Skip to main content
Log in

Using SDRAM Memories for High-Performance Accesses to Two-Dimensional Matrices Without Transpose

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

The data throughput of SDRAMs is significantly reduced by the control overhead required for access or transposition of large two-dimensional data matrices stored in SDRAM memories. In this paper, a new address mapping scheme is introduced, taking advantage of multiple banks and burst capabilities of modern SDRAMs. In this way, the data throughput is maximized when reading or writing rows or columns of a two-dimensional data matrix. Other address mapping strategies minimize the total number of SDRAM page-opens while traversing the two-dimensional index-space in row or column direction. In order to achieve a higher data throughput, the new approach uses an alternative bank interleaving method to hide additional wait cycles. In this way, the number of data bus wait cycles do not depend on the overall number of page-opens directly any more. It is shown, that the data bus utilization can be increased significantly. In particular, the new mapping strategy is optimized for access of parallel samples, distributed among a number of SDRAM chips. Therefore, double buffering can be omitted. As a special operation, 2D-FFT processing for radar applications is considered. Depending on SDRAM parameters and dimensions, a continuous bandwidth utilization of 96–98 % is achieved for accesses in both matrix dimensions, including all page-opens and refresh operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baozhao, T., Dong, L., Chengde, H.: Two-dimensional image processing without transpose. In: Proceedings of 7th International Conference on Signal Processing, 2004 (ICSP’04). vol. 1, pp. 523–526 (2004). doi:10.1109/ICOSP.2004.1452697

  2. Curlander J.C., McDonough R.N.: Synthetic Aperture Radar: Systems and Signal Processing. Wiley-Interscience, New York (1991)

    MATH  Google Scholar 

  3. Dou, Y., Zhou, J., Lei, Y., Zhou, X.: FPGA SAR processor with window memory accesses. In: IEEE International Conference on Application-Specific Systems, Architectures and Processors (ASAP), 2007, pp. 95–100 (2007). doi:10.1109/ASAP.2007.4429964

  4. Garrido, M.: Efficient hardware architectures for the computation of the FFT and other related signal processing algorithms in real time. Ph.D. thesis, Universidad Politecnica de Madrid, Spain (2009)

  5. He, S., Torkelson, M.: Designing pipeline FFT processor for OFDM (de)modulation. In: 1998 URSI International Symposium on Signals, Systems, and Electronics, ISSSE, pp. 257–262. Pisa, Italy (1998). doi:10.1109/ISSSE.1998.738077

  6. http://www.jedec.org

  7. Kim H., Park I.C.: Array address translation for SDRAM-based video processingapplications. Electronics Letters 35(22), 1929–1931 (1999). doi:10.1049/el:19991300

    Article  Google Scholar 

  8. Langemeyer, S., Pirsch, P., Blume, H.: A FPGA architecture for real-time processing of variable-length FFTs. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011, pp. 1705–1708. Prague (2011). doi:10.1109/ICASSP.2011.5946829

  9. Lenart T., Öwall V.: Architectures for dynamic data scaling in 2/4/8k pipeline FFT cores. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14(11), 1286–1290 (2006). doi:10.1109/TVLSI.2006.886407

    Article  Google Scholar 

  10. Park C., Chung H., Lee Y.S., Kim J., Lee J., Chae M.S., Jung D.H., Choi S.H., young Seo S., Park T.S., Shin J.H., Cho J.H., Lee S., Song K.W., Kim K.H., Lee J.B., Kim C., Cho S.I.: A 512-mb DDR3 SDRAM prototype with CIO minimization and self-calibration techniques. IEEE J. Solid-State Circuits 41, 831–838 (2006). doi:10.1109/JSSC.2006.870808

    Article  Google Scholar 

  11. Pfitzner, M., Langemeyer, S., Pirsch, P., Blume, H.: A flexible real-time sar processing platform for high resolution airborne image generation. In: 6th International Conference on Radar, RADAR 2011, (2011)

  12. Rabiner L.R., Gold B.: Theory and application of digital signal processing. Prentice-Hall, Upper Saddle River (1975)

    Google Scholar 

  13. Swartzlander E.E., Young W.K.W., Joseph S.J.: A radix 4 delay commutator for fast fourier transform processor implementation. IEEE J. Solid-State Circuits 19(5), 702–709 (1984)

    Article  Google Scholar 

  14. Takai Y., Nagase M., Kitamura M., Koshikawa Y., Yoshida N., Kobayashi Y., Obara T., Fukuzo Y., Watanabe H.: 250 mbyte/s synchronous DRAM using a 3-stage-pipelined architecture. IEEE J. Solid-State Circuits 29(4), 426–431 (1994). doi:10.1109/4.280691

    Article  Google Scholar 

  15. Yoo, C., Kyung, K., Han, G.H., Lim, K., Lee, H., Chai, J., Heo, N.W., Byun, G., Lee, D.J., Choi, H.I., Choi, H.C., Kim, C.H., Cho, S.: A 1.8 v 700 mb/s/pin 512 mb DDR-II SDRAM with on-die termination and off-chip driver calibration. In: IEEE International Solid-State Circuits Conference (ISSCC), 2003. Digest of Technical Papers, pp. 312–496 (2004). doi:10.1109/ISSCC.2003.1234313

  16. Zhou, J., Dou, Y., Lei, Y., Dong, Y.: Window memory accesses method in alternate row/column matrix access systems. In: 2nd International Conference on Computer Engineering and Technology (ICCET), vol. 3, pp. V3-201–V3-205 (2010). doi:10.1109/ICCET.2010.5485834

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Langemeyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Langemeyer, S., Pirsch, P. & Blume, H. Using SDRAM Memories for High-Performance Accesses to Two-Dimensional Matrices Without Transpose. Int J Parallel Prog 41, 331–354 (2013). https://doi.org/10.1007/s10766-012-0225-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-012-0225-6

Keywords

Navigation