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Abstract Structured parallel programming is recognised as a viable and ef-
fective means of tackling parallel programming problems. Recently, a set of
simple and powerful parallel building blocks (RISC-pb2l) has been proposed to
support modelling and implementation of parallel frameworks. In this work we
demonstrate how that same parallel building block set may be used to model
both general purpose parallel programming abstractions, not usually listed in
classical skeleton sets, and more specialized domain specific parallel patterns.
We show how an implementation of RISC-pb2l can be realised via the FastFlow
framework and present experimental evidence of the feasibility and efficiency
of the approach.

Keywords Algorithmic skeleton, parallel design patterns, programming
frameworks, RISC-pb2l, parallel building blocks.

1 Introduction

Various authors and research communities have recognised that structured
parallel programming represents a viable means to improve the efficiency of
the entire process of designing, implementing and tuning parallel applications.

Beginning in the late ’90s, the algorithmic skeleton [10] community de-
veloped various systems providing the application programmer with suitable
abstractions modelling the more common, useful and efficient parallelism ex-
ploitation patterns [9,11,21,23,19]. Recently, efficient skeleton based parallel
programming frameworks have been developed targeting multi-core hardware,
possibly equipped with GPUs, as well as distributed clusters [14,15,5].
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Meanwhile, parallel design patterns have been proposed [22,24] and recog-
nised to have the potential to induce a radical change in the parallel program-
ming scenario, suitable for educating a new generation of parallel programmers
capable of fully managing the new highly parallel architectures provided by
hardware vendors [6].

Algorithmic skeleton and parallel design pattern concepts differ basically
in the way structured parallel programming abstractions are provided to the
application programmer. Algorithmic skeletons are provided as parametric lan-
guage constructs or library functions/objects ready to be instantiated and to
be customised through parameters. Parallel design patterns are provided as
software engineering “recipes” to be followed when a given parallel pattern is
to be incorporated, and require greater programming activity than algorithmic
skeletons to be used. This notwithstanding, both skeletons and design patterns
simplify the application programmer’s task and make the whole application
development process more efficient by:

– providing known and efficient parallelism exploitation patterns as compos-
able building blocks, such that complex applications may be implemented
by composing certified abstractions rather than designing ad hoc solutions;

– relieving the application programmer from the tasks associated with par-
allel pattern implementation and tuning; and

– supporting functional and performance portability across different target
architectures.

Overall, these features raise the level of abstraction of the mechanisms exposed
to the application programmer and distinguish “structured parallel program-
ming” frameworks and models from more traditional, low level approaches
such as MPI, OpenCL and OpenMP, where the code necessary to implement
parallel features within the application remains completely the responsibility
of the application programmer, and solutions identified when implementing
a parallel application are not readily reusable when attempting to parallelise
another application or when moving the application to a different target ar-
chitecture.

Recently we proposed adopting the approach underpinning both algorith-
mic skeletons and parallel design patterns at a lower level in the software stack
used to develop efficient, maintainable and portable parallel applications. The
idea is to take advantage of the skeleton/pattern approach not only at appli-
cation level (to ease the application programmer’s job), but also in the design
and implementation of the underlying implementation frameworks (easing the
pattern developer’s job).

In [12] we proposed RISC-pb2l, a modelling framework comprising a small
(RISC) set of building blocks describing fundamental concepts of data flow
and parallel computation in parallel/distributed systems. We showed how
these building blocks could be composed to define classical parallel pattern-
s/skeletons; and demonstrated a prototype implementation of RISC-pb2l using
FastFlow [16]. In a sense, we abandoned the idea of a highly specialised but
monolithic implementation of each skeleton/pattern, optimised for a given tar-
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get architecture, in favour of an implementation built as an orchestration of a
small set of simpler, efficient and re-usable building blocks (RISC-pb2l).

This further step in “structuring” the parallel programming framework
implementation presents several advantages, closely mirroring those observed
when providing programming abstractions to the application programmer: (a)
implementations of the set of building blocks may be suitably specialised to
target different architectures; (b) the well-defined semantics of the building
blocks presents the possibility to refactor (perhaps using an associated cost
model) building block compositions to better exploit target architecture fea-
tures; and (c) a wider range of high level abstractions may be provided to the
application programmer by composing the building blocks in different ways.

The RISC-pb2l features were demonstrated in [12] by showing how several
simple, common parallel patterns may be implemented efficiently using the set
of building blocks provided. Here we propose the use of the RISC-pb2l set in
two areas that were not covered in that earlier work, namely:

– General Computing Models. We show how three different general comput-
ing models–rather than classical algorithmic skeletons–may be modelled
using RISC-pb2l: BSP, Macro-dataflow and Google map-reduce.

– Domain Specific Patterns. We describe models, using RISC-pb2l, of domain
specific skeletons/patterns which are of particular importance in their re-
spective domains. A genetic algorithm, a network packet processing algo-
rithm and a symbolic computation algorithm are presented.

The original contribution of this paper therefore consists in (a) demonstrating
the usability of RISC-pb2l to describe both abstract programming models and
domain specific patterns in quite different application domains (previous work
demonstrated only the usability of RISC-pb2l when targeting rather simple,
classical patterns); (b) demonstrating the efficiency achieved in the execu-
tion of use case applications developed using the skeleton abstractions (either
abstract models or domain specific patterns) implemented with a prototype
implementation of RISC-pb2l using FastFlow; and (c) assessing the potential
for optimizing RISC-pb2l compositions (skeleton implementations) by simply
considering the semantics of the building blocks.

The remainder of the paper is structured as follows: Sec. 2 briefly outlines
the features of RISC-pb2l. Sec. 3 and Sec. 4 discuss the main contribution of this
paper (with Sec. 6), namely how general programming model abstractions and
domain specific patterns may be modelled and implemented with RISC-pb2l.
Sec. 5 briefly introduces FastFlow and outlines how FastFlow base classes de
facto implement RISC-pb2l building blocks. Sec. 6 discusses results relative to
the implementation of general programming model abstractions and domain
specific skeletons with RISC-pb2l implemented via FastFlow. Finally, Sec. 7
presents related work and Sec. 8 draws conclusions.
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2 The building block set

The building block set RISC-pb2l (RISC Parallel Building Block Library) pro-
posed in [12] is composed of three kinds of building blocks: wrappers, function-
als and combinators (see table in Fig. 1). Wrappers are used to embed existing
portions of code into parallel programs. Wrapped programs are intended to be-
have as functions and so no side effects should be present within the wrapped
code. Functionals model those blocks encapsulating parallel computations, in-
cluding computing the same or a set of different functions on n input items or
computing in stages over an input item. Combinators just route data to/from
functionals (input and output) in such a way that these data may be efficiently
processed, and include a specific combinator (�Gatherall, see table in Fig. 1)
implicitly implementing a barrier synchronization. Each of the components in
RISC-pb2l is characterised by an input and an output arity. RISC-pb2l compo-
nents may be arbitrarily nested provided the component combination (we use
◦ to express combination as juxtaposition of components) respects input/out-
put arity matching. The last part of the table in Fig. 1 formally describes legal
combinations of RISC-pb2l components.

For example, the RISC-pb2l component composition

�Scatter • [| ((codef)) |]nw

takes one input (input arity of �Scatter), produces nw outputs (nw is the input
and output arity of [| . . . |]nw) and computes the function implemented by the
sequential code ((codef)) over the nw partitions routed by the �Scatter.

The semantics of RISC-pb2l components is that of data flow: as soon as a
complete input data set is presented to the building block, the block “fires” and
computes output results using the current input values (or routes input data
to appropriate outputs). The design of RISC-pb2l has been greatly inspired by
Backus’ FP [7]. In particular, we borrow the higher order functions/combina-
tors distinction proposed in that work for sequential building blocks and we
aim eventually to provide a similar “algebra of programs” suitable for support-
ing parallel program refactoring and optimisation. In this work we concentrate
the discussion on the suitability of RISC-pb2l to support the implementation
of general programming model and domain specific parallel skeletons/design
patterns, possibly optimized through RISC-pb2l expression rewriting. The in-
terested reader my refer to [12] for more details of RISC-pb2l.

3 General purpose computing models

To validate the expressive power of the RISC-pb2l set, we consider in this
section some examples of parallel patterns. In [12] we have shown how basic
stream and data parallel skeletons/patterns can be defined (specifically, pipe,
farm, map and reduce) by composing the building blocks provided by the set.
Here, we wish to highlight the generality of such an approach and the proposed
grammar, demonstrating that the RISC-pb2l set can be used to define not only
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Name Syntax Informal semantics

Wrappers

Seq wrapper ((f)) Wraps sequential code into a RISC-pb2l “function” .

Par wrapper (| f |) Wraps any parallel code into a RISC-pb2l “function” (e.g.
code offloading to GP-GPU or a parallel OpenMP code).

Functionals
Parallel [| ∆ |]n Computes in parallel n identical programs on n input items

producing n output items. No implicit synchronization
among programs at the end of computation.

MISD [| ∆1, . . . , ∆n |] Computes in parallel a set of n different programs on n
input items producing n output items. No implicit syn-
chronization among programs at the end of computation.

Pipe ∆1 • . . . •∆n Uses n (possibly) different programs as stages to process
the input data items and to obtain output data items. Pro-
gram i receives inputs from program i − 1 and delivers
results to i+ 1.

Reduce (g�) Computes a single output item using an l level (l ≥ 1)
k − ary tree. Each node in the tree computes a (possibly
commutative and associative) k − ary function g.

Spread (f�) Computes n output items using an l level (l ≥ 1) k − ary
tree. Each node in the tree uses function f to compute k
items out of the input data items.

Combinators
1-to-N �D-Pol Sends data received on the input channel to one or more

of the n output channels, according to policy D-Pol with
D-Pol ∈ [Unicast(p), Broadcast, Scatter] where p ∈
[RR,AUTO]. RR applies a round robin policy, AUTO di-
rects the input to the output where a request token has
been received

N-to-1 �G-Pol Collects data from the n input channels and delivers the
collected items on the single output channel. Collection
is performed according to policy G-Pol with G-Pol ∈
[Gather,Gatherall, Reduce]. Gatherall waits for an input
from all the input channels and delivers a vector of items,
de facto implementing a barrier.

Feedback
←−−
(∆)cond Routes output data y relative to the input data x (y =

∆(x)) back to the input channel or drives them to the
output channel according to the result of the evaluation of
Cond(x). May be used to route back n outputs to n input
channels as well.

Legal compositions grammar

∆n ::= [| ∆ |]n | [| ∆1, . . . , ∆n |] |
←−−−
(∆

n
)cond | ∆n •∆n

∆1n ::= �Pol | (f�)
∆n1 ::= �Pol | (g�)

∆ ::= ((code)) | (| code |) | ∆ •∆ | ←−−(∆)cond | ∆
1n •∆n1 | ∆1n •∆n •∆n1

Fig. 1: Base building blocks of the parallel instruction set.

basic, embarrassingly parallel patterns but also general, theoretically well-
established and well-known computation patterns, and also domain-specific
skeletons/patterns. In this work we consider: the BSP parallel computation
model, the MapReduce pattern and the Macro-dataflow model as computation
patterns; and also three domain-specific skeletons/patterns belonging to the
fields of evolutionary computation, symbolic computation and networking.
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3.1 The BSP model

In the Bulk Synchronous Parallel model [32], a parallel computation running
on a set of processors proceeds in a sequence of super-steps, each step organ-
ised as follows: i) each processor computes locally by accessing only its local
variables and environment; ii) eventually processors begin an asynchronous
communication step in which they exchange data; iii) each processor enters a
barrier waiting for completion of the communication step. A BSP computa-
tion can be described as a sequence of super-steps ∆i

SS , where i ∈ [1, k] and
k is the number of super-steps. Each super-step can be seen as a two-stage
pipeline. Letting n be the number of parallel activities or processes involved in
a super-step computation, we use ∆i

stepj to denote the jth process, j ∈ [1, n],

at the ith super-step. The first stage of the pipeline may be modelled as a
MISD functional [| ∆i

step1 , . . . ,∆
i
stepn |] where each ∆i

stepj computes a list of
pairs 〈value, index〉, where the index denotes to which of the possible n
destinations the value message is directed. The second stage implements the
communication and barrier features of each super-step. It may be implemented
using a spread functional (f�) to route all the messages towards the target
∆i+1
stepj , as follows

�Gatherall • (route2Dest�)

where route2Dest is the function routing input messages to their final destina-
tion according to the superstep communication code prescriptions. The single
superstep may then be modelled using RISC-pb2l as follows:

∆i
SS = ([| ∆i

step1 , . . . ,∆
i
stepn |]︸ ︷︷ ︸ • �Gatherall • (route2Dest�)︸ ︷︷ ︸)

Compute+ Prepare Msg Communication+Barrier

and the whole BSP computation may be expressed as

BSP (k) = ∆1
SS • . . . •∆k

SS

When considering the composition of the ∆i
SS phases (see Fig. 2 left) we

can clearly recognize the presence of a bottleneck and, at the same time,
a discrepancy w.r.t. the way communications are implemented within BSP.
By collecting all messages in a single place through the �Gatherall and then
applying the (RouteToDest�), a) the constraint imposed by the h-relation of not
having more than h communications (incoming or outgoing) incident upon the
same node is violated, and b) the node gathering the messages from the super-
steps constitutes a bottleneck.

The factorization of components in the RISC-pb2l set, however, provides
suitable tools to cope with this kind of situation. An expression such as

�Gatherall • (f�)

actually routes to the (f�) messages from the n sources of the �Gatherall
leaving those messages unchanged. Under the hypothesis that the (f�) only
routes those messages to their correct destinations among the m outputs of
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the (f�) tree, the �Gatherall • (f�) expression may clearly be transformed
into an equivalent form where a distinct (f�) is used to route messages at
each of the inputs of the original �Gatherall tree. All the n (f�) trees will
share the m outputs of the original, single (f�). The original and optimized
communication patterns for the two cases are shown in Fig. 2 right. In terms
of RISC-pb2l components, this optimization may be expressed as

�Gatherall • (f�) ≡ [| (f�) |]n (Opt1)

where all the ith outputs of the n (f�) are assembled in the single ith output
of the [| (f�) |]n.

The Opt1 rule actually removes the synchronization of the �Gatherall of the
original expression. If such synchronization is needed (as in the BSP skeleton)
for correct execution, we have to add an explicit synchronization immediately
after the parallel functional, and the only way to synchronize is to use the
combinator N-to-1 with the �Gatherall policy:

�Gatherall • (f�) ≡ [| (f�) |]n • (�Gatherall •�Scatter)

(the final �Scatter is needed to re-establish the correct arities after the �Gatherall
has collapsed its n inputs into a single output).

The �Gatherall •�Scatter implements the barrier and, in order not to in-
troduce inefficiencies (bottlenecks) and violations of the BSP model features
(h-relation), it has to be substituted by an efficient implementation of a bar-
rier, if available, with no data movement at all. Indeed, the rewriting

�Gatherall •�Scatter ≡ ((barrier)) (Opt2)

may be considered a worthwhile optimization any time an efficient barrier
operation is available in the target architecture at hand.

It is worth noting that the optimizations just outlined a) remove the orig-
inal bottleneck, b) ensure the BSP h−relation and, last but not least, c) may
be introduced in an automatic way any time we recognize that the (state-
less) function f processes only a single message at a time in a (�Gatherall
• (f�)) expression. This is exactly in the spirit of RISC-pb2l design: the system
programmer responsible for providing an implementation for a given parallel
pattern may use the RISC-pb2l building blocks and rely on the optimizations,
separately designed by the RISC-pb2l engineers, to achieve efficiency.

The BSP super-step may finally be rewritten as

[| ∆i
step1 , . . . ,∆

i
stepn |] • [| (route2Dest�)1, . . . , (route2Dest�)n |] • ((barrier))

3.2 The MapReduce

The MapReduce pattern (MR) introduced by Google models those applica-
tions where a collection of input data is processed in two steps [28,13]: i) a map
step computes a 〈key, value〉 pair for each item in the collection by applying
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∆i
SS



↓ . . . ↓
[| ∆i

step1
, . . . , ∆i

stepn
|]

↓ . . . ↓︸ ︷︷ ︸
�Gatherall

↓
(route2Dest�)︷ ︸︸ ︷

∆i+1
SS



↓ . . . ↓
[| ∆i+1

step1
, . . . , ∆i+1

stepn
|]

↓ . . . ↓︸ ︷︷ ︸
�Gatherall

↓
(route2Dest�)︷ ︸︸ ︷

Fig. 2: RISC-pb2l BSP superstep sequence (left). Optimizing �Gatherall • (f�)
by [| (f�)1, . . . , (f�)n |] (f being route2Dest, ga being Gatherall) (right).

a function f , and ii) a reduce step “sums up” (in parallel for all keys) all the
value items with a given key using an associative and commutative operator⊕.
The map reduce pattern may be described as follows. Given an input collection
(x1, . . . , xn), xi ∈ X, a function f : X → 〈Key, Y 〉, a binary and associative
function ⊕ : Y → Y → Y and assuming keys of : 〈Key, Y 〉 list → Key list
returns the list of keys appearing in the first list of pairs and K : Key →
〈Key, Y 〉 list→ Y list returns the list of values of the items in the 〈Key, Y 〉
list with a given key, then

MR(f,⊕)(x1, . . . , xn) = {Σ⊕(K(k)) | k ∈ keys of(f(x1), . . . , f(xn))}

The computation of MR(f,⊕)(x1, . . . , xn) is obviously performed in parallel,
as the input collection is usually already partitioned across a set of process-
ing elements and the set of reduces are cooperatively executed by these PEs
immediately after having computed the map phase in parallel1.

The mapreduce pattern can therefore be described as the composition of
two functionals, modelling the map and reduce phases, respectively:

MR(f,⊕) = ∆map(f) •∆red(⊕)

with:
∆map(f) = �Scatter • [| ((f)) |]nw
∆red⊕ = �Gatherall • (K�) • [| �Scatter • (⊕�) |]nw′

The spread over K (K�) will route each 〈K,Y 〉 item to the parallel activity
dealing with all items with Key = K, that is to the parallel activity (worker)
computing the (⊕�) of the keysK. Logically nw′ = #{keys of(f(x1), . . . , f(xn))}
although some smaller nw′ will be used to increase the efficiency of the reduce

1 this is slightly different from the composition of map and reduce skeletons as perceived
by the algorithmic skeleton community [8]
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computation, such that each (⊕�) works on partitions of keys rather than on
single key values. In the same way, nw should be equal to n, the cardinality
of the input data set, but a smaller value will be used such that each parallel
activity in the [| ((f)) |]nw actually computes ((f)) over a partition of the input
data items. Without loss of generality we may assume that nw = nw

′
.

It is worth pointing out that the �Gatherall • (K�) and �Scatter • (⊕�) por-
tions of the ∆red(⊕) part of the computation are naturally suitable for several
“routing” optimizations in a concrete implementation.
In fact, as in the BSP example and since we are working with stateless build-
ing blocks, the �Gatherall • (K�) expression can be automatically recognized
and optimized to avoid the bottleneck induced by the barrier represented by
the Gatherall operation. Assuming that ∆map(f) produces as output a set of
items {(k1, x1), . . . , (km, xn)} for ki ∈ Key, i ∈ [1,m], an optimized version of
�Gatherall • (K�) may be defined as

[|(K1�), . . . , (Kn�)|]

where Kj = K(k, xj), j ∈ [1, n] for any k. In other words, the gathering
followed by the spread of the K function applied over the whole collection
is rewritten as a MISD operation on a list of pairs in which each input item
(xi, kj) of the list is routed to a filter K(k, (xi, ks)) of keys. As a result, the
expression produces a set of lists which become the input for the reduce phase.
Summing up, a first rewriting of the MR(f,⊕) pattern is defined as follows:

�Scatter • [| ((f)) |]nw • [|(K1�), . . . , (Kn�)|]nw′′ • [|�Scatter • (⊕�)|]nw′

where nw′′ is the number of parallel activities evaluating ((f)). However, by
imposing nw = nw′′, and taking into account that obviously

[| ∆1 |]n • [| ∆2 |]n ≡ [| ∆1 •∆2 |]n (Opt3)

a further optimization could be expressed as

�Scatter • [|((f)) • (K1�), . . . , ((f)) • (Kn�)|]nw • [|�Scatter • (⊕�)|]nw′

where the creation of the pairs and the filtering stages are composed in a
pipeline within the same worker of a MISD building block. In an actual imple-
mentation this can be translated into a sequential execution of f and k on the
same physical machine, thus exploiting locality and reducing communication
and data transfer overheads.

3.3 The Macro-dataflow model

In the macro-dataflow (MDF) model a program is interpreted by focusing on
the functional dependencies among data. The evaluation of a program is real-
ized as the traversal of a graph whose nodes are macro-dataflow instructions
that become “fireable” (i.e. executable) as soon as the input data (token) is
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available on the input arcs. Different nodes can become fireable in parallel de-
pending on the dynamic availability of tokens through the arcs as computation
proceeds. This model can be described as a three-stage pipeline: the first stage,
through the function b, builds the graph (possibly dynamically); the second
stage determines, via the function e, which instructions have become fireable;
and the third stage executes the MDF instructions via a parallel functional
whose programs use a function, f , capable of executing any instruction in the
graph. RISC-pb2l can be used to describe the pattern via the expression:

MDF (b, e, f) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(((b)) • ((e)) • (�Unicast(AUTO) • [| ((f)) |]nw •�Gather))c

where nw denotes the available parallelism degree. The tokens generated by
the parallel functional determine which instructions will become fireable at
the next iteration and the process proceeds until no more instructions become
fireable (i.e. the feedback condition c is always true up to when no more tokens
are produced). In many cases, the dependency graph is built statically once
and for all, and so the MDF pattern can be reduced to:

MDF (b, e, f) = ((b)) •←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−(((e)) •�Unicast(AUTO) • [| ((f)) |]nw •�Gather))c
Independent of the “range” of the feedback combinator, it may be noted that

∀∆ ∈ ∆n, P ∈ [Gather,Gatherall] :
←−−−−−−
(∆ •�P )c ≡

←−−−−−−
(�P •∆)c′ (Opt4)

where c may be equal to c
′

in the case of P = Gather, and therefore we may
write the MDF as:

MDF (b, e, f) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(�Gather • ((b)) • ((e)) •�Unicast(AUTO) • [| ((f)) |]nw)

c

and then, considering that the first �Gather de facto implements an alternative
command and that the �Unicast(AUTO) connector only routes output of ((e))
to one of the inputs of [| ((f)) |]nw, we can apply the following transformations:

�Gather • ((b)) into ((bmerge))
((e)) •�Unicast(AUTO) into (e�)

thus obtaining an optimized expression for the MDF pattern as follows:

MDF (b, e, f) =
←−−−−−−−−−−−−−−−−−−−−−−
(((bmerge)) • (e�) • [| ((f)) |]nw)c (1)

4 Domain specific skeletons

4.1 Global single population genetic skeleton

This skeleton belongs to the family of so-called genetic algorithmic skeletons
[25,1], i.e. those patterns of computation inspired by the evolutionary com-
puting field, in which optimization techniques emulate the natural selection
process. The convergence is defined in terms of evolution of a population (the
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solution space) in which only those individuals exhibiting the better fitness
are selected to mutate, reproduce (or eventually to die). The skeleton can be
represented as follows:

GSP (eval, filter, term) =
←−−−−−−−−−−−−−−−−−−−−−−−−−−−
(�Scatter • [| ((eval)) |]nw • (filter�))term

The skeleton is a parallel functional whose programs evaluate, using the func-
tion eval, the fitness of each individual in the current population. The Reduce
functional is used to gather the data and apply one or more genetic operators
to a subset of m individuals. This introduces genetic diversity to the popula-
tions (using the filter function). The termination condition is tested by the
function term, which determines if sufficient generations have been produced.

4.2 The orbit skeleton

The orbit skeleton [29,18] belongs to the field of symbolic computation. Start-
ing from an initial set of known “points” it recursively applies a set of gen-
erators and adds those generated points not already included in the original
set until the transitive closure of the generators on the initial set is eventually
computed. The behaviour of the pattern can be described by the following
algorithm, where G = {g1, . . . , gk} is the generator set and S = {s1, . . . , sn}
the initial set of points:

1 repeat

2 ∀s ∈ S
3 ∀g ∈ G
4 Sg = g(s)
5 ∀x ∈ Sg
6 if(x /∈ S) then S := S ∪ x
7 until (no more items have been added to S)

The critical point in this algorithm is represented by the updates to S, as
the for alls at lines 2 and 3 generate independent computations if the update
of S (at lines 5–6) is not taken into account. Therefore the orbit skeleton may
be implemented by a two stage pipeline where the first stage computes in
parallel all the potential new items to be added to S and the second stage
filters the duplicates and eventually updates the set S, before looping back to
the first stage. Thus

OB(S,G) =
←−−−−−−−−−−−
(OBstep(S,G))NewItemsAdded

where NewItemsAdded holds true if OBstep(S,G) adds at least one new item
in S, OBstep(S,G) being defined as

OBstep(S,G) = �Scatter • [|M |]nw′︸ ︷︷ ︸ • (FilterDup�) • ((UpdateS))︸ ︷︷ ︸
Stage1 Stage2
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where FilterDup filters duplicate items, UpdateS inserts items in S and

M = �Broadcast • [| ((gi)), . . . , ((gk)) |] •�Gather
computes the new items from the same si applying all the different gj .

It is worth pointing out that by substituting the initial �Scatter with a
[| �Scatter,�Broadcast |] in OBstep(S,G), both s and S will be available to
compute in the first stage a local reduce to eliminate duplicates generated on
the same si using different gj in the same worker. M may then be expressed
as

M = �Broadcast • [| ((g1)), . . . , ((gk)) |] • (FilterDup�)

and applying map promotion this may be rewritten as

M = �Broadcast • [| ((g1)) • (FilterDup�), . . . , ((gi)) • (FilterDup�) |] • (FilterDup�)

thus resulting in a more parallel implementation of the overall FilterDup
reduction.

4.3 Network Packet Processing

Analyzing and classifying the type of traffic traversing a given network has al-
ways been of great interest. The identification of the application protocol (e.g.
http, smtp, Skype, etc.) is performed by extracting the information contained
in the packet header and payload.

To correctly extract the data carried by the protocol it is in general nec-
essary to manage the expensive task of IP defragmentation and TCP stream
reordering and reassembly. This kind of processing is typically implemented
(at least in part) through dedicated hardware. However, full software solutions
are more appealing because they are more flexible and economical.

The Network Packet Processing (NPP) pattern can be described as a
pipeline of parallel functional stages. The number of pipeline stages depends on
the specific application, but, typically, the first stage performs packet parsing,
the second stage protocol management and the third stage the real processing
on the network packets/flows. For simplicity, and without loss of generality,
we assume that the protocol management phase is not computationally ex-
pensive, such that the second and third stages of the pipeline can be merged
into a single stage:

NPP (f, h) = (f�) • [| ∆1 |]nw • (f−1�)︸ ︷︷ ︸ • (h�) • [| ∆2 |]nw′ •�Gather︸ ︷︷ ︸
Parsing(f) Processing(h)

The packet scheduling function f has output arity nw and it is such that
f−1 exists. This means that we are able to schedule and collect packets in the
exact same order, ensuring that the Parsing nodes do not reorder packets.The
packet scheduling function h is able to route all the packets belonging to the
same network flow to the program (worker) of the Processing functionals
which is in charge of managing that network flow.



Design patterns percolating to parallel programming framework implementation 13

RISC-pb2l FastFlow

((f)) ff node

(| f |) ff_node with encapsulated parallel code (e.g. offloading
code to GPUs in the svc body, or using some OpenMP
directive)

�Pol, (f�) ff_loadbalancer implementing the required Pols and fs
�Pol, (f�) ff_gatherer implementing Pols and fs
←−−
(∆)c wrap around method for farms and pipes
[| ∆ |]n, [| ∆1, . . . ,∆n |] ff farm, with possibly different workers
∆1 • . . . •∆n ff pipeline

Fig. 3: Correspondence between RISC-pb2l building blocks and FastFlow con-
structs/abstractions

5 RISC-pb2l prototype implementation

In Sec. 3 and Sec. 4 we showed how RISC-pb2l is suitable for modelling general
purpose computing model patterns and domain specific patterns, respectively.
In addition, we discussed how optimisations may be identified by considering
RISC-pb2l semantics and target architecture features. To assess the usabil-
ity and efficiency of our approach we need a prototype implementation of
the RISC-pb2l building blocks. In [12] we have already used FastFlow [16] to
implement the RISC-pb2l components. Here we briefly recall how RISC-pb2l
components map onto FastFlow components, to introduce the experiments of
Sec. 6 which have been run using our prototype FastFlow implementation of
RISC-pb2l (henceforth FastFlow RISC-pb2l).

FastFlow2 is a C++ based parallel programming framework built on top
of POSIX threads aimed at providing the parallel programmer with a set of
pre-defined algorithmic skeletons modelling the main stream-parallel patterns
[4,3]. It provides two algorithmic skeletons: i) a farm skeleton, applying in
parallel the function modelled by an inner skeleton composition (the farm
worker) to all the items appearing on an input stream, and delivering results
to its output stream; and ii) a pipeline skeleton, applying in sequence the
functions implemented by its inner skeleton compositions (the pipeline stages)
to the items appearing on an input stream, and delivering the results to its
output stream. Both pipelines and farms, when used at the topmost level in the
skeleton composition modelling a parallel application, support a wrap around

method providing the programmer with the possibility to move data back from
the output stream directly to the input stream.

The whole FastFlow implementation is built on top of the abstraction of
parallel concurrent activity (the ff_node) processing items appearing onto
an input stream to deliver outputs to an output stream. Additional building
blocks ff_loadbalancer (scheduling tasks from an input stream to a set of
concurrent activities) and ff_gatherer (collecting results from a set of con-

2 FastFlow has been under development since the early ’10s as an open source project
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current activities into a single stream, either aggregated in a collection data
structure or a sequence of values) are used to implement the various high level
skeletons provided as primitive classes to the application programmer.

The RISC-pb2l building blocks have been implemented using the FastFlow
components as outlined in the table of Fig. 3.

6 Experimental results

To assess the efficiency and versatility of the FastFlow RISC-pb2l set, we per-
formed two kinds of experiment aimed at demonstrating: i) the general effi-
ciency of FastFlow RISC-pb2l using simple applications or kernels, and ii) the
efficiency achieved in the implementation of domain specific and general com-
puting model patterns. We considered different platforms (multi-core, many-
core and distributed systems) to demonstrate that RISC-pb2l can be used to
design efficient implementations in different scenarios. As a performance met-
ric we used the scalability, measured as S (n, sz) = T (1, sz)/T (n, sz) where
T (n, sz) is the parallel execution time using n worker threads and keeping
fixed the problem size, sz.

6.1 RISC-pb2l general efficiency

To assess scalability and efficiency, we consider two applications. The first is
a simple streaming application: two image filters (blur and emboss) are to be
applied to a stream of input GIF images. In the test we considered 256 images
and 2 cases: small size images (256KB) and coarser size images (1.7MB). The
application was executed on a small cluster of 2 Intel Sandy Bridge multi-core
(16-core 2-way hyper threading) connected through an Infiniband network.
The application has been designed as a pipeline of two consecutive map filters
fused into a map of pipelined filters:

IMGfilter(f1, f2) = �Unicast(AUTO) • [| ((f1)) |]nw • [| ((f2)) |]nw •�Gather

where the channels connecting the output of the workers of the first parallel
building block ([| ((f1)) |]nw) to the input of the workers in the second paral-
lel building block ([| ((f2)) |]nw) have been implemented as unicast channels
over the Infiniband interconnection network (using the IP over IB protocol)
rather than as standard FastFlow unicast channels in memory. Fig. 4 shows the
structure of the concurrent activities of the application (Left) and typical per-
formance results obtained (Right). The maximum speedup obtained is 19.6×
and 28.3× for small and medium size images, respectively. The performance
obtained is very good for large images taking into account the non-negligible
amount of data that must be transferred across the network links intercon-
necting the two hosts implementing the two parallel building blocks.

The second application is a data-parallel kernel computing the standard
dense matrix multiplication algorithm (C = A × B) for square matrices of
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Fig. 4: Image processing application on 2 Intel Sandy Bridge multi-core nodes
(16 cores each) connected via an Infiniband (40 Gb/s ports) network.

 1

 10

 100

 1000

1 16 32 48 64 96 128 160 192 224
 0

 20

 40

 60

 80

 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
S

e
c
. 

- 
lo

g
. 

s
c
a

le
)

S
c
a

la
b

ili
ty

N. of worker threads

4-way HW multithreading

OpenMP     
FF-map     
ideal

Fig. 5: Matrix multiplication on the Intel Xeon PHI coprocessor (60 physical
cores, 240 HW threads).

4046× 4096 double precision elements. The scalability of the kernel has been
measured on a 60-core Intel Xeon PHI coprocessor running at a clock frequency
of 1GHz. The Xeon Phi coprocessor is a SMP computing node connected to
the host domain through a PCI Express (PCIe) bus. It runs an embedded
Linux x86 64 OS that provides basic functionality such as process/thread cre-
ation, scheduling and memory management. Xeon Phi cores run independently
of each other, having support for 4-way HW multi-threading and vector pro-
cessing. Each core has a private L2 cache that is kept fully coherent by a
global-distributed tag directory. Cores are connected by the ring interconnect.

The RISC-pb2l parallel structure of the algorithm is given by a standard
map modelled as:

�Scatter • [| ((MM)) |]nw •�Gatherall
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where the Scatter splits the input A matrix into row chunks and directs the
pairs 〈RowChunk(A)i, B〉 to the parallel workers (the matrix B is broadcast);
the workers compute the sequential algorithm on the input blocks producing
RowChunk(C)i; and finally, the Gatherall rebuilds the result matrix C. Fig. 5
outlines the application structure and shows the performance obtained when
varying the number of worker threads up to 224 using the FastFlow map skele-
ton (in which communications are implemented via shared memory by passing
pointers to data structures) and an OpenMP version of the same algorithm
(Intel C++ Compiler XE 13.1)3. The maximum scalability on the Xeon PHI
coprocessor is 73.19× using 128 worker threads corresponding to an overall
execution time of 2.12s. The same test executed on the host platform, a dual
6-core Xeon E5-2630 @2.3GHz, obtains a minimum execution time of 5.36s
using 24 threads and a scalability of 11.6. We obtained a 2.5× gain in using
the Xeon PHI coprocessor and a speedup of 29.3 with respect to the sequential
time on the host platform.

6.2 RISC-pb2l versatility

As testbed, we consider the Network Packet Processing pattern (NPP) and
the macro-dataflow pattern (MDF) described in Sec. 3.3 and in Sec. 4.3, re-
spectively. The implementations of both patterns use the FastFlow RISC-pb2l
framework. The tests have been executed using a single multi-core platform
with 2 CPUs with 8 cores each (16 cores, 2-way multi-threading) Intel Sandy
Bridge Xeon E5-2650 2.0GHz with 20MB L3 cache and 32GB of RAM.

For the NPP pattern we report the scalability of network packet parsing,
implemented using a farm skeleton. Tasks passing through a farm can be sub-
jected to reordering because of different execution times in the worker threads.
To overcome the problem of sending packets in a different order with respect
to input, tasks can be reordered after collection from the workers, although
this solution might induce extra latency caused by the TCP normalisation.

To avoid this problem a scheduling and collection strategy which pre-
serves the order of the packets is required. In Fig. 6 (Right) we compare two
non order-preserving strategies (RR and AUTO), with a very simple order-
preserving RR scheduling policy where a function–executed both in the emitter
and in the collector of the farm–schedules/collects packets to/from workers in
a strict round-robin order. In the graph we plot the scalability of the three
strategies varying only the number of worker threads (W in Fig. 6 (Left)) up
to 12 since other threads are used by the application run-time.

As can be seen, the ordering scheduling strategy provides better and more
stable results than the other two solutions. This is because the overhead in-
troduced by the ordered RR is less than the extra latency introduced by the
explicit user reordering of packets in the farm collector. This can be explained
by observing that, for the packet parsing phase, the packets already arrive

3 OpenMP thread affinity has been set using: KMP AFFINITY=“granularity=fine,scatter”.
In the tests we used the static scheduling policy for OpenMP.
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Fig. 6: Comparing different scheduling strategies for NPP’s farm pattern.

at the farm collector almost in the correct order due to the small variance
introduced during packet computation.

To validate the implementation of the macro-dataflow pattern (MDF) when
complex fine-grained data-parallel computations are considered, we compared
the block Cholesky factorisation algorithm operating on a single input ma-
trix of complex elements (single precision) against the PLASMA 2.5.0 library
(Parallel Linear Algebra for Scalable Multi-core Architectures) [27] implemen-
tation of the same algorithm. We implemented the MDF pattern as described
in Eq. 1 in Sec. 3.3. The FastFlow implementation schema of the MDF pattern
is sketched in Fig. 7) (Left).

Fig. 7 (Right) shows the execution times obtained when varying the num-
ber of worker threads in the farm stage for the MDF pattern and the number
of threads in the PLASMA library for different matrix sizes (1024×1024 with
64×64 blocks, 2048×2048 with 256×256 blocks and 4096×4096 with 512×512
blocks). As can be seen, the results obtained using the MDF implementation
are comparable with or better than those obtained using the highly optimized
and very efficient static pipeline implementation offered by the PLASMA li-
brary4. As expected, when more worker threads than available cores are used,
there is no performance gain for this kind of application which makes heavy
use of vectorisation and floating point operations. On the contrary, the hyper
threading support allows efficient use of more threads than physical cores in
the MDF skeleton. In fact, for bigger matrices (2048× 2048 and 4096× 4096)
where the minimum execution time is obtained with 16 worker threads, the
MDF pattern uses 18 threads, with the 2 extra threads used for managing the
dependency graph generation (b) and task scheduling (e), respectively.

4 The PLASMA library can be considered the current reference implementation in Dense
Linear Algebra for modern multi-core.
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7 Related work

Since multi-core processors are becoming available in almost all computing
platforms, the problem of developing usable and efficient parallel programming
frameworks is garnering much interest in both research and industry.

Intel Threading Building Blocks (TBB) [30] is a C++ template library
which provides easy development of concurrent programs by exposing (sim-
ple) skeletons and parallel data structures used to define tasks of computations.
TBB is designed as an application-level library for shared-memory program-
ming only; furthermore it does not provide any formal definition of its own
skeletons to support global optimisations of the code.

The Task Parallel Library [31], which targets the .NET framework, sup-
ports parallel programming activities through the definition of skeletons such
as parallel loops and parallel containers, but it neither supports the definition
of new patterns from the provided set of skeletons nor the optimisation of
existing pattern compositions.

S-Net [17] is a declarative coordination language describing communica-
tion of asynchronous sequential components (a.k.a. boxes) through strongly
typed streams. It separates concurrency management from application code
and is designed to facilitate the composition of components developed in iso-
lation. The S-Net run-time system is process based with blocking semantics,
which limits scalability for fine-grain computation. Despite some similarities,
RISC-pb2l differs from S-Net in several respects: i) it (RISC-pb2l) aims to fa-
cilitate implementation of parallel patterns rather than directly supporting
parallel applications; ii) it is focused on performance issues rather than on for-
mal aspects; and iii) it provides finer grain constructs modelling orchestration
of concurrent activities.

MPI is often considered as a solution for writing efficient parallel appli-
cations and frameworks [26]. The low-level approach advocated by MPI falls



Design patterns percolating to parallel programming framework implementation 19

short in supporting performance portability, especially when hundreds or thou-
sands of concurrent activities are involved and hybrid solutions have to be
adapted (i.e. MPI+OpenMP). Applications must often be re-designed or man-
ually tuned for each new platform by an expert parallel programmer.

OpenCL compilers and libraries target both multi-core CPUs, GP-GPUs
and accelerators [20]. OpenCL is quite low level, focusing on low level feature
management rather than high-level parallelism exploitation patterns.

8 Conclusions

In this paper we have discussed how RISC-pb2l, a set of efficient and re-usable
building blocks for supporting efficient design of parallel skeletons/patterns,
may be used to design and implement both general purpose programming
model and domain specific patterns. We showed how a set of optimization
techniques may be applied by rewriting RISC-pb2l expressions before moving
to actual implementation. We reported experimental results on different, mod-
ern multi-core architectures demonstrating: i) the scalability and efficiency of
the RISC-pb2l prototype implementation, and ii) how the RISC-pb2l imple-
mentations of general purpose programming model patterns (macro-dataflow)
and domain specific skeletons (network packet processing) deliver good per-
formance.

Here we have implicitly used a cost model to determine when it is beneficial
to apply optimisations. In future work we plan to make explicit this use of cost
models to support reasoning about RISC-pb2l designs; and to provide a set of
cross-compilation rules between the RISC-pb2l framework and some lower level
parallel run-time libraries.
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