
HAL Id: hal-01159182
https://inria.hal.science/hal-01159182

Submitted on 8 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Copyright

Calculating Parallel Programs in Coq using List
Homomorphisms

Frédéric Loulergue, Wadoud Bousdira, Julien Tesson

To cite this version:
Frédéric Loulergue, Wadoud Bousdira, Julien Tesson. Calculating Parallel Programs in Coq using
List Homomorphisms. International Journal of Parallel Programming, 2017, 45 (2), pp.300-319.
�10.1007/s10766-016-0415-8�. �hal-01159182�

https://inria.hal.science/hal-01159182
https://hal.archives-ouvertes.fr

Calculating Parallel Programs in Coq
using List Homomorphisms

Frédéric Loulergue · Wadoud Bousdira ·
Julien Tesson

Abstract SyDPaCC is a set of libraries for the Coq proof assistant. It allows
to write naive functional programs (i.e. with high complexity) that are con-
sidered as specifications, and to transform them into more efficient versions.
These more efficient versions can then be automatically parallelised before be-
ing extracted from Coq into source code for the functional language OCaml
together with calls to the Bulk Synchronous Parallel ML (BSML) library. In
this paper we present a new core version of SyDPaCC for the development
of parallel programs correct-by-construction using the theory of list homo-
morphisms and algorithmic skeletons implemented and verified in Coq. The
framework is illustrated on the maximum prefix sum problem.

Keywords Parallel programming, algorithmic skeletons, constructive
algorithms, proof assistant

1 Introduction

Nowadays parallel architectures are everywhere, but not parallel programmers.
High-level programming abstractions and methods are needed, in particular
for distributed memory models. Our goal is to provide a framework to ease
the systematic development of correct parallel programs.

In the Bird Meertens Formalism (BMF) [2], an efficient program is obtained
from a naive functional program considered as a specification, through program
transformations. BMF can be applied to parallel programming (e.g. [5]). In

Frédéric Loulergue
Inria πr2, PPS, Univ Paris Diderot, CNRS, Paris, France.

Frédéric Loulergue · Wadoud Bousdira
Univ. Orléans, INSA Centre Val de Loire, LIFO EA 4022, France. E-mail:
Firstname.Lastname@univ-orleans.fr

Julien Tesson
Université Paris Est, LACL, UPEC, F-94010, Créteil, France. E-mail: Julien.Tesson@lacl.fr

2 F. Loulergue, W. Bousdira, J. Tesson

these approaches, however, the transformations are pen-and-paper proofs and
the transition from an efficient functional expression to a parallel program
(often in an imperative language, for example a library of algorithmic skeletons
hosted in C++) is not grounded on a formal basis.

We develop the framework SyDPaCC [14,7] for the Coq proof assis-
tant [22] to ease the use of methods based on program transformation and
algorithmic skeletons and make them more reliable. More specifically the con-
tributions of this paper are:

– the support of list homomorphisms in SyDPaCC that previously only
supported BSP homomorphisms [14] and the GTA paradigm [7],

– improvements of the formalisation of the parallel functional language Bulk
Synchronous Parallel ML (BSML) [13] and algorithmic skeletons in Coq,

– an application of the framework to produce a parallel program for the
maximum prefix sum problem.

We first give an overview of the features of Coq. The paper does not assume
any prior knowledge of Coq, but familiarity with functional programming is
necessary. Then we present how a function written as a composition of sequen-
tial map and reduce could be automatically parallelised in SyDPaCC based
on a formalisation of BSML (Section 3) and verified parallel versions of map
and reduce (Section 4). In Section 5 we present the modelling in Coq of two
important list homomorphism theorems that are used to prove that a function
having three simple properties can be expressed as a composition of sequential
map and reduce and therefore be parallelised. The framework is exemplified
on the maximum prefix sum problem in Section 6. Comparison with related
work (Section 7) and conclusion (Section 8) close the paper.

2 An Overview of the Coq Proof Assistant

Coq [22] is an interactive theorem prover. It is based on the Curry-Howard cor-
respondence relating terms of a typed λ-calculus (the calculus of (co)-inductive
constructions) with proof trees of a logical system in natural deduction form.
From a more practical side, Coq can be seen as a functional programming lan-
guage, close to OCaml or Haskell but with a richer type system that allows to
express logical properties. There are many cases where programs are developed
in Coq and their properties are also proved in Coq. This is for example the
case of the CompCert compiler, a compiler for the C language, implemented
and certified using Coq [12]. Our SyDPaCC system also uses this style.

In Coq, data structures are defined only by induction. For example the list
data structure is defined in Coq, Haskell and OCaml in Figure 1. In all three
cases, a list is built using the constructor for empty list (Nil), or the constructor
that adds an element at the beginning of a given list (Cons). In Haskell and
OCaml, a and α respectively are type variables. In the Coq version, A is simply
a variable and we indicate this variable is a Type.

In Coq, values and types can be mixed together, and types may depend on
values. For example the definition for lists of a given size begins with:

Calculating Parallel Programs in Coq using List Homomorphisms 3

(∗ Coq ∗)
Set Implicit Arguments.
Inductive list (A:Type) : Type :=
| Nil: list A
| Cons: A→list A→list A.

Fixpoint map A B (f:A→B) xs :=
match xs with
| Nil ⇒ Nil B
| Cons x xs ⇒ Cons(f x)(map f xs)
end.

−− Haskell
data List a = Nil | Cons a (List a)
map f Nil = Nil
map f (Cons x xs) = Cons (f x) (map f xs)

(∗ OCaml ∗)
type α list = Nil | Cons of α ∗ α list
let rec map f = function
| Nil → Nil
| Cons(x,xs) → Cons(f x,map f xs)

Fig. 1 Lists in Coq, Haskell & OCaml

Inductive t (A:Type) : nat→Type := nil: t A 0 | (∗...∗)

In this definition A is a parameter: all the applications of the inductive defi-
nition t should be applied only to A in the body of the definition of t. t has
a second argument: a natural number indicating the size of the vector. As in
the declaration of t different values are passed for this argument, it cannot be
a parameter, hence its position after the : symbol. In summary in new type
declarations in Coq, parameters/arguments of the type could be both types
and values.

Figure 1 also shows the definitions of the map function in the three consid-
ered languages. All the definitions are recursive and by pattern matching on
the list argument. They are quite similar but in their arguments: in Coq there
are two arguments A and B that are types. Note that we could write (A B:Type)
instead, but we prefer to let Coq infer the type. We also let Coq infer that
the type of xs is list A. Considering the type arguments as regular arguments
is very expressive. However, it may be verbose to explicitly apply a polymor-
phic function to the types it is parametric in. The Set Implicit Arguments
command tells Coq to make this kind of arguments implicit (and inferred by
Coq). In the recursive call of map these arguments are actually omitted and
the code looks very similar to the Haskell and OCaml code.

If we request the various systems to give the type of map, Coq returns
the type ∀ A B:Type,(A→B)→list A→list B whereas OCaml returns the type
(α→β)→α list→β list and Haskell (t→a)→List t→List a. The ∀(x:A), B con-
struction is a primitive one, it is called the depend product. This type is the
type of the expression fun(x:A)⇒e where e has type B considering x has type
A. A→B is syntactic sugar when B does not contain free occurrences of x.

It is also possible to define usual OCaml (or Haskell) notations for lists in
Coq. In the remaining of the paper we will use [] for the empty list, and :: in
infix notation for Cons.

Dependent product, function abstraction, inductive definitions and (depen-
dent) pattern matching are the key constructions of Coq. Logical elements can
be built using them. We refer to [22] for the details, and just show an example
of a lemma statement1 from the Coq standard library about lists:

1 In Coq all the following commands are synonym: Fact, Lemma, Proposition, Theorem.

4 F. Loulergue, W. Bousdira, J. Tesson

Lemma in inv : ∀ A (a b:A) (l:list A), In b (a :: l) → a = b ∨ In b l.

In this statement, → may be thought as logical implication rather than func-
tional arrow (actually these notions are in correspondence by the Curry-
Howard correspondence). The predicate In could be defined as:

Inductive In A (x:A): list A→Prop := (∗ Prop is the kind of ‘‘logical’’ types ∗)
| Inhead: ∀ (xs:list A), In x (x::xs)
| Intail: ∀ (y:A) (xs:list A), In x xs→In x (y::xs).

In the Curry-Howard correspondence, a type and a logical statement are
the same and a program and a proof are the same. The notation in inv : (∗...∗)
indicates that the name in inv has what follows the colon as type. For the
definition of a function or a value, the body of the definition (for example
for function map) follows after symbol :=; it is actually a syntax friendly λ-
term of the calculus of inductive constructions. If we follow the Curry-Howard
correspondence, the proof of the lemma in inv could be also written as a λ-
term/program. However, it is not convenient to do so and Coq provides a
language of tactics to write scripts that build λ-terms that are proofs. For
in inv one possible script is:

Proof. intros A a b l H. inversion H; subst; [left | right]; trivial. Qed.

We will not explain what exactly this script means, but only emphasise that
Coq enters an interactive proof mode that helps the user to write the script
and that just before Qed a λ-term is built. The command Qed then checks
that this term has actually the type given as the statement of lemma in inv.
Only after this check is done, the lemma is added to Coq definitions. This
means the only part of Coq that should be trusted is the type checking part:
the kernel. Buggy tactics could build incorrect proofs but these proofs would
be rejected by the kernel.

One additional strength of Coq is that the functional programming realm
and the logical realm could be mixed together. The simplest example of doing
so is the dependent pair:

Inductive sig (A:Type)(P:A→Prop): Type := exist : ∀ x : A, P x → sig P.

For a predicate P over value of type A, a value of type2 sig A P is a pair com-
posed of: a value a of type A together with a proof that P a holds. There exists
a Coq notation for sig P A which is quite intuitive: {x:A | P x}. In particular,
this type could be used to express pre- and post-conditions of functions in
Coq. For example, the head of a list is only defined on non empty lists, but
only total and terminating functions can be defined in Coq. Therefore one can
use a pre-condition and write:

Program Definition head A (xs:{l:list A| l<> []}) : A :=
match xs with | [] ⇒ | x::xs ⇒ x end.

2 actually A is implicit but making it explicit makes the explanation clearer

Calculating Parallel Programs in Coq using List Homomorphisms 5

Here we use the Program feature of Coq that allows to consider that xs is
of type list A in the definition of the body of the function and to omit some
parts of the body using the symbol on the right of⇒ for the empty list case.
Program then generates a proof obligation, for each hole in the body. In this
case we do not have to write a proof script for the proof obligation because
Coq proves it by itself. This proof is a proof by contradiction: l is both empty
(from pattern matching) and non-empty (pre-condition).

Coq has a module system similar to OCaml’s. A module is a collection of in-
ductive definitions, value and function definitions, theorems and so on. A mod-
ule type is a collection of the same items that can be found in a module, plus
more abstract elements: “parameters” that are names together with types but
without a body. For a value or a function this corresponds to the usual notion
of type signature. For a theorem, it means a theorem without a proof, in other
words an axiom. The general syntax for parameters is Parameter name : type
and a synonym is Axiom. An example of module type is given in Figure 4.

A module realises a module type if it provides the bodies of all the parame-
ters of the module type. A module can be parametric, i.e it can depend on the
implementation of one or several other modules. For example a module imple-
menting a data-structure of sets using trees could depend on a module defining
the type and ordering of the elements. The definition of such a module would
look like Module Set (E : OrderedType). (∗...∗) End Set. where OrderedType
is a module type.

As a motivation for introducing the last feature of Coq we need, let us
consider join-lists. Join-lists and list homomorphisms suit very well to the
divide-and-conquer paradigm and are therefore very interesting as formal basis
for a parallel program development system. The SyDPaCC framework uses
this kind of functions as a foundation.

A join-list is a finite sequence of values of the same type. It can be: the
empty list [], a singleton [a] (for some element a) or a concatenation xs++ ys
of two lists xs and ys. The concatenation is associative and [] is its identity
element. map and reduce can be defined on join-lists as:

map f [] = []
map f [x] = [f x]
map f (xs++ ys) =

(map f xs) ++ (map f ys)

reduce ⊕ [] = id⊕
reduce ⊕ [x] = [x]
reduce ⊕ (xs++ ys) =

(reduce ⊕ xs)⊕ (reduce ⊕ ys)

where ⊕ is an associative operator with identity element id⊕.

Of course in Coq join-list cannot be defined as is because this definition
has logical properties on the constructors; However, join-lists are isomorphic to
cons-lists as defined in Figure 1. Function map corresponds to function map in
Coq. For reduce there are two difficulties: first we assume that ⊕ and i⊕ form a
monoid, and second reduce is defined, as it is traditional in the Bird Meertens
Formalism, as a binary operation taking ⊕ and a list. The first difficulty can
be simply overcome: these logical properties could be added as a pre-condition
to an argument containing both ⊕ and i⊕:

6 F. Loulergue, W. Bousdira, J. Tesson

Fixpoint reduce A (m:{(op,e):(A→A→A)∗A|Monoid A op e})(l:list A):=(∗...∗)
As A would be implicit, reduce would be a binary operation where the m argu-
ment is a complex value containing the binary operator, its identity element,
and the fact that they form a monoid with A. A better solution would be:

Fixpoint reduce A (op:A→A→A) (H:Monoid A op e) (l:list A) : A := (∗...∗)
in such a way that H is made implicit: the identity element of op and the fact
they form a monoid with A should come from some information of the context
where reduce is used.

Monoid could be defined as a conjunction of properties about op and e. A
convenient way to do so is to use a record that is in fact syntactic sugar for
an inductive definition plus the dot notation to access the fields:

Record Monoid A (op:A→A→A) (e:A) : Prop :=
{ left unit: ∀ a:A, op e a = a;

right unit: ∀ a:A, op a e = a;
associative: ∀ a b c : A, op a (op b c) = op (op a b) c }.

Note that all the fields are logical statements. Therefore we use the proof mode
to define a value of type Monoid:

Definition monoid plus O : Monoid plus O. Proof. constructor; auto. Defined.

It is possible to use the notation {name:type} instead of (name:type) in a defini-
tion to make an argument implicit. However even if we do that in the proposed
signature of reduce, Coq will have no way to infer this implicit argument. The
necessary Coq feature are type classes. A class is similar to a record but values
of these classes are defined by the keyword Instance that defines them and
stores them into a database that is queried by the Coq inference mechanism
when it encounters an implicit argument whose type is a class.

The class Monoid only differs from the record Monoid in using the command
Class instead of Record. Then we can define instances as follows:

Instance m plus O : Monoid plus O. Proof. (∗...∗). Defined.
Instance m app nil A: Monoid (@app A) []. (∗ @ makes all arguments explicit∗)
where app is the concatenation of lists as defined in the Coq standard library.

One possible definition for reduce is then:

Unset Implicit Arguments. (∗ We prefer to control the implicit status ∗)
Fixpoint reduce {A} (op:A→A→A) {e} {H:Monoid op e} (l:list A) : A :=

match l with | [] ⇒ e | x::xs ⇒ op x (reduce op xs) end.

It is possible to compute in Coq: Eval compute in reduce plus [1;2;3]. Coq an-
swers = 6 : nat to this last command. First note that reduce is used as a binary
operation and that its first argument is also a binary operator (here the ad-
dition on natural numbers). To infer the implicit arguments, Coq internals
detect that the argument name H has as type a type class Monoid. Therefore
it looks into its database of instances: it finds the last defined instance which
has plus as an operator. In our setting it is the instance m plus O. This instance
provides e and therefore all the implicit arguments are inferred.

Calculating Parallel Programs in Coq using List Homomorphisms 7

mkpar f = 〈 f 0 , . . . , f (p− 1) 〉
apply 〈 f0 , . . . , fp−1 〉 〈 v0 , . . . , vp−1 〉 = 〈 f0 v0 , . . . , fp−1 vp−1 〉
proj 〈 v0 , . . . , vp−1 〉 = λi→ vi
put 〈 f0 , . . . , fp−1 〉 = 〈λj → fj 0 , . . . , λj → fj (p− 1) 〉

Fig. 2 BSML Primitives – Informal Semantics

3 Bulk Synchronous Parallel ML in Coq

An Overview of BSML. Bulk Synchronous Parallel ML or BSML is a func-
tional programming language currently implemented as a library for the func-
tional programming language OCaml. The BSML library [13] provides two
different implementations of the BSML primitives, a sequential implementa-
tion and a parallel implementation on top of MPI, as well as a standard library
of parallel functions. Compared to a full language, the library does not pro-
vide the specific type system useful to ensure some properties about BSML
programs [10]. We present here the classic syntax of BSML. A revised, more
friendly syntax exists, but as programming in this style is based on OCaml
pre-processing, it is not possible to have it in Coq.

BSML is based on the BSP model [23] and there is a cost model for each
primitive, however for the sake of conciseness, we omit the costs in this pre-
sentation, as our framework currently does not use them. A BSP computer
is a set of processor and memory pairs interconnected through a network to-
gether with a global synchronisation unit. A BSP program is a sequence of
super-steps, each one being composed of: a pure computation phase where
processors compute using only the data they have in local memory, a commu-
nication phase where processors exchange data, and a synchronisation barrier
that ensures that all data exchanges are completed during the super-step.

BSML offers a global view of programs: a parallel program is structured as
a usual sequential program but operates on a parallel data structure through
dedicated primitives. This parallel data structure is called “parallel vector”.
A parallel vector is composed of p values, one per processor. p is the number
of processes of the underlying BSP computer. p does not change during the
execution of a program. From the typing point-of-view, a parallel vector has
type α par: all the processors have values of the same type. Nesting of parallel
vectors is not allowed, i.e. α cannot contain a parallel type: This is one of the
properties enforced by the BSML type system. In the remaining, we informally
write 〈 v0 , . . . , vp−1 〉 for a parallel vector.

BSML provides four constants to access the BSP parameters of the parallel
machine. The only one used in this paper is bsp p, the number of processors of
the BSP computer. BSML also provides four primitives to manipulate parallel
vectors. mkpar and apply are evaluated in the pure computation phases of
BSP supersteps whereas proj and put need a full super-step to be evaluated,
in particular there is an implicit synchronisation barrier at the end of proj and
put. The informal semantics of BSML primitives is given in Figure 2.

mkpar:(int→α)→α par is used to create a parallel vector from a function
describing its components. For readers familiar with OCaml standard library, it

8 F. Loulergue, W. Bousdira, J. Tesson

is similar to the function Array.init: int→(int→α)→α array but missing the first
argument (the size of the create array), as the size of parallel vectors is always
bsp p. OCaml being a higher-order functional language, it is possible to have a
parallel vector of functions. Such a parallel vector cannot be applied to values
as a parallel vector of functions is not a function, thus BSML provides the
primitive apply:(α→β)par→α par→β par to apply a parallel vector of functions
to a parallel vector of values.

proj:α par→(int→α) is the inverse of mkpar: it creates a function from a
parallel vector. Note that as processor names are represented by values of type
int in OCaml, proj is only the inverse of mkpar on the interval [0,bsp p-1]. The
communication pattern of proj is a total exchange (each processor as to make
its value available to all other processors). For more finely tuned communi-
cation patterns, BSML provides put:(int→α)par→(int→α)par. This primitive
takes as input a parallel vector of functions describing the messages to be sent
to other processors. For example if at processor 2, this parallel vector contains
a function f2, and that f2 4 returns a certain value v, it means that proces-
sor 2 will send message v to processor 4. The result of put is also a parallel
vector of functions, but these functions describe the messages received by the
processors. Continuing the same example, after having performed the put, the
function g4 at processor 4 is such that g4 2 returns v: processor 4 received
message v from processor 2. By convention, the first constant constructor of a
type is considered to represent the absence of message and therefore does not
incur any communication. The empty list is such a value.

BSML in Coq. There are two main ways to model the semantics of program-
ming languages in a proof assistant: shallow embedding and deep embed-
ding [24]. Deep embedding is well suited to reason about the general properties
of the language such as typing is preserved by reduction/evaluation. However
it is much less convenient to reason about individual programs.

When the base language is a functional one, another possibility is to use
the proof assistant as a functional language, and add the new primitives and
their semantics as signatures and axioms: This is a shallow embedding. In
this setting, one cannot reason about general properties of the language as it
would mean to reason about the interactive prover itself, but it is much more
convenient for writing and reasoning about individual programs. All the proof
assistant libraries could be used.

For modelling BSML in Coq we follow the shallow embedding approach.
Moreover rather than adding signatures and axioms at the top-level of Coq,
which may lead to logical inconsistencies, we write a module type. All the appli-
cations of BSML in Coq are then written as parametric modules that take an
implementation of such a module type. After we extract from Coq to OCaml,
we obtain OCaml functors and we apply them to the module implementing
BSML: either the sequential implementation or the parallel implementation.
Note that we also provide an implementation of this module type in Coq: it
is meant to check that the axioms we provide are consistent with Coq’s logic,
and as a by-product it is a verified sequential implementation of BSML.

Calculating Parallel Programs in Coq using List Homomorphisms 9

Module Type BSP PARAMETERS.
Parameter p : nat.
Axiom p spec : 0 < p.

End BSP PARAMETERS.

Fig. 3 BSP Parameters in Coq

Module Type BSML. (∗ ... ∗)
Section Parallel vectors.

Parameter par : Type → Type.
Parameter get: ∀ {A: Type}, par A → pid → A.
Axiom par eq : ∀ {A:Type} (v v’: par A), (∀ (i: pid), get v i = get v’ i) → v = v’.

End Parallel vectors.
Section Primitives.

Parameter mkpar: ∀ {A:Type} (f:pid → A), par A.
Axiom mkpar spec: ∀ (A:Type)(f:pid→A)(i:pid), get (mkpar f) i = f i.
Parameter apply: ∀ {A B: Type}(vf: par(A→B))(vx:par A), par B.
Axiom apply spec: ∀ (A B: Type) (vf: par (A → B)) (vx: par A) (i: pid),

get (apply vf vx) i = (get vf i) (get vx i).
Parameter put: ∀ {A:Type}(vf:par(pid→A)), par(pid→A).
Axiom put spec: ∀ (A:Type)(vf:par(pid→A))(i j:pid), get (put vf) i j = get vf j i.
Parameter proj: ∀ {A:Type}(v: par A), pid → A.
Axiom proj spec: ∀ (A:Type)(v: par A)(i: pid), (proj v) i = get v i.

End Primitives.
End BSML.

Fig. 4 BSML Primitives in Coq

The presented formalisation improves on previous ones [9,21]. It is defined
as a module type and it avoids to rely too much on sigma types. Proofs using
this model are easier to do than using the previous ones.

First, there is a module type for BSP parameters (Figure 3), we only con-
sider the bsp p parameter here, and we assume at least one processor in the
BSP machine. The module type BSML models the BSML primitives. It con-
tains a module Bsp of module type BSP PARAMETERS and the following
notation: Notation pid := { n:nat | ltb n Bsp.p = true } meaning that a pid is
a natural number n together with a proof that n is strictly smaller than Bsp.p.
ltb:nat→nat→bool is a function testing the strict ordering of two natural num-
bers. The remaining of the module type BSML is given in full in Figure 4.

Section Parallel vectors models the type of parallel vectors. We called it
par as in the OCaml implementation of BSML. It is an abstract type and the
notation differs from an abstract type in OCaml: it takes as input a type (the
type of the sequential components) and returns the type of parallel vectors
of this sequential type. In order to model the semantics of BSML primitives,
we need to be able to describe the value at a specific processor in a parallel
vector: that is what the get operation does. Note that this operation is not a
programming primitive of BSML. It should only be used in the logical parts.
The axiom associated to this operation means that two parallel vectors are

10 F. Loulergue, W. Bousdira, J. Tesson

equal if and only if their components are equal. Some representation of par-
allel vectors (for example functions) may not satisfy this property, thus it is
important to explicitly state this property as we want to have it.

Section Primitives describe the BSML primitives. For each primitive we
give its signature in a style very close to their signature in OCaml, but
in the handling of polymorphism. The semantics of the primitive is given
by an axiom whose name ends by spec. For example the axiom of mkpar,
∀ i:pid, get (mkpar f) i = f i clearly states that for all process identifiers i, the
value held at processor i in parallel vector mkpar f is equal to f i. It is exactly
a quantified version of the informal semantics of mkpar shown in Figure 2.

Using this module type, it is possible to write BSML programs in Coq
and to reason about their semantics using the specifications of the BSML
primitives. One possible application is to program BSML algorithmic skeletons
in Coq.

4 Algorithmic Skeletons and Automatic Parallelisation in Coq

Algorithmic Skeletons in Coq. Writing algorithmic skeletons using BSML prim-
itives in Coq is actually very close to doing the same in OCaml and BSML.
We illustrate this on the implementation of map and reduce skeletons. To
implement programs using the BSML primitives, one needs to implement a
parametric module taking as argument a module that implements the BSML
primitives:

Module MapReduce (Bsml : BSML).

We use two utility functions for that:

Definition replicate A (x:A) : par A := mkpar(fun ⇒ x).
Lemma replicate spec: ∀ A (x:A) i, get (replicate x) i = x.
Definition parfun A B (f:A→B)(v:par A) : par B := apply (replicate f) v.
Lemma parfun spec: ∀ A B (f:A→B) v i, get(parfun f v) i=f(get v i).

For these functions we follow the same modelling convention as for the primi-
tives, but here the terms are given, by first defining a function then a lemma
describing its specification. We omit the proof scripts but using automated tac-
tics, they are very short. It is then easy to define a parallel map on distributed
lists (here distributed lists means parallel vectors of lists):

Definition par map A B (f:A→B) : par(list A)→par(list B) := parfun (map’ f).

where map’ is a tail recursive version of map. The parallel reduce can be defined
using the proj primitive for communications:

Definition par reduce‘(op:A→A→A)‘{H:Monoid op e}(v:par(list A)) : A :=
let local := parfun (reduce op) v in (∗ local reductions ∗)
let list := List.map (proj local) pids in (∗ vector → list ∗)
reduce op list. (∗ reduction of the partial reductions ∗)

Calculating Parallel Programs in Coq using List Homomorphisms 11

In the previous definition, symbol ‘ in ‘{var:ty} indicates that the free variables
in ty should be generalised, i.e. introduced before {var:ty} as additional im-
plicit arguments. In this version of par reduce the final result is not a parallel
value. We can also have an alternative version where the result is a parallel
vector with the same value on each of the processors. We choose here a simple
algorithm, using put:

Program Definition par reduce’ {A}(op:A→A→A){e:A}{H:Monoid op e}
(v: par(list A)) : {v:par A | ∀ i, get v i = get v first } :=
let local := parfun (reduce op) v in
let msgs := put(apply(mkpar(fun pid msg dst⇒msg)) local) in
let lists := parfun (fun f⇒List.map f pids) msgs in
parfun (reduce op) lists.

Next Obligation. (∗ omitted, 9 lines ∗) Qed.

In this alternative version, the return type is a parallel vector, and we use the
ability of Coq to express post-conditions: this vector has the same value on all
the processors. The Program feature of Coq allows to define the function as if
no post-condition was present. It generates a proof obligation (corresponding
here to this post-condition). The proof script is omitted here, but is short.

To verify that the implementations correspond to the semantics we have in
mind, we could write spec lemmas associated to each of these functions. How-
ever, it is not convenient to express the specification of par map and par reduce
by describing the content of their output at each processor. As these functions
are algorithmic skeletons, we rather prefer to express the correspondence they
have with sequential functions.

Types and Functions Correspondences. To do so, we rely on two main type
classes (defined in the Core.Parallelisation library of SyDPaCC). First we need
to express that a parallel type is a correct parallelisation of a sequential type.

Definition 1 (Type correspondence) There is a correspondence between
a type A and a parallel type Ap (i.e. that contains at least one par) if and only
if there exists a total surjective function joinA : Ap → A.

The totality of the function ensures that we can construct a sequential value
for any value in Ap and its surjectivity ensures the existence of at least one
parallel representation for any sequential element.

In Coq we formalise these notions as type classes:

Class Surjective A B (f:A→B) :=
{ surjective : ∀ y : B, ∃ x : A, f x = y }.

Class TypeCorr (seq type:Type) (par type:Type) (join:par type→seq type) :=
{ type corr :> Surjective join }.

Examples of type correspondences are given in Figure 5. In module ParList,
the join function transforms a parallel vector of lists into a list. This sequential
list also provides a “global view” of the parallel vector of lists: We think of the
parallel vector as a big list obtained by concatenation of the lists hold by the

12 F. Loulergue, W. Bousdira, J. Tesson

Module ParList (Import Bsml: BSML)(Import Pid : Pid.TYPE Bsml.Bsp).
Program Definition join A (v:par(list A)) : list A :=

List.flat map (proj v) pids.
Program Instance surjective join A : Surjective (join(A:=A)).
Next Obligation. (∗ Omitted, 12 lines ∗) Qed.
Program Instance list par list corr A : TypeCorr (@join A).

End ParList.

Module ReplicatePar (Import Bsml: BSML)(Import Pid : Pid.TYPE Bsml.Bsp).
Program Definition join A (r:{v:par A|∀ i,get v i=get v first}) : A :=

(proj (proj1 sig r)) first.
Program Instance surjective join A : Surjective (join (A:=A)).
Next Obligation. (∗ Omitted, 5 lines ∗) Qed.
Program Instance replicate par corr A : TypeCorr (@join A).

End ReplicatePar.

Fig. 5 Type Correspondences

processors, in increasing order of processor identifier. The proof that join is
surjective is quite easy: For a sequential list, it is enough to build the parallel
vector that contains this list at one specific processor (for example the first
one) and empty lists on all other processors.

In module ReplicatePar, join takes as input parallel vectors that contain the
same value at all the processors, and returns this value. It is straightforward
to show join is surjective, as it is enough to replicate the sequential value.

Using type correspondence, we can define a relation between sequential
and parallel functions.

Definition 2 (Function correspondence) Given two types A and B, and
their parallel correspondent Ap and Bp, there is a correspondence between the
sequential function f : A → B and the parallel function fp : Ap → Bp if and
only if joinB ◦ fp = f ◦ joinA.

In other words, the following diagram commutes:

A B

Ap Bp

fp

joinBjoinA
f

This notion is also modelled as a type class:

Class FunCorr ‘{ACorr:TypeCorr A Ap join A}‘{BCorr:TypeCorr B Bp join B}
(f:A→B) (fp:Ap→Bp) := { fun corr : ∀ ap, join B (fp ap) = f (join A ap) }.

Of course a parallel function may take a sequential value as input and returns
a parallel value, or may take as input a parallel value and returns a sequential
value (such as the first version of par reduce does). In these cases the diagrams
are:

Calculating Parallel Programs in Coq using List Homomorphisms 13

A B

Bp
fp

joinB
f

A B

Ap
fp

joinA
f

and the type classes are:

Class LeftFunCorr ‘{ACorr:TypeCorr A Ap}{B}‘(f:A→B)(fp:Ap→B) :=
{ left fun corr : ∀ ap, fp ap = f (join ap) }.

Class RightFunCorr {A}‘{BCorr:TypeCorr B Bp}‘(f:A→B)(fp:A→Bp) :=
{ right fun corr : ∀ a, join (fp a) = f a }.

There are two kinds of instances for the function correspondences: general
ones and instances stating the correspondence of a specific parallel function
and a specific sequential function. The former are also given in the library
Parallelisation, the other are together with the skeleton definitions. There are
several general instances that state facts about the correspondence of compo-
sitions. For two instances of FunCorr, we have for example:

Program Instance fun corr comp fun corr ‘{ACorr : TypeCorr A Ap join A}
‘{BCorr : TypeCorr B Bp join B} ‘{CCorr : TypeCorr C Cp join C}
‘{fCorr : @FunCorr A Ap join A ACorr B Bp join B BCorr f fp}
‘{gCorr : @FunCorr B Bp join B BCorr C Cp join C CCorr g gp} :

FunCorr (compose g f) (compose gp fp).
Next Obligation. (∗ Omitted, 3 lines ∗) Qed.

The composition of the two sequential functions corresponds to the composi-
tion of the two corresponding parallel functions. Note that the directions of
the arrows in our diagrams are important to have such a compositional notion.

Now that we can express the correspondence between a sequential function
and a skeleton, we can do it for par map:

Program Instance map par A B (f:A→B): FunCorr (map f) (par map f).
Next Obligation. (∗ Omitted, 5 lines ∗) Qed.

This piece of code assumes that the instance defined in the module ParList
described above (Figure 5) is in the context. It is this type correspondence
that is used both for input and output.

In the case of par reduce, the same type correspondence is used only for
input, as the output is the same type A in the sequential and parallel cases:

Program Instance reduce par reduce ‘(op:A→A→A) ‘{Monoid A op e} :
LeftFunCorr (reduce op) (par reduce op).

Next Obligation. (∗ Omitted, 8 lines ∗) Qed.

The correctness of the last skeleton par reduce’ uses the type correspon-
dence defined in the module ReplicatePar (Figure 5):

Program Instance reduce par reduce’ ‘(op:A→A→A) ‘{Monoid A op e} :
FunCorr (reduce op) (par reduce’ op).

14 F. Loulergue, W. Bousdira, J. Tesson

Note that as the instances we have do not overlap, the instance resolution
mechanism has no problem to find the instance we expect. In a richer library
with overlapping instances (e.g. with different joins on parallel vectors of lists)
the function correspondence might need to be specified more carefully by the
user (i.e. some implicit arguments might need to be made explicit). However,
as the library is organised in a modular way, the user has control over the
visibility of overlapping instances.

Automatic Parallelisation. If a sequential function h is defined as a composi-
tion of maps and reduces, the instances we defined can actually serve as an
automatic parallelisation mechanism. Consider the following function:

Definition parallel ‘(f:A→B)
‘{ACorr: TypeCorr A Ap joinA} ‘{BCorr : TypeCorr B Bp joinB}
‘{fCorr: @FunCorr A Ap joinA ACorr B Bp joinB BCorr f fp} : Ap→Bp := fp.

This function seems uninteresting as the result it returns is one of its argu-
ments. However all the arguments, except the sequential function f, are implicit
and are instances of type classes. It means that Definition par h:=parallel h
launches the instance resolution mechanism of Coq. Function h will first be
decomposed if it is a composition, until instances of correspondence between
a sequential function and a skeleton are found, and the parallel version par h
of h will be automatically built as a composition of skeletons.

The last component of the framework we need is thus a way to prove
that certain classes of functions can be written as compositions of sequential
functions that correspond to skeletons. The Bird Meertens Formalism, with
the theory of list homomorphisms is a convenient formalism for this purpose.

5 List Homomorphisms and their Theorems in Coq

In our parallelisation framework, we need functions defined as compositions of
map and reduce. We consider the class of ⊕-homomorphic functions.

Definition 3 (⊕-homomorphic) A function h on lists is ⊕-homomorphic if
for all lists x and y, h(x++ y) = (h x)⊕ (h y).

Fact 1 If h is ⊕-homomorphic, then (img h, �, h []) is a monoid.

Note this it is not true in general on the codomain of h. There are two use-
ful theorems for our framework: the first and the third homomorphism theo-
rems [11].

Theorem 1 (Third Homomorphism Theorem) If a function h is both:

– ⊕-leftwards, i.e. there exists ⊕ such that h([x] ++xs) = x⊕ (h xs),
– ⊗-rightwards, i.e. there exists ⊗ such that h(xs++ [x]) = (h xs)⊗ x,

then there exist � such that h is �-homomorphic.

Calculating Parallel Programs in Coq using List Homomorphisms 15

Theorem 2 (First Homomorphism Theorem) If h is �-homomorphic
then h = (reduce �) ◦ (map f) where ∀x, fx = h[x].

In this first theorem, we consider the restriction of � on the image of h, as in
general (codomain h, �, h []) is not a monoid (and reduce requires a monoid).

In Coq, we model the homomorphic property as a class:

Class Homomorphic ‘(h:list A→B) ‘(op:B→B→B) :=
{ homomorphic : ∀ x y, h (x++y) = op (h x) (h y) }.

Fact 1 is actually a result that is not trivial in Coq. First we need to define
the image of h, and definitions to build the restriction of ⊕ (named op from
now on) to the image of h:

Definition img ‘(h:list A→B) := { b:B | ∃ l, h l = b }.
Program Definition restrict op ‘(op:B→B→B) ‘{Homomorphic A B h op} :

img h → img h → img h := op. (∗ ... ∗)
Definition to img A B (h:list A→B)(xs:list A) : img h := (∗...∗).

Fact 1 is then written:

Program Instance homomorphic restrict op monoid ‘{Homomorphic A B h op} :
Monoid (A:=(img h)) (restrict op op) (to img h []).

Actually, we need a slightly more general result, where we replace the restric-
tion of the operator by a function that is extensionally equivalent:

Program Definition restrict ‘{Homomorphic A B h op}
‘(Eq:∀ a b, op’ a b= ‘ (restrict op op a b)): img h→img h→img h:=op’(∗ ... ∗)

Program Instance homomorphic restrict monoid ‘{Homomorphic A B h op}
‘(Eq:∀ a b, op’ a b = ‘ (restrict op op a b)) : Monoid (restrict Eq) (h []).
(∗ 20 lines+usage of several omitted lemmas ∗)

This allows to replace the output of the third homomorphism theorem by a
simplified version of the binary operator.

To express the first homomorphism theorem, we define a function that
produces the composition of map and reduce from an op-homomorphic function
and possibly optimised versions of op and of fun (x:A)⇒h[a]:

Definition hom to map reduce ‘(h:list A→B) ‘{H:Homomorphic A B h op}
‘{@Optimised op A B h op H}‘{@Optimised f A B h op H} : list A→img h :=
(reduce (optimised op h)) ◦ (List.map (optimised f h)).

There are default instances of the Optimised op and Optimised f that relate
op and fun (x:A)⇒h[a] to themselves. We omit the details of the optimisation
aspects and refer to the source code of the framework. The theorem then checks
that this function produces a function equal to h:

Theorem first homomorphism theorem: ∀ ‘{H:Homomorphic A B h op}
‘{@Optimised op A B h op H}‘{@Optimised f A B h op H},
∀ l, h l = of img (hom to map reduce h l).

Proof. (∗ 12 lines ∗) Qed.

16 F. Loulergue, W. Bousdira, J. Tesson

The classical proof of the third homomorphism theorem relies on the notion
of weak right inverse, i.e. a function h′ such that for all x, hx = h(h′(hx)).
In [11], a lemma states that for every computable total function h with enu-
merable domain, there exists a weak right inverse of h. The proof however
is the following: “To compute g t for some t simply enumerate the domain
of h and return the first x such that hx = t. If t is in the range of h then
this process terminates.” The problem with this proof is that: function g may
not terminate but it is not possible to define non-terminating functions in
Coq. Moreover even if it could be defined, its efficiency would be in general
catastrophic.

Therefore we state and prove a weak form of the third homomorphism
theorem using the following classes:

Class Rightwards ‘(h:list A→B)‘(op:B→A→B)‘(e:B) :=
{ rightwards: ∀ l, h l = List.fold left op l e }.

Class Leftwards ‘(h:list A→B)‘(op:A→B→B)‘(e:B) :=
{ leftwards: ∀ l, h l = List.fold right op e l }.

Class Right inverse ‘(h:list A →B)(h’:B→list A) :=
{ right inverse: ∀ l, h l = h(h’(h l)) }.

Instance third homomorphism theorem ‘{h:list A→B}
‘{inv:Right inverse A B h h’}
‘{Hl:Leftwards A B h opl e}‘{Hr:Rightwards A B h opr e} :

Homomorphic h (fun l r ⇒h((h’ l)++(h’ r))).
Proof. (∗ 20 lines + usage of a 10 lines lemma + lemmas on folds ∗) Qed.

To parallelise a function h, we should prove instances of Rightwards h oplus,
Leftwards h otimes and Right inverse h h’ and call the hom to map reduce func-
tion on h. The resolution instance mechanism of Coq would then produce an
instance of Homomorphic for h using the third homomorphism theorem.

The obtained composition could then be parallelised using parallel (or vari-
ant left parallel) explained in the previous section. We illustrate this process
on an application example in the following section.

6 An Example: Maximum Prefix Sum

The goal is to obtain a parallel function that solves the maximum prefix sum
problem. An example of evaluation of the sequential function mps follows (the
prefix whose sum is maximum is underlined): mps [1; 2;−1; 2;−1; 3;−4] = 6.

A trivial solution that we consider to be a specification follows, where prefix
returns the list of all the prefixes of its input and t is the type of an abstract
representation of mathematical integers (module type Number):

Program Definition sum : list t → t := reduce add.
Definition maximum : ∀(l:list t), NonEmpty l→t := NE.reduce max.
Program Definition mps spec : list t → t := maximum◦’(map sum) ◦’’prefix.

Calculating Parallel Programs in Coq using List Homomorphisms 17

maximum is not defined on the empty list: we use a version of reduce that also
requires to be applied to a non-empty list. The property NonEmpty is a class:

Class NonEmpty ‘(l:list A) := { non emptiness : l<> [] }.
The variants of composition handle the additional arguments concerning non-
emptiness. This is transparent to the user as there are instances of the NonEmpty
class that state that prefix always returns a non-empty list and that map pre-
serves non-emptiness.

mps spec is not leftwards. But it is possible to tuple mps spec with sum:

Definition tupling A B C(f:A→B)(g:A→C) := fun x ⇒ (f x, g x).
Definition ms spec := tupling mps spec sum.

ms spec is opl-leftwards and opr-rigthwards:

Definition opl (a:t) (b:t∗t) : t∗t := (max 0 (a + fst b), a + (snd b)).
Instance ms leftwards : Leftwards ms spec opl (0,0). Proof. (∗ ... ∗) Qed.
Definition opr (a:t∗t) (b:t) : t∗t := (max (fst a) ((snd a)+b),(snd a)+b).
Instance ms rightwards : Rightwards ms spec opr (0,0).

The proofs of the instances are about 20 lines long and they both use two 10
lines lemmas about maximum and sum. Then we need to find a weak right
inverse of ms spec:

Definition ms’ (p:t∗t) := let (m,s) := p in [m; s + −m].
Program Instance ms right inverse : Right inverse ms spec ms’.
Next Obligation. (∗ 25 lines ∗) Qed.

The third homomorphism is applied to show that ms spec is �-homomorphic
where � =fun l r⇒ms spec(ms’ l++ms’ r). In the pen-and-paper proof, usually
one shows that (am, as)�(bm, bs) = (0 ↑ am ↑ (as+bm), as+bs) where ↑ returns
the maximum of two numbers. Using the Optimised op class, it is also possible
to do it in Coq, in a process similar to the pen-and-paper proof (i.e. the final
version is not known before the proof starts). This requires about 30 more
lines using several short lemmas on mps spec and sum.

To parallelise, we need to instantiate the parametric modules presented in
the previsous sections and then call the left parallel function (or the parallel
function using the ReplicatePar in addition to ParList). Finally to obtain only
the mps component of the result, we compose with projections (Figure 6).

The Coq code can then be extracted towards OCaml. The extraction mech-
anisms removes the logical parts to keep only the computational parts. What
we obtain is an OCaml functor:

module MPS=functor(Bsml:BSML)→functor(N:Number)→struct (∗...∗) end

A parallel implementation on top of MPI results from applying this functor
to a Bsml module that is a wrapper around the Bsmlmpi uncertified implemen-
tation of BSML in OCaml, C and MPI. The main difference between Bsml and
Bsmlmpi is that in the former pid is the type nat and in the latter it is type int.
As we dealt with an abstract representation of integers, we also need to pro-
vide an OCaml module that follows the extraction of the module type Number

18 F. Loulergue, W. Bousdira, J. Tesson

Module MPS (Import Bsml: Core.BSML)(N: Number).
Module Pid := Pid.Make Bsml.Bsp.
Module ParList := Correspondences.ParList Bsml Pid.
Module MapReduce := MapReduce.Make Bsml Pid ParList ReplPar.
Module Mps := Make N.
Definition par ms := Eval sydpacc in left parallel (hom to map reduce Mps.ms spec).
Definition par mps := Eval simpl in fst ◦ of img ◦ par ms.

End MPS.

Fig. 6 Parallelisation

(basically a type for numbers plus basic operations on them). The application
module would look as follows: module App = Mps.MPS Parallel (Bsml) (Nint).

The framework and results of scalability experiments are available online3.
The framework only requires Coq 8.4, OCaml 4 or above, and an MPI library.

7 Related Work

To our knowledge SyDPaCC is the only approach in which actual source code
of scalable and correct parallel programs can be obtained from a development
in a proof assistant. The theory of constructive parallel algorithms provides
various ways to ease the systematic development of correct parallel programs.
However, the transformations are not mechanically verified and the transi-
tion from an efficient functional expression to a parallel program is not based
on a formal basis. Most often, with the exception of [4,1], the semantics of
algorithmic skeletons remains informal.

There exist several logics to reason about BSP programs, for example [19],
but none of them is mechanised in a proof assistant, and only one of them is
related to a tool that can provide actual source code [26]. The main differences
with our approach is that: LOGS starts from an imperative and local view of
parts of the program to build a larger one by parallel composition whereas we
start from a functional and global view and our framework is in Coq. BSP-
Why [8] is an extension of the Why2 system for the deductive verification
of imperative BSP programs. The tool is based on the generation of verifica-
tion conditions from users annotations, those conditions being automatically
proved by SMT solvers, or interactively with Coq. BSP-Why does not support
program transformation and higher-order functions.

Although there are systems to support program calculation (for exam-
ple [25]) they lack the rich set of theories that exist for Coq and that can
be reused for program transformation. Moreover Coq offers a more trusted
framework through its kernel. The work on polytypic programming and pro-
gram transformation in Coq [17] and Agda [18] is also related. Our framework
follows more closely a simple functional programming style with additional

3 http://traclifo.univ-orleans.fr/SyDPaCC, version core-0.2

http://traclifo.univ-orleans.fr/SyDPaCC

Calculating Parallel Programs in Coq using List Homomorphisms 19

pre/post conditions or statements about the simple functional programs. More-
over for the parallel aspects it would be a challenge to provide correspondence
between polytypic sequential functions and efficient parallel ones.

To our knowledge, there are only three works associating data parallelism
and proof assistants. The operational semantics of a type safe subset of Data
Parallel C is formalised in Isabell/HOL [6]. In this approach Isabelle/HOL ex-
pressions that represent programs are generated and manipulated. It is there-
fore a deep embedding approach. Swierstra [20] formalised mutable arrays in
Agda, and added explicit distributions to these arrays. He used it to reason
about a distributed map and distributed sum on these arrays. In BSML the
distribution of parallel vectors is fixed but it is possible to define a higher-level
data structure on top of parallel vector and consider various distributions of
the data structure in parallel vectors [3]. Moreover it is possible to formalise
mutable arrays, and even extract such imperative programs to OCaml as done
by Malecha et al. [16]. Lupinski et al. [15] formalised the semantics of a skeletal
parallel programming language. It is also a deep embedding that models both
the high-level semantics of skeletons and their implementations in a formalised
JoCaml. BSML shallow embedding is more convenient.

8 Conclusion

The SyDPaCC framework shows that the Coq proof assistant is suited for
program calculation in the Bird Meertens Formalism tradition, and that when
using the right features of Coq, the additional work to have machine checked
proofs rather than pen-and-paper proofs is quite manageable. Coq also allows
automatic parallelisation using algorithmic skeletons. The key points in this
respect is that we provide a shallow embedding of a pure functional parallel
programming library in Coq; that one can program and verify algorithmic
skeletons in Coq based on this embedding; and that expressing the correct-
ness of algorithmic skeletons with respect to usually sequential functions in a
compositional way as instances of type classes makes possible the use of the
instance resolution mechanism of Coq for automatic parallelisation. Actual
programs are obtained through the extraction feature. The extracted code is
combined with the unverified parallel implementation of BSML in OCaml and
C+MPI. The core SyDPaCC presented in this paper is very concise (2 kLoC
of Coq, 600 LoC of OCaml 120 LoC of C). Experimental results on the gener-
ated programs are presented in [7,14,21] and in the SyDPaCC website.

Acknowledgements This work is partly supported by ANR (France) and JST (Japan)
(project PaPDAS ANR-2010-INTB-0205-02 and JST 10102704).

References

1. Aldinucci, M., Danelutto, M.: Skeleton-based parallel programming: Functional and
parallel semantics in a single shot. Comput Lang Syst Str 33(3-4), 179–192 (2007)

20 F. Loulergue, W. Bousdira, J. Tesson

2. Bird, R., de Moor, O.: Algebra of Programming. Prentice Hall (1996)
3. Bousdira, W., Loulergue, F., Tesson, J.: A Verified Library of Algorithmic Skeletons

on Evenly Distributed Arrays. In: Algorithms and Architectures for Parallel Processing
(ICA3PP). pp. 218–232. No. 7439 in LNCS, Springer, Fukuoka, Japan (2012)

4. Cavarra, A., Riccobene, E., Zavanella, A.: A formal model for the parallel semantics of
P3L. In: ACM Symposium on Applied Computing (SAC). pp. 804–812. ACM (2000)

5. Cole, M.: Parallel Programming with List Homomorphisms. Parallel Processing Letters
5(2), 191–203 (1995)

6. Daum, M.: Reasoning on Data-Parallel Programs in Isabelle/Hol. In: C/C++ Verifica-
tion Workshop (2007)

7. Emoto, K., Loulergue, F., Tesson, J.: A Verified Generate-Test-Aggregate Coq Library
for Parallel Programs Extraction. In: Interactive Theorem Proving (ITP). pp. 258–274.
No. 8558 in LNCS, Springer, Wien, Austria (2014)

8. Fortin, J., Gava, F.: BSP-Why: A tool for deductive verification of BSP algorithms with
subgroup synchronisation. Int J Parallel Prog pp. 1–24 (2015)

9. Gava, F.: Formal Proofs of Functional BSP Programs. Parallel Processing Letters 13(3),
365–376 (2003)

10. Gava, F., Gesbert, L., Loulergue, F.: Type System for a Safe Execution of Parallel Pro-
grams in BSML. In: 5th ACM SIGPLAN workshop on High-Level Parallel Programming
and Applications. pp. 27–34. ACM (2011)

11. Gibbons, J.: The third homomorphism theorem. Journal of Functional Programming
6(4), 657–665 (1996)

12. Leroy, X.: Formal verification of a realistic compiler. Commun. ACM 52(7), 107–115
(2009)

13. Loulergue, F., Gava, F., Billiet, D.: Bulk Synchronous Parallel ML: Modular Imple-
mentation and Performance Prediction. In: International Conference on Computational
Science (ICCS). LNCS, vol. 3515, pp. 1046–1054. Springer (2005)

14. Loulergue, F., Robillard, S., Tesson, J., Légaux, J., Hu, Z.: Formal Derivation and Ex-
traction of a Parallel Program for the All Nearest Smaller Values Problem. In: ACM
Symposium on Applied Computing (SAC). pp. 1577–1584. ACM, Gyeongju, Korea
(2014)

15. Lupinski, N., Falcou, J., Paulin-Mohring, C.: Sémantique d’une langage de squelettes.
http://www.lri.fr/~paulin/Skel/article.pdf (2012)

16. Malecha, G., Morrisett, G., Wisnesky, R.: Trace-based verification of imperative pro-
grams with i/o. J. Symb. Comput. 46(2), 95–118 (2011)

17. Mu, S.C., Ko, H.S., Jansson, P.: Algebra of programming using dependent types. In:
Audebaud, P., Paulin-Mohring, C. (eds.) Mathematics of Program Construction, LNCS,
vol. 5133, pp. 268–283. Springer (2008)

18. Mu, S., Ko, H., Jansson, P.: Algebra of programming in Agda: Dependent types for
relational program derivation. J Funct Program 19(5), 545–579 (2009)

19. Stewart, A., Clint, M., Gabarró, J.: Barrier synchronisation: Axiomatisation and relax-
ation. Formal Aspects of Computing 16(1), 36–50 (2004)

20. Swierstra, W.: More dependent types for distributed arrays. Higher-Order and Symbolic
Computation 23(4), 489–506 (2010)

21. Tesson, J., Loulergue, F.: A Verified Bulk Synchronous Parallel ML Heat Diffusion
Simulation. In: International Conference on Computational Science (ICCS). pp. 36–45.
Elsevier, Singapore (2011)

22. The Coq Development Team: The Coq Proof Assistant. http://coq.inria.fr
23. Valiant, L.G.: A bridging model for parallel computation. Commun. ACM 33(8), 103

(1990)
24. Wildmoser, M., Nipkow, T.: Certifying machine code safety: Shallow versus deep embed-

ding. In: Slind, K., Bunker, A., Gopalakrishnan, G. (eds.) Theorem Proving in Higher
Order Logics, LNCS, vol. 3223, pp. 133–142. Springer (2004)

25. Yokoyama, T., Hu, Z., Takeichi, M.: Yicho: A system for programming program calcula-
tions. Tech. Rep. METR 2002–07, Department of Mathematical Engineering, University
of Tokyo (Jun 2002)

26. Zhou, J., Chen, Y.: Generating C code from LOGS specifications. In: 2nd International
Colloquium on Theoretical Aspects of Computing (ICTAC’05). pp. 195–210. No. 3407
in LNCS, Springer (2005)

http://www.lri.fr/~paulin/Skel/article.pdf
http://coq.inria.fr

	Introduction
	An Overview of the Coq Proof Assistant
	Bulk Synchronous Parallel ML in Coq
	Algorithmic Skeletons and Automatic Parallelisation in Coq
	List Homomorphisms and their Theorems in Coq
	An Example: Maximum Prefix Sum
	Related Work
	Conclusion

