Skip to main content
Log in

Loss Based Congestion Control Module for Health Centers Deployed by Using Advanced IoT Based SDN Communication Networks

  • Published:
International Journal of Parallel Programming Aims and scope Submit manuscript

Abstract

Many healthcare centers are deploying advanced Internet of Things (IoT) based on Software-Defined Networks (SDNs). Transmission Control Protocol (TCP) was developed to control the data transmission in wide range of networks and provides reliable communication by using many caching and congestion control schemes. TCP is predestined to always increase and decrease its congestion window size to make changes in traffic. Nowadays, about 50% IoT based SDN traffic is controlled by TCP CUBIC, which is the default congestion control scheme in Linux operating system. The aim of this research is to develop a new content-caching based congestion control scheme for advanced IoT enabled SDN networks to achieve better performance in healthcare infrastructure network environments. In this research, Congestion Control Module for Loss Event (CCM-LE) is proposed to enhance the performance of TCP CUBIC in advanced IoT based on SDN. Network Simulator 2 (NS-2) is used to simulate the experiments of CCM-LE and state-of-the-art schemes. Results show that the performance of CCM-LE outperforms by 19% as compared to state-of-the-art schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Gupta, V., Kaur, K., Kaur, S.: Developing small size low-cost software-defined networking switch using raspberry pi. In: Next-Generation Networks, pp. 147–152. Springer (2018)

  2. Song, S., Lee, J., Son, K., Jung, H., Lee, J.: A congestion avoidance algorithm in SDN environment. In: 2016 International Conference on Information Networking (ICOIN), pp. 420–423. IEEE (2016)

  3. Huang, Y.-Y., Lee, M.-W, Fan-Chiang, T.-Y., Huang, X., Hsu, C.-H.: Minimizing flow initialization latency in software defined networks. In: Network Operations and Management Symposium (APNOMS), 2015 17th Asia-Pacific, pp. 303–308. IEEE (2015)

  4. Horvath, R., Nedbal, D., Stieninger, M.: A literature review on challenges and effects of software defined networking. Proc. Comput. Sci. 64, 552–561 (2015)

    Article  Google Scholar 

  5. Sung, J., Kim, M., Lim, K., Rhee, J.-K.K.: Efficient cache placement strategy in two-tier wireless content delivery network. IEEE Trans. Multimed. 18(6), 1163–1174 (2016)

    Article  Google Scholar 

  6. Gupta, A., Jha, R.K.: A survey of 5G network: architecture and emerging technologies. IEEE Access 3, 1206–1232 (2015)

    Article  Google Scholar 

  7. Zhang, N., Cheng, N., Gamage, A.T., Zhang, K., Mark, J.W., Shen, X.: Cloud assisted HetNets toward 5G wireless networks. IEEE Commun. Mag. 53(6), 59–65 (2015)

    Article  Google Scholar 

  8. Bhalla, M.R., Bhalla, A.V.: Generations of mobile wireless technology: a survey. Int. J. Comput. Appl. 5(4), 26–32 (2010)

    Google Scholar 

  9. Dohler, M., Fettweis, G.: The tactile internet IoT, 5G and cloud on steroids. In: Proceedings of IET Conference, pp. 1–16 (2015)

  10. Loshkarev, A., Markhasin, A.: Performance modeling and optimization of flexible QoS-guaranteed multifunctional MAC for rural profitable ubiquitous 5G IoT/M2M systems. In: International Conference on Information Science and Communications Technologies (ICISCT), pp. 1–5. IEEE (2016)

  11. Xavier, H.F., Seol, S.: A comparative study on control models of software-defined networking (SDN). Contemp. Eng. Sci. 7(32), 1747–1753 (2014)

    Article  Google Scholar 

  12. Jacobson, V.: Congestion avoidance and control. In: Proceedings of ACM SIGCOMM Computer Communication Review, vol. 18, pp. 314–329. ACM (1988)

  13. Allman, M., Falk, A.: On the effective evaluation of TCP. ACM SIGCOMM Comput. Commun. Rev. 29(5), 59–70 (1999)

    Article  Google Scholar 

  14. Song, K.T.J., Zhang, Q., Sridharan, M.: Compound TCP: a scalable and TCP- friendly congestion control for high-speed networks. In: Proceedings of Sixth International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet-2006), vol. 2, pp. 345–390. PFLD (2006)

  15. Ha, S., Rhee, I., Xu, L.: TCP cubic: a new TCP-friendly high-speed TCP variant. ACM SIGOPS Oper. Syst. Rev. 42(5), 64–74 (2008)

    Article  Google Scholar 

  16. Leith, D.J., Shorten, R.N., McCullagh, G.: Experimental evaluation of cubic-TCP. J. Hamilt. Inst. Irel. 44(3), 212–232 (2008)

    Google Scholar 

  17. Kozu, T., Akiyama, Y., Yamaguchi, S.: Improving RTT fairness on cubic TCP. In: Proceedings of First International Symposium on Computing and Networking (CANDAR), pp. 162–167. IEEE (2013)

  18. Wang, J., Wen, J., Han, Y., Zhang, J., Li, C., Xiong, Z.: Cubic-FIT: A high performance and TCP cubic friendly congestion control algorithm. IEEE Commun. Lett. 17(8), 1664–1667 (2013)

    Article  Google Scholar 

  19. Goyzueta, RIL., Chen, Y.: A deterministic loss model based analysis of cubic. In: Proceedings of International Conference on Computing, Networking and Communications (ICNC), pp. 944–949. IEEE (2013)

  20. Cao, N., Zhang, W.: TCP cubic with faster convergence: an improved TCP cubic fast convergence mechanism. In: Proceedings of the 2nd International Conference on Computer Science and Electronics Engineering, pp. 521–542. Atlantis Press (2013)

  21. Kelly, T.: Scalable TCP: improving performance in high speed wide area networks. ACM SIGCOMM Comput. Commun. Rev. 33(2), 83–91 (2003)

    Article  MathSciNet  Google Scholar 

  22. Floyd, S.: Highspeed TCP for large congestion windows. In: An Experimental Network Working Group, Request for Comments: RFC-3649, ICSI, vol 1, No. 2 pp. 157–169 (2003)

  23. Leith, D., Shorten, R.: H-tcp: Tcp for high-speed and long-distance networks. In: Second International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet-2004)., PFLD, pp. 111–131 (2004)

  24. Qureshi, B., Othman, M., Subramaniam, S., Wati, N.A.: QTCP: improving throughput performance evaluation with high-speed networks. Arab. J. Sci. Eng. 38(10), 2663–2691 (2013)

    Article  Google Scholar 

  25. Kerkar, S.: Performance analysis of TCP/IP over high bandwidth delay product networks. J. Comput. Sci. Netw., University of South Florida, 1–235 (2004)

  26. Jacobson, V.: Modified tcp congestion avoidance algorithm. End-to-End-Interest Mail. List 5(1), 556–589 (1990)

    Google Scholar 

  27. Brakmo, L.S., Peterson, L.L.: TCP vegas: end to end congestion avoidance on a global internet. IEEE J. Select. Areas Commun. 13(8), 1465–1480 (1995)

    Article  Google Scholar 

  28. Floyd, S., Henderson, T., Gurtov, A.: The NewReno modification to TCPS fast recovery algorithm. In: A Technical Report of Standards Track in Network Working Group, Request for Comments: RFC-2582, pp. 223–251 (1999)

  29. Xu, L., Harfoush, K., Rhee, I.: Binary increase congestion control (BIC) for fast long-distance networks. In: Proceedings of Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies (INFOCOM-2004), vol. 4, pp. 2514–2524. IEEE (2004)

  30. Ha, S., Rhee, I.: Taming the elephants: new TCP slow start. Comput. Netw. 55(9), 2092–2110 (2011)

    Article  Google Scholar 

  31. Marfia, G., Palazzi, C.E., Pau, G., Gerla, M., Roccetti, M.: TCP Libra: derivation, analysis, and comparison with other RTT-fair TCPS. Comput. Netw. 54(14), 2327–2344 (2010)

    Article  Google Scholar 

  32. Mathis, M., Mahdavi, J., Floyd, S., Romanow, A.: TCP selective acknowledgment options. In: Technical Report on Network, Request for Comments: RFC-3245, pp. 213–245 (1996)

  33. Caini, C., Firrincieli, R.: TCP Hybla: A TCP enhancement for heterogeneous networks. Int. J. Satell. Commun. Netw. 22(5), 547–566 (2004)

    Article  Google Scholar 

  34. Xu, W., Zhou, Z., Pham, D.T., Ji, C., Yang, M., Liu, Q.: Hybrid congestion control for high-speed networks. J. Netw. Comput. Appl. (JNCA) 34(4), 1416–1428 (2011)

    Article  Google Scholar 

  35. Xu, W., Zhou, Z., Pham, D.T., Ji, C., Yang, M., Liu, Q.: Unreliable transport protocol using congestion control for high-speed networks. J. Syst. Softw. 83(12), 2642–2652 (2010)

    Article  Google Scholar 

  36. Liu, S., Başar, T., Srikant, R.: TCP-Illinois: a loss-and delay-based congestion control algorithm for high-speed networks. Perform. Eval. 65(6), 417–440 (2008)

    Article  Google Scholar 

  37. Jin, C., Wei, D.X., Low, S.H.: Fast TCP: motivation, architecture, algorithms, performance. In: Proceedings of Twenty-Third Annual Joint Conference of the IEEE Computer and Communications Societies, vol. 14, No. 6, pp. 1246–1259. IEEE Press (2004)

  38. Fu, X., Sun, L., Wang, R., Fang, Y.: BIPR: a new TCP variant over satellite networks. J. China Univ. Posts Telecommun. 18, 34–39 (2011)

    Google Scholar 

  39. Wang, G., Ren, Y., Li, J.: DSTCP: an improved TCP to increase scalable TCPS friendliness and stability. In: Proceedings of 14th International Conference on Communication Technology (ICCT), pp. 546–549. IEEE (2012)

  40. Baiocchi, A., Castellani, A.P., Vacirca, F.: YeAH-TCP: Yet another highspeed TCP. In: Proceedings of Fifth International Workshop on Protocols for Fast Long-Distance Networks (PFLDnet-2007), vol. 7, pp. 37–42. PFLD (2007)

  41. Elmannai, W., Elleithy, K., Razaque, A.: A high performanceand efficient TCP variant. In: Proceedings of ASEE Northeast Section Conference, University of Massachusetts Lowell, vol. 2, pp. 331–346 (2012)

  42. Hagag, S., El-Sayed, A.: Enhanced TCP westwood congestion avoidance mechanism (TCP westwoodnew). Int. J. Comput. Appl. 45(5), 21–29 (2012)

    Google Scholar 

  43. Lv, W., Zhang, J.: Research of TCP optimization technology for long-distance and high bandwidth-delay private network. In: Proceedings of International Conference on Computer Science and Information Processing (CSIP), pp. 381–384. IEEE (2012)

  44. Froldi, C.A., Fonseca, N.L.S.: A DCCP variant for high speed networks. Trans. Rev. Am. Latina 10(4), 1947–1953 (2012)

    Article  Google Scholar 

  45. Gwak, Y., Kim, Y.Y., Kim, R.Y.: WiCUBIC: Enhanced cubic TCP for mobile devices. In: Proceedings of IEEE International Conference on Consumer Electronics (ICCE), pp. 96–97. IEEE (2013)

  46. Wang, J., Gao, F., Wen, J., Li, C., Xiong, Z., Han, Y.: Achieving TCP Reno friendliness in fast TCP over wide area networks. In: Proceedings of International Conference on Computing, Networking and Communications (ICNC), pp. 445–449. IEEE (2014)

  47. Callegari, C., Giordano, S., Pagano, M., Pepe, T.: Behavior analysis of TCP linux variants. Comput. Netw. 56(1), 462–476 (2012)

    Article  Google Scholar 

  48. Meher, PK., Kulkarni, P.J.: Analysis and comparison of performance of TCP-Vegas in MANET. In: Proceedings of International Conference on Communication Systems and Network Technologies (CSNT), pp. 67–70. IEEE (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Asif Habib.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, M., Ahmad, U., Ngadi, M.A. et al. Loss Based Congestion Control Module for Health Centers Deployed by Using Advanced IoT Based SDN Communication Networks. Int J Parallel Prog 48, 213–243 (2020). https://doi.org/10.1007/s10766-018-0583-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10766-018-0583-9

Keywords

Navigation