perspective changes drastically then new line-segment representation is generated
and hence the recognition performance would drop drastically [22].

4 Mapping BDV Onto the IBM CELL

In this section we analyze the computational and parallelism aspects of the BDV
algorithm explained in the previous sections. A salient feature of the BDV Algorithm
(described in Listing 1) is the high degree of parallelism at various levels. The simplest
inherent parallelism is the bottom-up computation for different line segment triples
(see Line 1 in Algorithm 1). In our experiments, most pictures contain about 20,000 to
100,000 useful line segment triples. Hence the best matching FD2 for all of these line
segment triples can be potentially concurrently evaluated. The next level of parallel-
ism is achieved by the shape comparison operations (Line 6, and Line 21 corresponds
to the shape comparison using FD1 and FD2 tables). For each line segment triples
we need to find a best matching shape from the given table of shapes (FD2 and FD1
tables). This search can also be parallelized to a higher degree based on available
computing resources and the communication overhead. The algorithm also exhibits
large amounts of bit-level parallelism and SIMD parallelism. For example in the FD2
computation we need to evaluate an 8,000-bit dot-product and population count5 on
the result to estimate the degree of match between two FD2 vectors (Line 21). This
can be concurrently executed either at the bit, byte or at higher word levels.

Among the various means of acceleration of the B-U engine (for example FPGA,
GPU, computing clusters), the IBM CELL provided an excellent platform for exploit-
ing the various types of parallelism present in the algorithm. The IBM CELL Broad-
band Engine (CELL BE) is a high-performance, low-cost multi-processor with eight
specialized Synergistic processing engine (SPE) and one dual-threaded PowerPC Pro-
cessor operating at around 3.2 GHz [30]. Even though the CELL BE has been de-
signed targeting graphics and multimedia applications, many features of the CELL
BE facilitate acceleration of brain derived algorithms. Some of the features that
make it promising for BDV algorithm are: the 128-bit datapath allowing large bit
length operations; good amount of on-chip parallelism and bandwidth; special instruc-
tions for bit based computations; and dedicated hardware for synchronization
using signals and message queues that allow fast synchronization between threads.
Also the Sony Play Station3 (PS3), powered by the IBM CELL processor, is an
affordable platform at a cost of about $500. The PS3’s built-in Gigabit Ethernet
port makes it suitable for building small clusters. The main challenge is to effi-
ciently parallelize and optimize an algorithm to exploit the capabilities of the CELL
processor.

We now present the programming methodology and trade-offs involved in map-
ping the BDV algorithm on the CELL platform. We have used different levels of
programmable parallelizations available on the CELL: (1) parallel execution of many
CELLs (network or cluster of CELLs), (2) parallel execution of SPEs and PowerPC

5 Also called sideways sum, is the process of counting the number of ‘1’ in a bit-vector [29].
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Processing Element (PPE) within the CELL, (3) concurrent computation and commu-
nication (DMA operation) within the SPEs, (4) parallel execution of two instructions
in the SPE, and (5) parallel computation at the sub-word boundary by using SIMD
instructions (up to 16 single byte operations in one cycle). In the remainder of this sec-
tion we examine the approaches for mapping BDV algorithm across the CELL clusters
and within the CELL. Compiler assisted parallelization using IBM XL compiler [31]
will be part of our future studies.

4.1 Application Computation Analysis

A simple functional model of the bottom-up computation is shown in Fig. 7. The input
stage reads the line triplets encoded as a sparse vector. The FD1 and FD2 stage finds
the best matching line triplets from the reference set. The B-U engine was initially
executed on a 2.13 GHz Intel Core2 (E6400) CPU and the execution time of critical
functions were profiled to determine the various computational bottlenecks. The model
is single threaded and was compiled with highest level of optimization supported by
gcc. No SIMD optimizations were performed on the desktop PC implementation.
A fractional breakdown of execution time for different functional units is shown in
Fig. 8, and the absolute values are shown in Column 2 in Table 3. Approximately
1.89 ms was required to execute the B-U computation for a single line segment triple
on the Intel architecture. This corresponds to a B-U computation throughput of about
526 line segment triples per second (526 LST/s). In Fig. 8 we can observe that FD1
and FD2 stage take more than 95% of the overall execution time. These are the critical
functions that need to be optimized, and parallelized to increase the throughput of
the B-U computation. From these results, the runtime of processing an entire video
frame with 30,000 line-triples on a desktop PC can be estimated at approximately one
minute. To execute the BDV algorithm for interactive robots, the recognition time of
humans must be achieved (approximately 150 ms per frame [32]), thus requiring a
speedup of about 400×, i.e., from 526 LST/s to more than 200,000 LST/s.

4.2 Application Data Analysis

The code size and the data size (both static and dynamic) need to be evaluated to
effectively determine the memory footprint, and the bandwidth requirements of the
given application. Each SPE has a local store (LS) of 256 KB that can be used for
both code and data. This small memory size influences the way code and data for
the applications are partitioned across the CELL. For many programs with a small
code size, function overlaying and resident partition management [31] might not be
necessary. The total code size for the B-U computation is about 25 KB and hence
no function overlaying mechanism was used in our implementation. Furthermore, we
need to determine how to map the data sets with size larger than the available SPE LS.

Fig. 7 A simple functional
model of the Bottom-Up
computation. The functionality
of each stage in this model is
shown in Algorithm 1

(A)
Input
Stage

(B)  
FD1
Stage

(C)  
k-WTA
Stage

(D)  
FD2
Stage

(E)
Output
Stage
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Fig. 8 Breakdown of the execution time of the functional model on desktop PC with Intel Core2 CPU.
FD2 stage and FD1 stage takes more than 95% of overall execution time

Table 1 Data structure analysis of B-U engine in BDV algorithm

Main data structures Data size (bytes) Data usage Data access pattern Accessing tasks

FD2 Vector table 1.1M Partitionable Linear (D)

FD1 Vector table 169K Partitionable Linear (B)

Sparse code table 125K Static/fixed Random (A)

SC angle table 48K Static/fixed Random (A)

popCount FD1 8K Static/fixed Random (B)(C)

Histogram kWTA 2K Static/fixed Linear (B)(C)

We list major data structures, its size and some additional properties. If the data structures divides during
parallelization the data is termed “partitionable”, else the data structure is termed “fixed or static”. The
labels indicated in the last column corresponds to different stages in Fig. 7

To reduce this constraint, various techniques such as software cache, double buffering,
pre-fetching [31], etc., can be used depending upon the data access pattern.

Some important data structures used by the program and its properties are listed
in Table 1. The main parameters that were evaluated are : memory size, data usage,
and data access pattern. The data structures are classified based on their usage as
static (or fixed) and partitionable. A data structure is termed as static (or fixed) if the
data set need to be duplicated in each SPE while parallelizing the application. A data
structure is termed as partitionable if the data set gets divided across SPE while par-
allelizing the application. This information influences the parallelism and data access
mechanism used by the application. This information is also useful to determine the
SPE bandwidth and the SPE LS memory requirements for a particular parallel model.

For our application we have four large data structures (Table 1) namely FD1 Table,
FD2 Table, Sparse Code (SC) Ordering Table and Angle Table. The SC Ordering and
Angle tables are used by the PPE for LSH bit-vector generation at the Input Stage.
The remaining data sets can be accessed either through software cache or directly on
SPE LS. Also, we observe from the algorithm that FD1 and FD2 table elements are
accessed linearly (one after another in a specific sequence) during the comparison
operation with the given input data. Hence if FD1 and FD2 do not fit into the SPE
LS, then they can utilize either double buffering or software cache with data access
optimization to allow efficient access to large data arrays.
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4.3 Parallelism Analysis

Various kinds of generic parallel models can be developed from the functional model
of the B-U engine. The CELL Programming handbook [30] explains some generic
strategies for parallel programming on IBM CELL. Analysis of generic parallel pro-
gramming patterns or models for different architectures is a challenging task [33].
In this article we address the different parallelism strategies and performance predic-
tion that is specifically applicable for brain derived algorithms on the CELL. These
techniques can be also used for parallelism analysis of other applications as well. The
possible parallel models are: overlapped functional parallel model (OFP), overlapped
data parallel model (ODP), series-parallel model (SP), and overlapped series-parallel
model (OSP). Section 4.4 presents performance prediction approach of these models.
A model is termed overlapped if the communication and computation can happen
concurrently, and hence the waiting time associated with communication can be mit-
igated. We present below the characteristics of the parallel models relevant to brain
derived algorithms.

• Overlapped functional parallel (OFP) model: In this model each functional block
is mapped onto an SPE, and the model works in a pipelined fashion (see Fig. 9a).
Hence the actual execution time of the model is dependant on the execution time
of the slowest functional block. An OFP model can be extended to a process net-
works or data flow networks [34] using appropriate communication APIs. Since
the SPE LS is of a very small size, usage of these communication APIs will
reduce the available memory resources even further. Load balancing limits the
performance of the OFP model because the overall execution is determined by
the slowest task in the pipeline.

• A Series-Parallel (SP) model: A simplified version of this model (see Fig. 9b)
overcomes the load balancing limitation of a fully overlapped functional paral-
lel model by splitting the sequential model into a series-parallel graph at loop
boundaries either manually or by using the compiler (OpenMP primitives). If the
data and computation is evenly partitioned across these loop boundaries, this kind
of parallel model exhibits good load balancing, speedup, and reduced SPE LS
requirements. A version of the SP model for the B-U engine is shown in Fig. 10.
The serial portion can either be executed in the PPE or SPE, depending upon
the complexity of the serial task. The main qualitative advantage of this model is
lower data size requirement in each SPE, as well as reduced application latency
and reduced SPE bandwidth. Two disadvantages of this model are, (1) the serial
portion can affect the overall execution time, (2) potentially high synchronization
and communication time between series and parallel task can increase the waiting
time of communicating tasks.

• Overlapped Series-Parallel (OSP) model: This model (see Fig. 9c) extends the
series-parallel model by overlapping computation and communication using
either a double buffer or a FIFO. Thus instead of waiting for the serial portion to
finish its operation and communicate the result to the SPE, the SPE performs the
computation for the next input data. During this time the serial portion completes
the execution and communicates the data by means of DMA so that the data is
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Fig. 9 Summary of various parallel models on CELL. In model (C) overlapped data transfer is achieved by
using DMA MFC within each SPE. The functional parallel model (a) is obtained from the simple functional
model in Fig. 7 by using functional parallelism. Also streaming buffer is added to transfer the data between
different task running on different SPE. In (b) and (c) the same functional task is executed by different
SPEs using a partial reference set of vectors

Input Stage
Global

histogram
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Partial to
Global
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Generate

MidVector
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Process
Input

Fig. 10 Series-Parallel Model of the B-U Computation. The computationally intensive functions FD1,
kWTA and FD2 is parallelized across SPEs by dividing the reference tables equally between the SPEs

ready for the next cycle of SPE computation. OSP model solves many disadvan-
tages of SP model, but does not solve the problem caused by potentially high
synchronization requirements between the serial and parallel portions.

• Overlapped Data-Parallel (ODP) model: For much higher performance the over-
lapped data parallel (ODP) model can be employed (see Fig. 9d). In this type
there is no data sharing or communication between the SPEs. Earlier models
parallelize the bottom-up so that only part of the code or data is mapped on to
the SPE. But in ODP model an SPE can be treated as a full processor and the
complete bottom-up computation for a line segment triple is mapped to a single
SPE. This model requires large SPE bandwidth and large SPE LS because all the
data and code for the execution of the application must be present or accessible
by the SPE. The performance of this model is dependent on the technique used
to overcome the code and data size restrictions within the SPE LS. Table 2 gives
a quick qualitative comparison of different kinds of parallel models.

4.4 Performance Prediction

For each application it is important to understand the trade-offs associated with
the various parallel models, and select one that matches the characteristics of the
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Table 2 Brief summary of important characteristics of different parallel models on IBM CELL

Model name Compute
latency

On-chip
bandwidth

Memory
usage

Modeling
effort

Performance

Functional parallel model Medium Medium Low High Low-medium

Series-parallel Medium Medium Medium Medium Medium

Overlapped series-parallel Low Medium Medium Medium-high Medium-high

Overlapped data-parallel High High High High High

Compute latency is the time delay between applying a specific input and obtaining the required output

application. Obtaining the performance of all the parallel models by implementing
them on the CELL BE is a difficult task. In this section we suggest a mechanism for
obtaining the approximate performance of various parallel models from the perfor-
mance of a single model (namely series-parallel model). Column 3 of Table 3 shows
the actual execution time of a series-parallel model running on a PS3 with IBM CELL.
The remaining columns contain the estimated values of the execution time for other
parallel models. The tasks shown in Column 1 of Table 3 corresponds to the various
tasks in Figs. 7 and 10. It should also be noted that the two functions, namely Global
histogram (C) and Global MidVector (E) in Table 3, take into account the serial compu-
tation part and communication between the serial and the parallel parts. The estimated
execution time for an overlapped data-parallel model was obtained by evaluating the
computation time for each function when it is completely mapped onto the SPE, and
assuming that we can overlap the computation and communication. For example, if
the execution time for the FD1 stage in an SP model is 13.78us on each of 5 SPEs
and 13.76us on the 6th SPE, then the execution time for the FD1 stage in the ODP
model become 82.66us (sum of all execution times). Thus different SPEs will execute
the complete B-U functionality on different line segment triples concurrently, and in
this model we do not have any SPE–SPE communication. The summarized result for
predicting the performance of ODP is shown in Column 4 of Table 3.

Next the approximate execution time for an overlapped series-parallel model can
be obtained from a series-parallel model using the approach shown with an example
in Fig. 11. P1(2) represents the execution time of the second iteration of Task 1 on PPE.
S1(2) represents the execution time of the second iteration of Task 1 on an SPE. C1(2)

represents the time required for communication by Task 1 in Iteration 2. In Fig. 11a
we show an example series-parallel graph with execution time for different tasks.
Although in Fig. 11a and b we show only one S1(1) task it represents many concur-
rently executing SPE threads having the same code. The following factors are taken
into account to modify a SP model into a OSP model: (1) two iterations are represented
so that execution of the first iteration and second can be overlapped, (2) at any stage
shown in the figure the independent tasks (that do not share any resources) can execute
simultaneously (for example in Stage 2, fetching data for the second iteration C1(2)

happens concurrently with execution of the first iteration in SPE S1(1)), and (3) the
execution time at any stage is equal to the execution time of the slowest task (e.g.,
the Stage 3 execution time is dominated by S1(2)). Based on the above conditions the
execution time for two iterations can be calculated by adding the execution time from
each stage as shown in Fig. 11b.
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Fig. 11 An illustrated example of the performance of (a) simple series-parallel model (b) overlapped
series-parallel model. In the OSP model the SPE starts the computation for the second input data before
proceeding to the next stage. P1(2) (S1(2)) indicates the execution time for the 2nd iteration of task 1 on
PPE (SPE), C1(2) indicate the communication time for data produced by task 1 in its 2nd iteration

The OFP model or a function pipeline model is obtained by mapping each task
to either PPE or SPE. The Input Stage is mapped to PPE as the task is not com-
pute intensive; the remaining functions are mapped to SPEs (FD1 Stage on SPE0,
kWTA/Generate Partial MidVector on SPE1, and FD2 Stage on SPE2). Six SPEs can
execute two overlapped functional parallel models with each model implementing the
B-U computation on different line segment triples. Hence the total execution time
for the B-U computation on two line segment triples in an OFP model is equal to
the execution time of the slowest task in the pipeline (namely FD1 Stage = 82.66us).
Table 3 also contains the information regarding the approximate amount of data mem-
ory required in each SPE LS for implementing different parallel models. In the table
we also show that the estimated performance of different models. The overlapped
data-parallel model gives the maximum speedup (about 68×) but requires more mem-
ory than other approaches. Our future work is to experimentally validate the perfor-
mance of other kinds of parallel models on IBM CELL processor.

4.5 Code Optimization

We examine specific code optimizations applied on the B-U computation that exploit
various architectural features of CELL. Additional types of programmer optimizations
are discussed in IBM CELL Handbook [30]. Table 4 shows the speedup achieved by
each of the optimization discussed below.

4.5.1 DMA Alignment Optimization

DMA operations in CELL can have a size of 1, 2, 4, 8, 16 bytes or multiples of
16 bytes. If a particular transactions address crosses the 128 byte boundary, addi-
tional DMA transactions are necessary to fetch the required data. Hence by means
of careful alignment of data structures that are communicated regularly, the overall
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Table 4 Different optimization experiments on IBM CELL using the B-U engine and its corresponding
performance

Optimizations 1 2 3 4

Aligned DMA × × × ×
Signals mechanism × × ×
Mailbox mechanism ×
SIMD optimization × ×
Loop-unrolling ×
Results

Speed (µs per LST) 826 1049 63.6 34.9

Speed-up 1.0 0.79 13.0 23.6

SPE code size (KB) 18.0 17.4 13.4 25

SPE data size (KB) 211 211 229 229

Each X mark in the table indicates the optimization included in specific case. Case 1 and 2 shows that
the signal mechanism is better than mailbox mechanism for simple synchronizations. SIMD optimization
achieves maximum speedup for our application

communication bandwidth required by the application can be reduced significantly.
If DMA alignment optimizations are carried out on too many data sets, the required
SPE LS memory increases significantly. For our application, DMA optimization did
not show significant improvement in performance as the application was not limited
by on-chip or off-chip bandwidth.

4.5.2 Mailbox Versus Signaling Mechanism Optimization

CELL processor allows synchronization by means of regular DMA operations, mail-
boxes and signaling mechanisms [30]. The mailbox mechanism allows 32-bit
communication, but takes about 0.5us for each 32-bit transaction (including the
function call overhead). The signal communication mechanism allows 1-bit synchro-
nization between the SPE and PPE at a much higher speed thus allowing faster syn-
chronization. We experimented with both these approaches and the results are shown
in Table 4. Case 1 and 2 corresponds to the performance of signaling and mailbox
mechanisms, respectively. For our application the signaling mechanism gave better
performance then mailbox approach.

4.5.3 SIMD Optimization

The performance of compute intensive kernels in the BDV code (like dot-product and
population counting) can be significantly improved by using CELL SIMD instruc-
tions. After optimizing the kernels using 128-bit SIMD instructions such as absdiff,
abs_sumb, spu_add, spu_cntb [35], the inner loop computation in the FD1 task takes
31.2 cycles on an average (the desktop PC version takes 164 cycles), and the inner loop
computation in FD2 task takes about 246 cycles (the desktop PC version takes about
2879 cycles). The speedup of more than 13× (see Case 3 in Table 4) is mainly due to
the 128-bit SIMD instructions that computes eight 16-bit operations concurrently, and
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spu_cntb instruction (useful for counting number of ones within a byte). The original
and the optimized code for dot product computation of very large length bit vector are
shown in the listing below. The optimized version shows the usage of CELL SIMD
C/C++ intrinsics.
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4.5.4 Loop Optimization

The SPE does not have a branch prediction unit, and assumes a sequential program
flow. Thus pipeline stalls due to mispredicted branches can be very costly (on the order
of 18 to 19 cycles). Various techniques such as function inlining, loop-unrolling and
branch hinting mechanisms were used to reduce the branch misprediction penalty. All
these techniques increases ILP and in turn increases the usage of dual-issues pipeline
within the SPE. A speedup of 2× was achieved over other techniques by using loop
optimizations (see Case 4 in Table 4).

5 Results

In our first set of experiments we evaluated the object recognition performance of
the BDV algorithm on a difficult problem in computer vision called shape based rec-
ognition. In this problem class the contiguous textures pieces of an object are not
sufficient to perform recognition using traditional algorithms based on rectangular
templates or key-point features like SIFT [36]. Especially for wiry man-made objects
such as chairs, tables, and lamps, the conventional approach fails because of lack
of appreciable texture area to calculate the key features and identify the objects. To
address this difficult area of computer vision, we used videos from the Wiry Object
Recognition Database and compared our engine with the precision of the only other
system reporting results on this dataset; namely the aggregation sensitive version of
the cascade edge operator probes (EOP-AS) [37]. In this dataset, the task is to find
a sitting-stool in various cluttered office scenes. The BDV model (8,448 FD1 vec-
tors, 1020 FD2 vectors) was trained with first frames of Videos 0 and 2 (Room A401
Clips 5 and 6) and tested on 30 frames of video from different rooms (Room A408
Clip 4 and Room sh201 Clips 1 and 3). Figure 12a and b show a sample screenshot
of the stool recognition process during different iterations of the BDV algorithm.
For comparison, results using the EOP-AS were estimated from the reported accu-
racy on “other room” test sets of 22% (8.8 false positives per image) used as the
probability of an arbitrary true positive guess. In Fig. 13 the y-axis is the probabil-
ity of finding the stool within the number of guesses defined by the x-axis. We can
see that the neocortical based BDV model achieves similar performance to EOP-
AS. As the system increases the number of guesses they make per image from 1
to 5, the probability of finding the sitting-stool in the image increases from 20 to
70%.

We evaluated the performance of the B-U computation on different architectures
(FPGA, Intel PC, clusters, etc.), and the summary of the result is shown in Table 5. A
detailed description of mapping B-U computation on FPGA is presented in [6]. The
Xilinx Virtex4 family of FPGA having about 9.6 Mbit of BlockRAM memory, was
used for mapping the algorithm. Almost all of the memory was utilized for storing the
FD2 and FD1 tables, and only 61% of logic was used. It was shown in [6] that a single
Xilinx Virtex4 FPGA provided a 62× performance improvement.

For obtaining the performance on IBM CELL we mapped the application on a
single PS3, and a small cluster of PS3s (having 1–3 nodes). As shown in Table 5,
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Fig. 12 Screenshots of different iterations of the BDV algorithm running to recognize a stool in a scene
from the WORD video database [37]. The iterations proceeds based on the feedback from the B-U engine

Fig. 13 Comparison of object recognition performance of BDV model and EOP-AS [37] on WORD
database

Table 5 Summary of performance of different platforms for simulation the BDV algorithm

Device Cycles Freq.
(MHz)

Time (µs) Speedup Cost ($) Speedup/
$1K

Approx
power(W)

Intel Core2 Duo 5423430 2930 1895 1.00x 2000 0.500 65.0

Xilinx FPGA 2242 76.00 29.50 64.2x 10000 6.27 1.63

IBM CELL (PS3) 113088 3200 35.34 53.62 500 107.24 100.0

the PS3 version of IBM CELL was able to achieve a speedup of 53.62× compared
to the desktop PC implementation. After eliminating some of the bottlenecks associ-
ated with Gigabit Ethernet communication (which requires all PPE cycles to achieve
500 mbps) we scaled the implementation to a cluster of three PS3 and achieved
a full round trip time of 1.24 seconds on a video frame with 93,267 line triples
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Scalibility of B-U algorithm on PS3 Cluster

0

20

40

60

80

100

120

140

160

0 1 2 3

Number of PS3 in cluster

S
p

ee
d

u
p

co
m

p
ar

ed
to

a
si

n
g

le
th

re
ad

ed
d

es
kt

o
p

im
p

le
m

en
ta

ti
o

n

Fig. 14 Scalability of PS3 cluster. With three PS3s connected by mean of a Gigabit Ethernet Router a
speed up 140× was achieved by running the series-parallel model

achieving a speedup over the desktop of 140×. The performance on a cluster of
PS3 is shown in Fig. 14. Built from base model PS3s, and using two built-in Gigabit
network interfaces and one PCI Gigabit network card, the cost of the cluster hard-
ware was approximately $1500. Thus the speedup of approximately 140 times was
achieved at a cost similar, or cheaper than a top-of-the-line desktop machine, enabled
by the intrinsically parallel nature of the derived brain algorithms. When compared
to an FPGA implementation, IBM CELL on PS3 offers similar performance, eas-
ier scalability, and lower cost for simulation of B-U computation. Easy scalability
with PS3 enabled the brain derived vision algorithm to support much larger refer-
ence tables, and the ability to work on different parts of the input frame for object
recognition.

6 Conclusion

Standard computer and engineering approaches remain uncompetitive with humans
at most natural tasks (such as visual and auditory recognition); moreover, standard
approaches are typically customized for each task and do not transfer readily to new
tasks nor scale well to large size. In contrast, brains are intrinsically parallel, operat-
ing billions of neurons and trillions of low-precision synapses concurrently so as to
flexibly learn and perform tasks that are so complex that we might not otherwise know
them to be computable. Given these abilities of human brains, it is pragmatic to study
and attempt to imitate algorithms used by brain circuits. As shown here and elsewhere,
analysis of brain circuit properties have already demonstrated initial promising results
in processing tasks of known difficulty.

In this article we have shown that implementing a brain-derived method on parallel
hardware can give rise to powerful speedup; the current results suggest the ability to
achieve visual recognition in less than one second, i.e., in real time. Such findings
may enable a range of applications in sensors, control systems, and robotics that are
currently beyond the scope of standard approaches. The results reported herein and
previously [6,7] demonstrate that alternate architectures can be constructed to provide
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large-scale parallelism, and may serve as platforms for research in currently recalcitrant
computational tasks requiring real-time processing of real-world information, such as
sensor processing, and perception.

The findings indicate that these new approaches lend themselves to direct hardware
implementation, and scale well on complex tasks. As engineering fields increasingly
recognize the importance of parallel system design [1,2], the study of inherently par-
allel computational systems such as the brain may become of increasing theoretical
and practical utility.
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