Skip to main content
Log in

Accelerating Detailed Tissue-Scale 3D Cardiac Simulations Using Heterogeneous CPU-Xeon Phi Computing

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

We investigate heterogeneous computing, which involves both multicore CPUs and manycore Xeon Phi coprocessors, as a new strategy for computational cardiology. In particular, 3D tissues of the human cardiac ventricle are studied with a physiologically realistic model that has 10,000 calcium release units per cell and 100 ryanodine receptors per release unit, together with tissue-scale simulations of the electrical activity and calcium handling. In order to attain resource-efficient use of heterogeneous computing systems that consist of both CPUs and Xeon Phis, we first direct the coding effort at ensuring good performance on the two types of compute devices individually. Although SIMD code vectorization is the main theme of performance programming, the actual implementation details differ considerably between CPU and Xeon Phi. Moreover, in addition to combined OpenMP+MPI programming, a suitable division of the cells between the CPUs and Xeon Phis is important for resource-efficient usage of an entire heterogeneous system. Numerical experiments show that good resource utilization is indeed achieved and that such a heterogeneous simulator paves the way for ultimately understanding the mechanisms of arrhythmia. The uncovered good programming practices can be used by computational scientists who want to adopt similar heterogeneous hardware platforms for a wide variety of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. This value also varies slightly depending on the Phi model used.

References

  1. Adler, C., Costabel, U.: Cell number in human heart in atrophy, hypertrophy, and under the influence of cytostatics. Recent Adv. Stud. Card. Struct. Metab. 6, 343–355 (1975)

    Google Scholar 

  2. Brueckner, R.: A closer look at Intel’s Coral supercomputers coming to Argonne. http://insidehpc.com/2015/04/intel-build-coral-supercomputers-argonne-200-procurement/ (2015)

  3. Chai, J., Hake, J.E., Wu, N., Wen, M., Cai, X., Lines, G.T., Yang, J., Su, H., Zhang, C., Liao, X.: Towards simulation of subcellular calcium dynamics at nanometre resolution. Int. J. High Perform. Comput. Appl. 29, 51–63 (2015). doi:10.1177/1094342013514465

    Article  Google Scholar 

  4. Chai, J., Wen, M., Wu, N., Huang, D., Yang, J., Cai, X., Zhang, C., Yang, Q.: Simulating cardiac electrophysiology in the era of GPU-cluster computing. IEICE Trans. Inf. Syst. E96—-D(12), 2587–2595 (2013). doi:10.1587/transinf.E96.D.2587

    Article  Google Scholar 

  5. Cheng, H., Lederer, W., Cannell, M.B.: Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262(5134), 740–744 (1993)

    Article  Google Scholar 

  6. Crimi, G., Mantovani, F., Pivanti, M., Schifano, S., Tripiccione, R.: Early experience on porting and running a lattice Boltzmann code on the Xeon-Phi co-processor. Proc. Comput. Sci. 18, 551–560 (2013). doi:10.1016/j.procs.2013.05.219

    Article  Google Scholar 

  7. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson, D., Shalf, J., Yelick, K.: Stencil computation optimization and auto-tuning on state-of-the-art multicore architectures. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2008 (2008). doi:10.1109/SC.2008.5222004

  8. Dong, X., Wen, M., Chai, J., Cai, X., Zhao, M., Zhang, C.: Communication-hiding programming for clusters with multi-coprocessor nodes. Concurr. Comput.: Pract. Exp. 27(16), 4172–4185 (2015). doi:10.1002/cpe.3507

    Article  Google Scholar 

  9. Durrer, D., Van Dam, R.T., Freud, G., Janse, M., Meijler, F., Arzbaecher, R.: Total excitation of the isolated human heart. Circulation 41(6), 899–912 (1970)

    Article  Google Scholar 

  10. Fang, J., Sips, H., Zhang, L., Xu, C., Che, Y., Varbanescu, A.L.: Test-driving Intel Xeon phi. In: Proceedings of the 5th ACM/SPEC International Conference on Performance Engineering, ICPE ’14, pp. 137–148. ACM (2014). doi:10.1145/2568088.2576799

  11. Gaur, N., Rudy, Y.: Multiscale modeling of calcium cycling in cardiac ventricular myocyte: macroscopic consequences of microscopic dyadic function. Biophys. J. 100(12), 2904–2912 (2011)

    Article  Google Scholar 

  12. Intel Xeon Phi coprocessor peak theoretical maximums. http://www.intel.com/content/www/us/en/benchmarks/server/xeon-phi/xeon-phi-theoretical-maximums.html

  13. Intel Math Kernel Library—documentation. https://software.intel.com/en-us/articles/intel-math-kernel-library-documentation (2015)

  14. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming, 1st edn. Morgan Kaufmann Publishers Inc., Waltham (2013)

    Google Scholar 

  15. Lan, Q., Gaur, N., Langguth, J., Cai, X.: Towards detailed tissue-scale 3D simulations of electrical activity and calcium handling in the human cardiac ventricle. Algorithms and Architectures for Parallel Processing. Lecture Notes in Computer Science, vol. 9530, pp. 79–92. Springer, Berlin (2015)

  16. Morris, J.: Intel’s next big thing: knights landing Xeon Phi. http://www.zdnet.com/article/intels-next-big-thing-knights-landing/ (2015)

  17. MPICH: High-performance portable MPI. https://www.mpich.org

  18. Nivala, M., de Lange, E., Rovetti, R., Qu, Z.: Computational modeling and numerical methods for spatiotemporal calcium cycling in ventricular myocytes. Front. Physiol. 3, 114 (2012)

    Article  Google Scholar 

  19. Nivala, M., Qu, Z.: Calcium alternans in a couplon network model of ventricular myocytes: role of sarcoplasmic reticulum load. Am. J. Physiol. Heart Circ. Physiol. 303(3), H341–H352 (2012)

    Article  Google Scholar 

  20. Nivala, M., Song, Z., Weiss, J.N., Qu, Z.: T-tubule disruption promotes calcium alternans in failing ventricular myocytes: mechanistic insights from computational modeling. J. Mol. Cell. Cardiol. 79, 32–41 (2015)

    Article  Google Scholar 

  21. O’Hara, T., Rudy, Y.: Quantitative comparison of cardiac ventricular myocyte electrophysiology and response to drugs in human and nonhuman species. Am. J. Physiol. Heart Circ. Physiol. 302(5), H1020–H1030 (2011)

    Google Scholar 

  22. O’Hara, T., Virág, L., Varró, A., Rudy, Y.: Simulation of the undiseased human cardiac ventricular action potential: model formulation and experimental validation. PLoS Comput. Biol. 7(5), e1002,061 (2011)

  23. Qu, Z., Garfinkel, A.: An advanced algorithm for solving partial differential equation in cardiac conduction. IEEE Trans. Biomed. Eng. 46(9), 1166–1168 (1999)

    Article  Google Scholar 

  24. Restrepo, J.G., Weiss, J.N., Karma, A.: Calsequestrin-mediated mechanism for cellular calcium transient alternans. Biophys. J. 95(8), 3767–3789 (2008)

    Article  Google Scholar 

  25. Song, Z., Ko, C.Y., Nivala, M., Weiss, J.N., Qu, Z.: Calcium-voltage coupling in the genesis of early and delayed afterdepolarizations in cardiac myocytes. Biophys. J. 108(8), 1908–1921 (2015)

    Article  Google Scholar 

  26. Stampede—Texas Advanced Computing Center. https://www.tacc.utexas.edu/stampede/

  27. Tianhe-2 (Milky Way-2) Supercomputer. http://www.tianhe2.org

  28. Top500 Supercomputing Sites. http://www.top500.org

  29. The Abel computer cluster. http://www.uio.no/english/services/it/research/hpc/abel/

  30. Venetis, I.E., Goumas, G., Geveler, M., Ribbrock, D.: Porting FEASTFLOW to the Intel Xeon Phi: lessons learned. Tech. rep, Partnership for Advanced Computing in Europe (PRACE) (2014)

  31. Vladimirov, A.: Arithmetics on Intel’s Sandy Bridge and Westmere CPUs: not all FLOPs are created equal. Tech. rep, Colfax International (2012)

  32. Williams, G.S., Chikando, A.C., Tuan, H.T.M., Sobie, E.A., Lederer, W., Jafri, M.S.: Dynamics of calcium sparks and calcium leak in the heart. Biophys. J. 101(6), 1287–1296 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Langguth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Langguth, J., Lan, Q., Gaur, N. et al. Accelerating Detailed Tissue-Scale 3D Cardiac Simulations Using Heterogeneous CPU-Xeon Phi Computing. Int J Parallel Prog 45, 1236–1258 (2017). https://doi.org/10.1007/s10766-016-0461-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-016-0461-2

Keywords

Navigation