
Determinism at Standard Library Level in
Transactional Memory Based Applications

Vesna Smiljković12, Osman Ünsal1, Adrián Cristal13, and Mateo Valero12

1 Barcelona Supercomputing Center, Spain
2 Universitat Politcnica de Catalunya, Spain

3 IIIA - Artificial Intelligence Research Institute CSIC - Spanish National Research
Council

{first}.{last}@bsc.es

Abstract. Deterministic execution of a multi-threaded application guar-
antees that threads access shared memory in the same order and the
application gives the same output when it runs with the same input
parameters. Determinism provides repeatability, which helps a program-
mer in testing and debugging. Additionally, Transactional Memory (TM)
simplifies development of applications that use transactions (instead of
locks) to synchronize accesses to shared memory. However, transactions
that call standard library functions have to be serialized, and the serial-
ization causes a deadlock when applications run with the deterministic
systems proposed so far.
In this paper, we present DeTrans-lib, the first standard C library that
provides deterministic execution of TM-based applications at user and
standard-library level. DeTrans-lib avoids deadlocks by performing trans-
action serialization in deterministic order. We evaluate DeTrans-lib using
benchmarks that perform I/O operations.

Keywords: transactional memory; determinism; standard library

1 Introduction

Transactional Memory (TM) [1][2] is a synchronization mechanism proposed as a
replacement of traditional locking mechanism to simplify development of multi-
threaded applications, allow threads to concurrently access shared memory, and
avoid concurrency bugs. In the last two decades TM has been in the focus of
researchers, who provided implementations in software [3][4][5] and hardware
integrated in mainstream Intel [6] and IBM [7] processors.

Although TM increases productivity and developers might avoid the concur-
rency bugs common for lock-based applications, many bugs are still hard to re-
produce, find and resolve. Like in any other multi-threaded application, in a TM-
based application threads run concurrently and interleave non-deterministically
when they access shared memory. This might cause a different output every time
an application is executed, which makes testing difficult. What makes debugging
difficult is that a bug might appear in one execution, but be hidden in another.

The final publication is available at Springer via http://dx.doi.org/10.1007/s10766-015-0383-4



To make every execution of a TM-based application repeatable, Smiljkovic et
al. [8] and Ravichandran et al. [9] proposed systems for deterministic execution
– DeTrans and DeSTM, respectively. They guarantee that threads always inter-
leave in the same order and the application always gives the same output for
the same input parameters. However, they ensure deterministic multithreading
only at user level, and might cause a deadlock when transactions call standard
library functions.

Standard libraries abstract and simplify the access to services of the operating
system and encapsulate shared structures, e.g. file structures. In general, TM is
not able to track accesses to shared structures in a standard library or kernel;
therefore, a transaction that invokes a standard library call or a system call
has to be serialized. If an application is executed deterministically, one thread
might wait to be serialized and another to be executed in deterministic order.
Since the deterministic system and TM try to enforce a different order of threads
execution, they cause a deadlock.

In this work we present DeTrans-lib, a TM-based standard C library (libc)
that ensures deterministic execution of multi-threaded applications at user and
standard-library level. It is based on a runtime (DeTrans [8]) that provides deter-
ministic execution even in the presence of data races, and a TM-based libc (TM-
dietlibc [10]) that allows transactions to concurrently execute libc functions, and
serializes them only if the libc function invokes a system call. DeTrans-lib ensures
that transactions invoke system calls in deterministic order, which prevents from
having deadlocks caused by serialization and deterministic execution.

The contributions of our work are:

– DeTrans-lib is the first TM-based libc that provides deterministic multi-
threading. We port a deterministic system (DeTrans) in a libc (TM-dietlibc)
to ensure deterministic execution of TM-based applications at user and
standard-library level.

– DeTrans-lib avoids deadlocks caused by busy-waiting in serialization (en-
forced by TM-dietlibc due to system calls) and busy-waiting in deterministic
execution (enforced by DeTrans). With DeTrans-lib, threads invoke system
calls in deterministic order.

– We discuss the importance of supporting serialization and other ad hoc syn-
chronizations in state-of-the-art systems for deterministic multithreading.

We verify the correctness of the DeTrans-lib implementation by using stress
test Racey [11][12]. For the evaluation, we use benchmarks that invoke libc calls
with I/O operations: microbenchmarks from [10], and modified TioBench [13].

2 Related Work

Recent work on deterministic multithreading ensures that when a program runs
with the same input parameters it always gives the same output. When a system
guarantees deterministic execution of the user-level code, we call this user-level
determinism, and in case of deterministic execution when threads concurrently



invoke standard library calls and system calls, we call it standard-library-level
determinism and OS-level determinism, respectively. Further more, strong deter-
minism is deterministic execution even in the presence of data races, and weak
determinism is deterministic execution of data-race-free programs.

In the rest of this section we give a brief overview of the systems for deter-
ministic multithreading that are related to our work.

Olszewski et al. [14] propose Kendo, a software implementation for weak
determinism of lock-based applications. Each thread has a private logical clock
that counts logical time when a thread acquires a lock. A thread can execute a
critical section only if the lock is available in both logical and physical time.

Devietti et al. (DMP [15], RCDC [16]) and Bergan et al. (CoreDet [17])
propose several software-only, hardware-only and software-hardware implemen-
tations to ensure determinism. The basic implementation is deterministic seri-
alization of lock-based applications – threads execute parts of code in round-
robin order. Parallelism is improved by (i) using a shared memory ownership
table (strong determinism); (ii) maintaining thread-local store buffers that each
thread copies to shared memory when parallel execution is over (strong deter-
minism), or (iii) tracking happens-before dependencies of lock acquisitions (weak
determinism).

Grace (Berger et al. [18]) and Dthreads (Liu et al. [19]) are software im-
plementations for strongly deterministic execution of lock-based applications.
Threads run concurrently and work on private memory pages, which are copied
to shared pages in round-robin order at synchronization points.

In contrast to the systems for deterministic execution of lock-based multi-
threaded programs (i.e. multi-threaded programs that use pthread4 calls as syn-
chronization points), DeTrans (Smiljkovic et al. [8]) and DeSTM (Ravichandran
et al. [9]) propose deterministic execution of TM-based programs.

DeTrans is based on a double-barrier technique and guarantees strong deter-
minism of TM applications. Two barriers ensure that application code outside
of transactions is executed serially, and transactions are executed in parallel,
respecting the round-robin commit order.

On the other hand, DeSTM relaxes the barriers by allowing some transactions
to pass the barriers earlier than others, i.e. to start their execution earlier and to
start with the commit phase earlier. With the relaxed double-barrier technique,
DeSTM provides weak determinism.

Dobel et al. [20] propose RomainMT – an operating system service that
ensures redundant multithreading of lock-based applications. An application
thread and its redundant thread acquire and release the same locks, and perform
the same externalization events, e.g. system calls. During execution, the archi-
tectural state of the threads is compared and checked for faults. RomainTM is
a fault-tolerant technique and cannot be used for testing and debugging since it
does not provide repeatability – different runs of an application with the same
input parameters might give a different output.

4 pthread mutex lock/unlock, pthread barrier wait, pthread create, etc.



From the systems mentioned so far, only CoreDet and Dthreads handle libc
and system calls during deterministic execution. CoreDet either serializes libc
calls, or provides its own version of libc functions. Dthreads allows invoking
some system calls, and each thread maintains its private copy of a shared libc
structure. However, these systems cannot be used for TM-based applications due
to differences in synchronization mechanisms [8].

Deterministic operating systems Determinator [21] and dOS [22] enforce de-
terminism at user and OS level by using page protection hardware. Instead of
significant changes of an OS, DeTrans-lib is implemented at user level, can be
used with any OS, ensures libc-level determinism and guarantees deterministic
order of invoking system calls in an application.

In the next section we discuss in detail about DeTrans5 and the issues that
appear when a TM-based application calls libc functions within transactions
while running deterministically.

3 Standard library calls in deterministic execution

In a TM-based application (like in any other multi-threaded application) threads
run concurrently and interleave non-deterministically when they access shared
memory. As a result, even for the same input parameters the application might
give a different output, which makes testing and debugging difficult. To avoid
this, researchers have proposed DeTrans, the runtime system for deterministic
execution of TM-based applications.

DeTrans implements a double-barrier technique and deterministic-token pass-
ing (Figure 1(a)). It runs transactions in parallel and code outside of transactions
(non-transactional code) serially. In the parallel phase threads execute transac-
tions concurrently and commit them in round-robin order, and the thread that
holds the deterministic token commits first. In the serial phase threads are ex-
ecuted in round-robin order, and only the thread that holds the deterministic
token is executed. However, invoking a standard library while threads are execut-
ing transactions (the parallel phase) might influence deterministic order enforced
by DeTrans.

Standard libraries encapsulate shared structures, and abstract the access to
services of the operating system. In general, TM is not able to track accesses
to shared structures in a libc or kernel. Therefore, a transaction that calls a
standard library function has to be serialized, i.e. to be executed as the only
running transaction in the system.

To provide more parallelism in TM-based applications and reduce the number
of serialized transactions, researchers proposed TM-dietlibc [10], i.e. a TM-aware
libc that allows transactions to call libc functions and to execute them concur-
rently. Only when a libc function invokes a system call, the transaction has to
be serialized because of with non-reversible side effects in kernel.

5 In our work we focus on this system for deterministic multithreading since it guar-
antees determinism even in the presence of data races, which are considered to be
bugs that are hard to reproduce and resolve [23].



Listing 1.1 shows a TM-dietlibc’s implementation of the I/O function for
writing data to a file. The function either performs the I/O completely internally,
(it buffers the data if the buffer is not full – line 5), or it goes to kernel (it
invokes a system call write to write the data to the file – line 11). In the latter
case, a transaction first has to wait for all other transactions to finish their
execution (Listing 1.2 line 8), then it gets restarted (Listing 1.1 line 9) as the
only transaction in the system, and invokes the system call.

1 size_t fwrite(void *ptr , size_t size , size_t n, FILE *fp) {
2 size_t len = size*n;
3 tx_atomic { // transaction starts here
4 if(!fp ->buf.full()) {
5 memcpy(fp->buf , ptr , len);
6 }
7 else {
8 if(! serialized ())
9 tx_restart (); // go back to line 3

10 else
11 len = write(fp->fd, ptr , len); // system call
12 }
13 } // transaction commits here
14 return len;
15 }

Listing 1.1. The implementation of fwrite in TM-dietlibc.

1 int serialized () {
2

3

4 //check if tx is already serialized
5 if (this ->tx->isSerialized)
6 return 1;
7 //wait until others finish
8 while (others.areExecuting ()){}
9 this ->tx->isSerialized = 1;

10 return 0;
11 }

Listing 1.2. Serialization in TM-dietlibc

1 int serialized () {
2 // wait for the token
3 while (this != token.owner) {}
4 //check if tx is already serialized
5 if (this ->tx->isSerialized)
6 return 1;
7 //kill other txs
8 kill(others);
9 this ->tx->isSerialized = 1;

10 return 0;
11 }

Listing 1.3. Serialization in DeTrans-lib

Figure 1(b) shows an example of a thread (Thread1) calling a libc function
that invokes a system call within a transaction while running deterministically
with DeTrans. Before the call, the transaction has to be serialized – it waits
for other transactions to commit their changes and then to run as the only
transaction in the system. However, it holds the deterministic token and the
other transactions (executed by Thread2 and Thread3) wait for Thread1 to
commit its transactions and pass the token.

Our observation is that deterministic multithreading makes deadlocks out of
busy-waiting in transaction serialization (Listing 1.2 line 8) and that a deter-
ministic system has to be aware of synchronizations that are necessary to invoke
libc calls within transactions in TM-based applications.

4 Implementation of DeTrans-lib

In this work we propose DeTrans-lib, i.e. the first TM-aware libc that provides
deterministic execution of TM-based applications. We port deterministic system



Thread 1

Thread 2

Thread 3

Parallel

Phase

B1

Serial

Phase

B2

Parallel

Phase

B1

Serial

Phase

B2

(a) The double-barrier technique and token passing.

Thread 1

Thread 2

Thread 3

Parallel

Phase

B1

//
n
o
 c

o
m

m
it

n
o
 c

o
m

m
it

(b) Deterministic execution when a transaction invokes
a system call.

barrier

serial execution

tx execution (from start to commit) // sys call

token passing in serial phase

Fig. 1. DeTrans implements the double-barrier technique and passes the deterministic
token in round-robin order to ensure deterministic execution (a). DeTrans causes a
deadlock when a transaction has to be serialized (b).

DeTrans, which guarantees deterministic execution at user level, in TM-dietlibc
to provide determinism at libc level. We extend DeTrans to support libc functions
that internally invoke system calls.

Listing 1.3 shows a modified version of the function for transaction serializa-
tion. To avoid a deadlock caused by busy-waiting in serialization (enforced by
TM-dietlibc due to system calls) and busy-waiting for the deterministic token
(enforced by DeTrans), with DeTrans-lib threads invoke system calls in deter-
ministic order. Only the transaction which thread holds the deterministic token
(the token owner) can invoke a system call (line 3). When it gets the token, the
transaction kills other running transactions (line 8) instead of waiting for them
to finish, which was the original implementation and a cause of deadlocks.

Figure 2 shows examples of threads invoking system calls within transactions
while running deterministically with DeTrans-lib.

In Figure 2(a) the token-owner thread (Thread1) – before invoking a system
call – kills other transactions, runs as the only transaction in the system, passes
the deterministic token to the next thread and the other threads re-execute their
transactions in parallel.



Thread 1

Thread 2

Thread 3

Parallel

Phase

B1

Serial

Phase

B2

//
kill

kill

Serialized tx
Parallel

Phase

BstBst1 2

(a) The token owner invokes a system call.

Thread 1

Thread 2

Thread 3

Parallel

Phase

B1

Serial

Phase

B2

Serialized tx
Parallel

Phase

//

Bst

kill
//

Bst1 2

(b) A non-token owner invokes a system call.

barrier

serial execution

tx execution (from start to commit) // sys call

token passing in serial phase

Fig. 2. DeTrans-lib serializes transactions and invokes system calls in deterministic
order.

In Figure 2(b) one of the threads that is not the token owner (e.g. Thread2),
before it invokes a system call, it waits for the deterministic token, kills the only
remaining active transaction and re-executes its transaction. After the serial
execution, the remaining transaction can be executed.

Bst1 and Bst2 are the barriers that separate serial execution of a transaction
from the parallel phase. For one round of token passing, from 0 to N transactions
can be serialized, where N is the number of running threads in the round.

With DeTrans-lib, any thread can invoke a system call. However, since trans-
actions have to be serialized, the order of serialization and system call invocation
is deterministic and repeatable in every execution of an application.

5 Evaluation

We evaluate DeTrans-lib with the benchmarks that call libc I/O functions, using
2 Intel Xeon E5405 processors each with 4 cores (8 cores in total) with 4GiB
RAM, and running at 2.00GHz. We compile the benchmark with GCC 4.9 and
link it with TinySTM [4] 1.0.5.



5.1 Methodology

First, we verify the correctness of the DeTrans-lib implementation by using the
stress test Racey [11][12]. We took the modified version that supports transac-
tions and was used in [8]. Additionally, we modified the test to invoke libc. The
test calculates a signature which value depends on the order of threads accessing
and updating a shared array. The test was executed 100 times with DeTrans-lib
by multiple threads and gave the same signature for the same input parameters.

TM benchmarks implemented for TM evaluations are either without standard
library calls (STAMP [24] and Eigenbench [25]) or they postpone these calls
until the serial phase of execution (Atomic Quake [26] and Memcached [27]). As
a consequence, we cannot use any of these benchmarks to evaluate DeTrans-lib.
Instead, we use microbenchmarks from [10] and modified TioBench [13], where
transactions perform I/O on a single shared file and occasionally have to be
serialized due to system calls.

The microbenchmarks perform (i) I/O functions fgetc, fgets, fread, fputc,
and fputs within transactions, and (ii) calculations on thread-local variables out
of transactions.

Our modified version of TioBench performs fopen, fclose, fseek, fread and
fwrite instead of invoking system calls directly. Multiple threads execute: (i)
sequential write (writes data to a file starting from the beginning), (ii) random
write (writes data to a random position of a file), (iii) sequential read (reads
data from a file starting from the beginning), and (iv) random read (reads data
from a random position of a file).

To measure performance we run the benchmarks multiple times with 1, 2, 4
and 8 threads, and calculate the geometric mean of the slowdown of determin-
istic execution in comparison to the original (non-deterministic) single-threaded
execution.

5.2 Results

Figure 3 shows the performance of the microbenchmarks and TioBench running
non-deterministically (with TM-dietlibc), and deterministically (with DeTrans-
libc).

The microbenchmarks execute short transactions with I/O operations (read-
ing/writing a single character per transaction), and intensive calculations on
thread-local variables out of transactions. Transactions conflict occasionally and
the benchmarks scale while running non-deterministically. Since the benchmarks
spend most of the execution time out of transactions, and that is the part that
DeTrans-lib executes serially, DeTrans-lib slows down the single-threaded non-
deterministic execution by 1.12x, 1.62x, 1.94x, and 4.53x for 1, 2, 4, and 8
threads, respectively.

TioBench executes long transactions (reading/writing 128 characters per
transaction) and no other operations are performed out of transactions. The
transactions conflict frequently and the benchmark does not scale while run-
ning non-deterministically. Since the benchmark spends most of the execution



 0

 1

 2

 3

 4

 5

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

S
lo

w
d
o
w

n

 

original
DeTrans-lib

meanfputsfputcfreadfgetsfgetc

 0

 1

 2

 3

 4

1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8 1 2 4 8

S
lo

w
d
o
w

n

 

original
DeTrans-lib

meanRnd ReadSeq ReadRnd WriteSeq Write

Fig. 3. Slowdown of deterministic execution of microbenchmarks and TioBench

time within transactions, and that is the part that DeTrans-lib executes in par-
allel, DeTrans-lib has low overhead and slows down the single-threaded non-
deterministic execution by 0.99x, 1.14x, 1.39x, and 2.29x for 1, 2, 4, and 8
threads, respectively. Random write and read operations have higher overhead
than the average because the benchmark invokes system calls to update the I/O
buffer with the content from the random position of the file, and DeTrans-lib
serializes transactions that invoke system calls.

The overhead of DeTrans-lib depends on the benchmark implementation.
First, if threads perform time-intensive operations outside of transactions, which
DeTrans-lib executes serially, than the overhead of deterministic execution is
high. Second, if a benchmark spends most of the execution time within transac-
tions, which DeTrans-lib executes in parallel, than the performance is close to the
performance of the original execution. Third, increasing the number of serialized
transactions causes performance degradation of deterministic execution.

6 Discussion

TM requires that transactions that invoke libc and system calls are serialized,
and the serialization was implemented as ad hoc synchronization. In general,
ad hoc synchronization is common and error-prone. According to [28], the stud-
ied benchmarks have tens of ad hoc synchronizations, and some of them cause
incorrect execution and performance degradation.

State-of-the-art systems for deterministic multithreading do not support ad
hoc synchronization mechanisms that might be used in external libraries and
benchmarks. This causes deadlocks in the execution.

There are two main sources of ad hoc synchronization in the systems for de-
terministic multithreading that might cause deadlocks. First, some of the systems



for deterministic multithreading (e.g. DeTrans) serialize the code that program-
mers wrote as parallel and assumed that it will always be executed as parallel
when running with multiple threads. In the serialized execution, only one thread
executes at a time. Other threads wait for their turn (busy-waiting on the deter-
ministic token in the serial phase). Second, some of the systems for deterministic
multithreading (e.g. Dthreads) postpone writes to shared memory, i.e. the up-
dates are buffered and copied to shared memory only when the thread holds the
deterministic token (busy-waiting on the token at commit time of the parallel
phase). Benchmarks run deterministically well only if there is no other busy-
waiting during the execution, either in the external libraries or the benchmark
itself.

1 main() {
2 pthread_create(thread1 , foo1);
3 pthread_create(thread2 , foo2);
4 pthread_join(thread1);
5 pthread_join(thread2);
6 }
7

8 foo1() {
9 while (!start) {}

10 // execute here something in parallel with foo2()
11 }
12

13 foo2() {
14 start = 1;
15 // execute here something in parallel with foo1()
16 }

Listing 1.4. A common example of an ad hoc synchronization mechanism.

Listing 1.4 shows a common example of an ad hoc synchronization used in
benchmarks: a shared variable start synchronizes two threads to execute the
code in foo1() and foo2() in parallel. If the code is executed deterministically
and serially where thread1 executes first, the program will never finish its ex-
ecution. If the code is executed deterministically and in parallel where threads
buffer their updates, and thread1 holds the token, the program will never fin-
ish its execution since thread2 cannot commit its update of the start variable
without the token.

To allow complex programs to run deterministically, the state-of-the-art sys-
tems for deterministic multithreading have to support ad hoc synchronizations,
and to extend their usage from the programs that exclusively use transactions,
locks, conditions, and barriers, to the complex real-world applications with var-
ious synchronization mechanisms.

7 Conclusion and Future Work

In this paper, we presented DeTrans-lib – the first libc that provides determinis-
tic execution of TM-based applications at user and standard-library level. Since
libc functions occasionally invoke system calls and transactions that invoke sys-
tem calls have to be serialized, DeTrans-lib provides a mechanism to support
serialization and to avoid deadlocks caused by the ad hoc synchronization used



for the serialization. In future work we want to extend our system to support
ad hoc synchronizations in general, and to use it for deterministic execution of
complex real-world applications.

References

1. Herlihy, M., Moss, J.E.B.: Transactional memory: Architectural support for lock-
free data structures. In: Proceedings of the 20th annual international symposium
on computer architecture. ISCA ’93 (1993) 289–300

2. Harris, T., Larus, J., Rajwar, R.: Transactional memory. Synthesis Lectures on
Computer Architecture 5(1) (2010) 1–263

3. Shavit, N., Touitou, D.: Software transactional memory. In: Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing.
PODC ’95, New York, NY, USA, ACM (1995) 204–213

4. Felber, P., Fetzer, C., Riegel, T.: Dynamic performance tuning of word-based
software transactional memory. In: Proceedings of the 13th ACM SIGPLAN Sym-
posium on Principles and practice of parallel programming. PPoPP ’08, New York,
NY, USA, ACM (2008) 237–246

5. Spear, M.F., Dalessandro, L., Marathe, V.J., Scott, M.L.: A comprehensive strat-
egy for contention management in software transactional memory. In: Proceedings
of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. PPoPP ’09, New York, NY, USA, ACM (2009) 141–150

6. Karnagel, T., Dementiev, R., Rajwar, R., Lai, K., Legler, T., Schlegel, B.,
Lehner, W.: Improving in-memory database index performance with intel trans-
actional synchronization extensions. In: High Performance Computer Architecture
(HPCA), 2014 IEEE 20th International Symposium on. (Feb 2014) 476–487

7. Cain, H.W., Michael, M.M., Frey, B., May, C., Williams, D., Le, H.: Robust
architectural support for transactional memory in the power architecture. In: Pro-
ceedings of the 40th Annual International Symposium on Computer Architecture.
ISCA ’13, New York, NY, USA, ACM (2013) 225–236

8. Smiljkovic, V., Stipic, S., Fetzer, C., Unsal, O., Cristal, A., Valero, M.: Detrans:
Deterministic and parallel execution of transactions. In: Computer Architecture
and High Performance Computing (SBAC-PAD), 2014 IEEE 26th International
Symposium on. (Oct 2014) 152–159

9. Ravichandran, K., Gavrilovska, A., Pande, S.: DeSTM: Harnessing determinism
in STMs for application development. In: Proceedings of the 23rd International
Conference on Parallel Architectures and Compilation. PACT ’14, New York, NY,
USA, ACM (2014) 213–224

10. Smiljkovic, V., Nowack, M., Miletic, N., Harris, T., Unsal, O., Cristal, A., Valero,
M.: TM-dietlibc: A tm-aware real-world system library. In: Parallel Distributed
Processing (IPDPS), 2013 IEEE 27th International Symposium on. (May 2013)
1266–1274

11. Hill, M.D., Xu, M.: Racey: A stress test for deterministic execution

12. Xu, M., Bodik, R., Hill, M.D.: A” flight data recorder” for enabling full-system
multiprocessor deterministic replay. In: Computer Architecture, 2003. Proceedings.
30th Annual International Symposium on, IEEE (2003) 122–133

13. Vianney, D.: Tiobench benchmark - ltc linux performance team.
http://linuxperf.sourceforge.net/tiobench/tiobench.php



14. Olszewski, M., Ansel, J., Amarasinghe, S.: Kendo: efficient deterministic multi-
threading in software. SIGPLAN Not. 44(3) (march 2009) 97–108

15. Devietti, J., Lucia, B., Ceze, L., Oskin, M.: DMP: deterministic shared memory
multiprocessing. In: Proceedings of the 14th international conference on Archi-
tectural support for programming languages and operating systems. ASPLOS ’09,
New York, NY, USA, ACM (2009) 85–96

16. Devietti, J., Nelson, J., Bergan, T., Ceze, L., Grossman, D.: RCDC: a relaxed
consistency deterministic computer. SIGPLAN Not. 47(4) (2011) 67–78

17. Bergan, T., Anderson, O., Devietti, J., Ceze, L., Grossman, D.: CoreDet: a compiler
and runtime system for deterministic multithreaded execution. In: Proceedings
of the fifteenth edition of ASPLOS on Architectural support for programming
languages and operating systems. ASPLOS ’10, New York, NY, USA, ACM (2010)
53–64

18. Berger, E., Yang, T., Liu, T., Novark, G.: Grace: Safe multithreaded programming
for c/c++. In: ACM SIGPLAN Notices. Volume 44., ACM (2009) 81–96

19. Liu, T., Curtsinger, C., Berger, E.: Dthreads: Efficient deterministic multithread-
ing. In: Proceedings of the Twenty-Third ACM Symposium on Operating Systems
Principles, ACM (2011) 327–336

20. Döbel, B., Härtig, H.: Can we put concurrency back into redundant multithread-
ing? In: Proceedings of the 14th International Conference on Embedded Software.
EMSOFT ’14, New York, NY, USA, ACM (2014) 19:1–19:10

21. Aviram, A., Weng, S.C., Hu, S., Ford, B.: Efficient system-enforced deterministic
parallelism. In: Proceedings of the 9th USENIX Conference on Operating Systems
Design and Implementation. OSDI’10, Berkeley, CA, USA, USENIX Association
(2010) 1–16

22. Bergan, T., Hunt, N., Ceze, L., Gribble, S.D.: Deterministic process groups in dos.
In: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation. OSDI’10, Berkeley, CA, USA, USENIX Association (2010) 1–16

23. Serebryany, K., Iskhodzhanov, T.: Threadsanitizer: Data race detection in practice.
In: Proceedings of the Workshop on Binary Instrumentation and Applications.
WBIA ’09, New York, NY, USA, ACM (2009) 62–71

24. Minh, C., Chung, J., Kozyrakis, C., Olukotun, K.: STAMP: Stanford transactional
applications for multi-processing. In: Workload Characterization, 2008. IISWC
2008. IEEE International Symposium on, IEEE 35–46

25. Hong, S., Oguntebi, T., Casper, J., Bronson, N., Kozyrakis, C., Olukotun, K.:
Eigenbench: A simple exploration tool for orthogonal tm characteristics. In: Pro-
ceedings of the IEEE International Symposium on Workload Characterization.
IISWC ’10, Washington, DC, USA, IEEE Computer Society (2010) 1–11

26. Zyulkyarov, F., Gajinov, V., Unsal, O.S., Cristal, A., Ayguadé, E., Harris, T.,
Valero, M.: Atomic quake: Using transactional memory in an interactive multi-
player game server. SIGPLAN Not. 44(4) (February 2009) 25–34

27. Ruan, W., Vyas, T., Liu, Y., Spear, M.: Transactionalizing legacy code: An expe-
rience report using gcc and memcached. In: Proceedings of the 19th international
conference on Architectural support for programming languages and operating sys-
tems, ACM (2014) 399–412

28. Xiong, W., Park, S., Zhang, J., Zhou, Y., Ma, Z.: Ad hoc synchronization con-
sidered harmful. In: Proceedings of the 9th USENIX Conference on Operating
Systems Design and Implementation. OSDI’10, Berkeley, CA, USA, USENIX As-
sociation (2010) 1–8


