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Abstract The well-known Smith-Waterman (SW) algorithm is the most com-
monly used method for local sequence alignments, but its acceptance is limited
by the computational requirements for large protein databases. Although the
acceleration of SW has already been studied on many parallel platforms, there
are hardly any studies which take advantage of the latest Intel architectures
based on AVX-512 vector extensions. This SIMD set is currently supported by
Intel’s Knights Landing (KNL) accelerator and Intel’s Skylake (SKL) general
purpose processors. In this paper, we present an SW version that is optimized
for both architectures: the renowned SWIMM 2.0. The novelty of this vector
instruction set requires the revision of previous programming and optimiza-
tion techniques. SWIMM 2.0 is based on a massive multi-threading and SIMD
exploitation. It is competitive in terms of performance compared with other
state-of-the-art implementations, reaching 511 GCUPS on a single KNL node
and 734 GCUPS on a server equipped with a dual SKL processor. Moreover,
these successful performance rates make SWIMM 2.0 the most efficient energy
footprint implementation in this study achieving 2.94 GCUPS/Watts on the
SKL processor.
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1 Introduction

Disciplines such as genomics and proteomics face the challenge of processing
a massive amount of data. Sequencing centers, analytical research facilities
and individual laboratories are experiencing the data explosion phenomenon:
an exponential growth in the amount of biological data produced [I]. In fact,
next-generation sequencing technologies used in biomedical studies or medical
practice to identify genetic variants associated with diseases involve more and
more data processing. The use of computers to catalog and retrieve information
requires both sophisticated hardware and complex software developments to
make this task feasible.

The development of bioinformatics entails the collaboration of antagonistic
actors such as professionals in the life sciences and computer experts in order
to provide new tools. One of the most important challenges facing the scien-
tific community is to perform genomic data analysis in a reasonable time, so a
deep knowledge of hardware optimization and acceleration is required in most
cases. A common operation in bioinformatics is to identify the similarities be-
tween two sequences. The Smith-Waterman (SW) algorithm is usually applied
because of its high sensitivity. SW is based on dynamic programming and
guarantees an optimal solution for a pairwise local alignment. However, SW’s
weakness resides in its high complexity: the alignment process has a quadratic
order depending on the sequence lengths. In fact, the acceptance of SW has
been limited by its prohibitively high execution times and the computational
resources required. Although heuristics (such as BLAST ] and FASTA [])
are suitable in certain contexts because they are considerably faster, they fail
due to loss of sensitivity [H.

SW can be employed to search for similar regions between two long DNA
sequences or protein sequences. In both scenarios, a score matrix must be
built in order to determine the best alignment. Furthermore, the matrix size
depends on the sequence lengths that, at the same time, influence the paral-
lel scalability. For long DNA sequences, data parallelism is performed across
the independent matrix anti-diagonal wavefront by means of the intra-task
scheme. In the context of proteins, a single sequence is usually compared with
a sequence database, which means a large number of pairwise alignments to
be computed. As protein sequences are much shorter than DNA sequences,
multiple pairwise alignments can be evaluated simultaneously by using the
inter-task scheme. It should be noted that the intra-task scheme can be ap-
plied to protein alignment (Farrar’s approach is the fastest [H]); however, the
inter-task scheme generally produces better performance results in this case.

In the last few years, the feasibility of using parallel computational devices
to improve performance has received considerable attention in bioinformat-
ics. In the context of SW protein alignment, the exploitation of SIMD (Sin-
gle Instruction Multiple Data) capabilities on modern CPUs has been widely
studied []. Among the proposals, we can highlight the fastest SSE-based tool
SWIPE [ and its evolution into AVX2 extensions libssa [§]. Also, the Para-
sail library @], whose strength is the abstraction of the SIMD instruction set.
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With the emergence of Graphic Processor Units (GPUs), we find the most
successful software, which is known as CUDASW++, and its improved ver-
sions [[AIT]. Additionally, for Intel’s modern co-processors based on the Xeon
Phi architecture, we can mention the optimized hand-tuned SW implemen-
tation denoted as SWAPHI [[2] and its hybrid extension LSBDS [I3]. In a
similar way, the SWIMM [I4] software is able to exploit CPUs, co-processors
or both simultaneously. Moreover, the recently released SWhybrid framework
offers the possibility of combining CPUs, GPUs and Xeon Phi’s [[H]. Finally,
there are also studies that use Field Programmable Gate Arrays (FPGAs) as
accelerators, such as linear systolic array implementations for Xilinx Virtex
FPGAs [[A[T; custom instructions [I§] and the novel OpenCL paradigm on
Intel-Altera’s FPGAs [19).

This paper presents the latest release of the SWIMM software. SWIMM 2.0
provides new contributions to SW protein database searches by using Intel’s
latest AVX-512 SIMD extension. Intel’s AVX-512 (Advance Vector Exten-
sions) consists of new SIMD instructions for the x86 instruction set architec-
ture (ISA) which allows the exploitation of 512-bit vectors in an SIMD way.
Although this ISA was proposed by Intel in 2013, it was initially supported
by Intel’s Xeon Phi Knights Landing (KNL) accelerator and recently by In-
tel’s general purpose Skylake-X Core processor. This work can be seen as an
extension of the previous one published in [20], and the main differences are
detailed below:

— Among the main contributions, we can highlight the creation of a public
git repository with the binary executable developed for this paper Elp

— We have focused on code optimization by means of AVX-512 exploitation.
Two main versions were developed: (1) an integer 32-bit version has been
optimized in order to improve instruction-level parallelism exploitation on
a KNL architecture and; (2) the use of lower range integer representation
(8-bit) which enables 64 SIMD lane exploitation by means of AVX-512BW
ISA (only available on the latest Intel Skylake processor). To the best of
the authors’ knowledge, this is the first evaluation of the AVX-512BW
extensions for the SW algorithm.

— Additional experiments with smaller and larger protein datasets (UniprotKB/Swiss-
Prot and UniProtKB/TrEMBL) were also carried out. This aspect empha-
sizes the independence of the SWIMM 2.0 performance as regards to the
sequence sizes.

— We have included a performance comparison with other SIMD implemen-
tations such as SWIPE E, Parasail [ and libssa [.

— In addition, a comparison with GPUs and FPGAs has been made consid-
ering not only performance but also power efficiency aspect. This compara-

SWIMM 2.0 is available at fhttps://github.com/enzorucci/SWIMM2. 0|
SWIPE is available at public repository: https://github.com/torognes/swipe|

Parasail is available at public repository: fhttps://github.com/jeffdaily/parasaill

libssa is available at public repository: https://github.com/RonnySoak/libssal
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tive study denotes that SWIMM 2.0 is the best option to reduce the energy
footprint in the protein sequence alignment scenario.

Section [ introduces the basic concepts of the Smith-Waterman algorithm.
Section Bl briefly introduces Intel’s AVX-512 vector extensions. We describe our
implementation of the SW algorithm in Section @l In Section [l performance
results are described and finally, in Section [l we conclude with some ideas for
future research.

2 Smith-Waterman Algorithm

Let S = s1,82...,sy be the N sequences under study. Let P = {< a,b >
|Sa,Sp € S, 1 <= a < b <= N} be a sequence pair (S, and S}, are usually
referred to as the query and database sequences, respectively). The goal is
to evaluate all pairwise comparisons in order to achieve the maximum score,
which corresponds to the most similar region between a particular couple of
sequences.

Given a pairwise sequence S, and S, of lengths |S,| = m and |Sp| = n, the
recurrence relations for the SW [2I] algorithm with affine gap penalties [22]
are defined by the following equations:

H; j = max{0, H;—1,j-1 + SM(Sa[i], Su[4]), Ei j, Fij} (1)
Ei,j = max{Hiﬂj,l - Goe; Ei,jfl — Ge} (2)
F;j =max{H;_1; — Goe, Fi—1,; — G} (3)

Let H; ; be the score for aligning the prefixes S,[1..i] and Sp[1..5]. Let E; ;
and F; ; be the scores of prefix S,[1..i] aligned to a gap and prefix Sp[1..j]
aligned to a gap, respectively. Let SM be the scoring matriz which defines
the substitution scores for all residue pairs. In general, SM rewards S,[i] and
Sp[4] with a posistive value if they are similar/equal, and penalizes them with
a negative value otherwise. Let G, be the sum of gap open and gap extension
penalties. Let G, be the gap extension penalty. The recurrences should be
calculated with 1 <7 < m and 1 < j < n, after initializing H, F and F' with
0 when ¢ = 0 or j = 0. The maximum value in the alignment matrix H is the
optimal local alignment score.

It is important to note that equations [l Bl and Bl represent the data depen-
dence in each cell (4, ) since for a matrix cell its left, upper, and upper left
neighbors need to be previously computed, as reflected in Figure [0l
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Fig. 1 Data dependences in the alignment matrix H.

3 Intel’s AVX-512

Intel continues the trend of incorporating wider vector units with the an-
nouncement of the AVX-512 in 2013. AVX-512 is a set of new 512-bit SIMD
x86 instruction set extensions that not only doubles the vector register width
with respect to its predecessor, but also duplicates the available vector register.
It is currently supported on Intel’s Xeon Phi KNL and the lastest Skylake-X
server. However, the incorporation of 512-bit vector extensions is not new; in
fact, it was already available on Intel’s Xeon KNC, but the novelty lies in the
confluence support of AVX-512F (AVX-512 Foundation) on general purpose
processors as well as on the accelerators.

Intel AVX-512 instructions are divided into seven categories: foundation
instructions (AVX-512F), which are the base 512-bit extensions for arithmetic
operations in single and double precision; conflict-detection instructions (AVX-
512CD); exponential and reciprocal instructions (AVX-512ER); prefetch in-
structions (AVX-512PF); byte and word instructions (AVX-512BW); double-
word and quad-word instructions (AVX-512DQ); and vector length extension
for operation in 128-bit and 256-bit (AVX-512VL). Future extensions are
scheduled to be supported on next-generation accelerators and general pur-
pOse processors.

3.1 Intel’s KNL

Accelerators are considered an alternative to general purpose systems in High-
Performance Computing (HPC) for computational performance scalability
with current consumption restrictions. Knights Landing 23] (KNL) is the
code brand for the second generation Intel Xeon Phi product family, which is
built for HPC purposes.

Intel launched the first Phi generation (KNC) with 61 x86 pentium cores (4
hardware threads per core) equipped with a 512-bit vector unit (VPU) each.
In contrast to KNC co-processors connected via a PCI Express bus to the host,
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Fig. 2 Xeon Phi KNL architecture.

KNL accelerators can act as self-boot processors. KNL includes 38 physical
tiles with two out-of-order core processors, two 512-bit VPUs per core and a
shared cache memory. Unlike KNC, KNL also supports all legacy x86 vector
ISAs such as 128-bit SSEz and 256-bit AVX, but just one of the two VPUs per
core is compatible with legacy floating-point instructions, such as x87, MMX,
and a subset of byte and word SSE instructions. The KNL accelerator only
supports a subset of AVX-512 extensions such as AVX-512F, AVX-512CD,
AVX-512ER and AVX-512PF. Another novelty at KNL is the incorporation of
two on-package high-bandwidth memories (HBMs) [24]: multi-channel DRAM
(MCDRAM) and improved (DDR) memory.

3.2 Intel’s Skylake Server

Intel’s Skylake (SKL) launched in 2015 and is the codename for the succes-
sor to the Broadwell microarchitecture. Intel distinguishes between two SKL
processor versions [ZH: client and server. The server core is considerably
larger than the client one, featuring AVX-512 vector extensions. However,
SKL servers only support a subset of AVX-512 extensions such as AVX-512F,
AVX-512CD, AVX-512BW, AVX-512DQ and AVX-512VL. From a micro-
architecture point of view, SKL launches 256-bit AVX or 128-bit SSEz vector
instructions through ports 0 and 1. These two ports can also work in a fused
way issuing a single arithmetic 512-bit vector instruction. It is important to
note that some SKL server models include an additional, dedicated AVX-512
unit, which is managed through port 5.
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4 SW Implementation

This section addresses the programming and optimization techniques per-
formed for both Intel processors. Firstly, we describe the algorithm flow, which
can be summarized in the following steps:

1. Pre-processing stage: database sequences are pre-processed to allow effi-
cient parallel computation.

2. SW stage: alignments are computed.

3. Sorting stage: alignment scores are sorted in descending order.

We adopted the inter-task parallelism approach to take advantage of the In-
tel processors’ VPUs. Multiple alignments are processed simultaneously since
each channel computes the alignment of one database sequence and the query
sequence. For this reason, database sequences must be grouped and the size
of the groups is determined by the number of SIMD vector lanes. To mini-
mize workload imbalances, database sequences are sorted by their lengths in
ascending order and padded with dummy symbols before grouping.

SWIMM 2.0 accepts databases in FASTA format A and then turns them
into a binary format. In this way, it avoids repeating the pre-processing stage
for every search. Furthermore, this conversion then allows a faster reading of
sequences to main memory.

4.1 Two Levels of Parallelism

SWIMM 2.0 exploits two levels of parallelism: (1) data and (2) threads. On the
first level, we take advantage of SIMD instructions through the use of hand-
tuned intrinsics. In particular, we have developed different versions considering
the SSE4.1, AVX2, AVX-512F and AVX-512BW instruction sets. On the sec-
ond level, we distribute the workload among multiple threads by leveraging
the OpenMP programming paradigm.

The pseudo-code of our implementation is shown in Algorithm [l The
database sequences are dynamically assigned among the threads as soon as
they become idle. As can be seen, the alignments are initially computed using
8-bit integer vectors because this range is generally enough to represent scores.
This characteristic favors the exploitation of more SIMD parallelism since more
data could be packed; however, it also requires the usage of saturated arith-
metics to detect potential overflow cases. Therefore, when the final score is
equal to the maximum possible value (i.e. potential overflow is detected), the
alignment is recalculated using a 16-bit integer range. In the unlikely event of
a 16-bit representation not being sufficient, 32-bit integers are used.

The Algorithm [ presents the pseudo-code for the alignment matrix com-
putation (for a graphic representation see Figure Bl). The alignment matrix
is divided into vertical blocks and computed in a row-by-row manner. As the

5 FASTA format description: [attp://blast.ncbi.nlm.nih.gov/blastcginelp. shtml]
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Algorithm 1 Pseudo-code for SWIMM 2.0

1: #pragma omp parallel for

2: for each d in vDB do > vDB is the preprocessed database
3: Sa = SWspits(q,d, SM,Go, Ge) > ¢ is the query sequence
4 if over flowgpirs(Sq) then

5 Sa = SWiebits(q,d, SM, Goe, Ge)

6: if over flowigpits(Sq) then

T Sa = SWaapits(q,d, SM, Goe, Ge)
8.

9

10:

end if
end if
end foreach

Algorithm 2 Pseudo-code for the alignment matrix computation

1: function SW[8|16\32]bits(Q7 d, S]\J7 Goe7 Ge)
2: for b < numBlocks do

3: P = buildProfile(q,d, SM)

4: for i < m do > each row
5: #pragma unroll

6: for j < bw do > bw is the block width
7: s =SW_CORE(H,E,F,P,Goc,Ge) > Calculate current cell value
8: end for

9: end for

10: end for

11: return s

12: end function

number of cache misses is reduced, this blocking technique improves data lo-
cality. Also, due to the data dependences mentioned in Section B each block
needs the last column H and E values of the previous block. Therefore, two
buffers are employed to save these data (shown as yellow bars). In addition,
the inner loop is fully unrolled to increase performance.

4.2 Core Instructions

Figure @ shows the implementation of the SW_CORE function according to all
the extension sets used. First, the vector being calculated (vCur) is updated
using the sum of the previous row block (vPrev) and the substitution scores for
the database sequence residues against the query residue (vSub). Afterwards,
these values are compared with the score vectors for alignments ending in a
gap in the query (vE) and the database sequences (vF'). The next step consists
of vCur with a zero vector comparison to ensure that all cells remain positive.
Directly after this, the values in the current vector are then compared with the
maximum score of the current alignment (vS5). Finally, the vectors vE and vF
are updated for the next row computations. Note that vCur and vPrev need
to be swapped in order to maintain the correctness of the next row values.
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Fig. 3 Graphic representation of the alignment computation

02: vCur[j] = _mmA_max_epiD(vCur(j], vF[i]);
04: vCur[j] = _mmA_max_epiD(vCurlj], vZero);

05: vS =_mmA_max_epiD(vS, vCur[jl);

06: vF[i] =_mmA_C_epiD(vF[i], vGe);

07: VE[jl =_mmA_C_epiD(vE[j], vGe); —

09: VF[i] =_)

g mmA_max_epiD(vFli], vAux); —

Fig. 4 Implementation of the SW_CORE function

4.3 SIMD Set Selection

Taking into consideration the diversity of SIMD sets, SSEx can pack 16 ele-
ments of 8 bits in a single SIMD register while AVX2 is able to double up to
32. AVX-512 extensions are able to divide the 512-bit registers into 64 lanes
by means of the AVX-512BW subset. Unfortunately, Xeon Phi KNL proces-
sors do not include AVX-512BW extensions. This fact means that the nar-
rowest integer range on these devices is 32-bit for AVX-512. However, binary
compatibility with Xeon processors allows Phi KNL to use SSEx and AVX2
instructions to exploit 8-bit integers. Xeon SKL does feature the AVX-512BW
subset, besides offering compatibility with the SSEz and AVX2 sets.

4.4 Score Range Biasing

By biasing all 8-bit scores by an offset of 128 [1], the representation range is
doubled and comparison with the zero vector can be avoided (line 4 in Figure[])
in saturated implementations. It is important to remark that this technique
requires using saturated subtraction and converting back the final scores. In
addition, the H, F and F' buffers must be initialized with lower limits instead
of 0.
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Table 1 Experimental platforms used in the tests.

Host Accelerator
# TDP
Processor Memory (Watt) Type Architecture Cores Memory TDP (Watt)
1 Intel Xeon Phi 7250 68-core 1.40GHz 16GB HBW 215 B
(4 hw threads per core) 64GB RAM
2xIntel Xeon Gold 6128 6-core
2 3.40Ghz (2 hw threads per core) 96GB RAM 2x115 B
J 2xIntel Xeon Gold 6138 20-core
3 2.0Ghz (2 hw threads per core) 96GB RAM 2x125 -
NVIDIA GTX1080
2xIntel Xeon E5-2695 v3 14-core Pascal 2560 8GB RAM 180
4 2.30Ghz (2 hw threads per core) 96GB RAM 2x120 GPU NVIDIA GTX 980
Kepler 2048 4GB RAM 165
Intel Xeon E5-1620 v3 4-core 3.50Ghz NVIDIA Tesla K20c
5 )
° (2 hw threads per core) 32GB RAM 140 GPU Kepler 2496 5GB RAM 225
2xIntel Xeon E5-2695 v3 14-core 2x Altera Stratix V GSD5
6 2.30GHz (2 hw threads per core) G4GB RAM 2x120 FPGA Stratix - 2x4GB RAM 2%25
4.5 Substitution Scores Selection

We have implemented two well-known optimizations of the SW algorithm that
have been proposed in previous works, namely the Query Profile (QP) 28] and
Score Profile (SP) [0 techniques for substitution scores selection:

The QP strategy creates a matrix of size |g| x | > |, where ¢ is the query
sequence and Y is the alphabet. Each row of this matrix stores the scores
of the corresponding query residue against each possible residue in the
alphabet. This optimization improves data locality because each thread
compares the same query residue against different ones from the database.
The cost is a negligible increment in memory requirements.

The SP technique creates a three-dimensional score array of size n x L X
>, where n is the length of the database sequence, L is the number of
vector lanes and _ is the alphabet. This array is constructed prior to
matrix computation and contains the substitution scores for each query-
database residue pair. SP not only improves data locality but also reduces
the number of operations in the innermost loop since its values can be
gathered using a single vector load. However, the score array must be re-
built for each database sequence group, so its suitability must be evaluated
(especially for short queries).

To rearrange substitution scores, shuffling intrinsics are used in SSE4.1

(-mm_shuffle_epi8), AVX2 (_mm256_shuffle_epi8), and AVX-512BW (_mm512_shuffle_epi8)
versions while permutation instructions are employed in the AVX-512F case
(cmm&12_permutevar_epi32 and _mmb12_permutevar_epi32).

5 Experimental Results

5.1 Experimental Design

All tests were carried out using the platforms described in Table [l We have
used Intel’s ICC compiler with the -O8 optimization level by default (version
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18.0.0.128) and CUDA SDK 9.5. The first three servers were used to evaluate
SWIMM 2.0 and the other SIMD-based alternatives, while the rest were em-
ployed to perform a comparison with GPUs and FPGAs. The performance was
evaluated by carrying out similar experiments to those in previous works [[9
[AIIE]. We have evaluated SWIMM 2.0 by searching 20 query protein se-
quences against three well-known databases of different size:

— UniProtKB/Swiss-Prot (release 2016-11)@. This database contains 197953409
amino acid residues in 553231 sequences with a maximum length of 35213.

— Environmental NR (release 2016_11ﬂ. This database contains 1384686404
amino acid residues in 6962291 sequences (maximum length of 11944).

— UniProtKB/TrEMBL (release 2016_11)H. This database contains 71002161
sequences comprising 23825212925 amino acid residues (the longest se-
quence has 36805 amino acid residues).

Environmental NR was selected as the default database. In addition, the in-
put queries range in length from 144 to 5478, and they were extracted from the
Swiss-Prot database (accession numbers: P02232, P05013, P14942, P07327,
P01008, P03435, P42357, P21177, Q38941, P27895, P07756, P04775, P19096,
P28167, POC6BS, P20930, P08519, Q7TMAS5, P33450, and QIUKN1).

With regards to the scoring scheme, we configured BLOSUM62 and 10(2)
as the scoring matrix and gap insertion (extension) penalty, respectively. Each
particular test was run ten times and the performance was calculated as their
average to avoid variability.

5.2 Performance Results on the Intel Xeon Phi 7250

GCUPS (billion cell updates per second) is commonly used as the performance
metric in the context of SW, and its value is calculated by using the formula
%, where |@Q)| is the total number of residues in the query sequence, | D] is
the total number of residues in the database and ¢ is the runtime in seconds [1].

Figure Bl shows the performance of the different instruction sets and profile
techniques used when varying the number of threadd]. The best performances
are achieved by the AVX2 extensions (488.3 GCUPS) followed by AVX-512F
(187.2 GCUPS), with SSE4.1 (163 GCUPS) being the worst. As mentioned
above, data level exploitation is critical to achieving maximum performance
in this application. Even though AVX-512F doubles vectorial width with re-
spect to AVX2 instructions, the lack of low-range integer operations imposes a
strong limit on performance as almost all alignment scores can be represented
using 8-bit integer data. Despite the fact that the SSE4.1 version computes

6 Swiss-Prot: [pttp: //www.uniprot.org/downloads|

7 Environmental NR: [ftp://ftp.ncbi.nih.gov/blast/db/FASTA/env_nr.gz|

8 TrEMBL: [ittp: //www.uniprot.org/downloads|
9

SSE4.1 and AVX2 versions using the QP technique were excluded from the analysis
to improve figure readability since we found that the SP scheme always achieved the best
performance, as in previous works [14]
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Fig. 5 SWIMM 2.0 performance for the different instruction sets and profile techniques
used varying the number of threads on the Xeon Phi 7250.

16 alignments in parallel as does AVX-512F, the performance of the former is
slower compared to the latter. In fact, only one of the two VPUs per core has
support for the legacy subset of byte and word SSE instructions.

With regards to the number of threads, the AVX2 implementation performs
best when using 136 threads, although its performance with 68 threads is
very close (just 1% slower). A similar behavior occurs with SSE4.1 intrinsics,
where using 204 threads is slightly better (1%) compared with the 272 threads
configuration. However, both AVX-512F versions achieve the best results when
using 68 threads, and large performance differences are observed with other
thread configurations.

Figure [ illustrates the performance obtained when varying the protein
database with MCDRAM enabled (the most successful SWIMM 2.0 configu-
ration is selected: AVX2 with 136 threads). It is important to mention that
the MCDRAM exploitation does not need to modify the source code via the
numactl utility. Regardless of the database employed, MCDRAM always pro-
vides a small performance gain (approximately 1.5%).

Figure [ presents performance evolution when varying query length with
the most favorable configuration for each implementation: 204, 136 and 68
threads for SSE4.1, AVX2 and AVX-512F intrinsics, respectively. Also, data
is placed in MCDRAM memory. The SSE4.1 and AVX-512F implementations
achieve an almost constant performance. As expected, this behavior is caused
by the exploitation of the inter-task parallelism scheme. The AVX2 version’s
performance has a tendency to improve, something that becomes less pro-
nounced with larger query sequences (m > 2504). For AVX-512F, the behav-
ior of QP and SP differs, with a better performance for short sequences in
QP. This aspect was also observed in other studies on the previous Xeon Phi
KNC [[2AI4. This was due to the additional overhead incurred by the SP
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Fig. 6 SWIMM 2.0 performance for the AVX2 version varying the protein database on
the Xeon Phi 7250.
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Fig. 7 SWIMM 2.0 performance for the different instruction sets used varying the query
length on the Xeon Phi 7250.

construction, a fact which does not compensate for the indexation benefits
in shorter queries. As a summary, the peak performances achieved are 511.1,
197.2, 188.8 and 163.7 GCUPS for the AVX2, AVX-512F (SP), AVX-512F
(QP) and SSE4.1 implementations.

Lastly, we compared SWIMM 2.0 with other top-performance implementa-
tiond'J: SWIPE (v2.0.5) is the fastest SSEz-compatible tool while libssa and
Parasail (v1.2) are libraries that provide a utility to take advantage of them.

10 We have discarded the comparison with the SWhybrid framework because we de-
tected inconsistent alignment results in most of the experiments.
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Fig. 8 Performance comparison among SWIMM 2.0, SWIMM 1.0, SWIPE, Parasail and
libssa on the Xeon Phi 7250.

As both libssa and Parasail offer many different execution options, we tested
all of them and selected the one that reported the best performance rates:
parasail_sw_striped_profile_avr2_256_sat and search_8-avz2_sw for Parasail and
libssa, respectively. Both implementations are based on the AVX2 subset us-
ing 8-bit integer data with overflow checking. Among the main differences are:
(1) Parasail implements Farrar’s stripped approach following intra-task par-
allelism while libssa exploits inter-task parallelism; and (2) Parasail performs
QP optimization as long as libssa uses the SP technique. Additionally, we also
considered SWIMM 1.0 [I4] (v1.1.3).

Figure@shows the performance comparison between SWIMM 2.0, SWIMM
1.0, SWIPE, Parasail and libssa (MCDRAM enabled). It can be observed
that the Parasail intra-task approach limits its parallel scalability for small
alignments. In fact, SWIPE runs 2.7x faster than Parasail for the first half
of the test set, even though the latter computes twice the cells in parallel.
The inter-task scheme also benefits libssa, which beats Parasail for all query
lengths by a factor of 2.4x on average. For its part, SWIMM 2.0 yields an
average performance of 456 GCUPS with the maximum performance of 511.1
GCUPS, which means an average improvement of 1.24x against its previous
version. In addition, our implementation outperforms SWIPE, Parasail and
libssa by an average factor of 2.53x, 5.64x and 1.84 X, respectively.

5.3 Performance Results on the Intel Xeon Gold 6128

As in the previous subsection, we assesed performance using the GCUPS met-
ric. Figure@lshows the performance of the different instruction sets and profile
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Fig. 9 SWIMM 2.0 performance for the different instruction sets and profile techniques
used varying the number of threads on the Xeon Gold 6128.

techniques used when varying the number of threads . Once again, we found
that exploiting low-range integers is a key factor in obtaining a high-level per-
formance. Unlike the Xeon Phi 7250 case, the SSE4.1 implementation is able to
outperform AVX-512F counterparts (there is no restriction on VPU’s support
for SSEx instructions on this processor). In addition, the AVX2 version takes
advantage of its larger vectorial width compared with the SSE4.1 implementa-
tion, doubling the latter’s performance. However, despite doubling its vectorial
lane, the AVX-512BW versions reported practically the same performance as
the AVX2 counterpart. This contradictory aspect is due to the fact that not
all Intel’s Skylake models include the dedicated VPU unit that is accessible
by the scheduler through port 5. In these cases, the fused VPU associated
with ports 0 and 1 is the only unit for launching AVX-512BW instructions. In
fact, this fused VPU works by launching a single AVX-512BW instruction or
two AVX2 instructions simultaneously. Therefore, the benefit in doubling the
vector capacity is compensated for doubling the number of AVX2 instructions
that are simultaneously issued: one AVX-512BW with 64 x8-bit integers or
two AVX2 instructions with 32x8-bit integers each.

As can be seen in Figure @ all the versions under study also take advan-
tage of thread level parallelism. Independently of the intrinsic set used, the
implementations displayed almost linear speedups with regard to the number
of threads until reaching the number of cores (2x6). Furthermore, the usage
of hyper-threading provided some extra GCUPS in the saturated versions.

Figure [[0 shows performance evolution when varying query length for the
SSE4.1, AVX2, AVX-512F and AVX-512BW set, respectively. Performance

11 The SSE4.1 and AVX2 versions using the QP technique were excluded from the analysis
to improve figure readability since we found that the SP scheme always achieved the best
performance, as in previous works [14]



16 Enzo Rucci et al.

=omSSE4.1 (SP)  ememmAVX2 (SP) AVX-512F (QP)
aomAVX-512F (SP)  —#—AVX-512BW (QP) —e— AVX-512BW (SP)
350
300 R e e e A e O e =
== -
==
v
250
» 200
a
=]
(ol o - - PN ry
O 150 O==@ =9
.’.—."
100 o= O==0==0 =9 O=—0—0
= -
50
< o o~ [T} < ~ ~ o~ o o o wn < ') < — 0 ™ ~ 0
< el o~ ~ el NeJ n o~ n (=] o o o o Nel 0 < < <+ ~
~— ~— o~ ™ < wn 0 ~ el o n o ['a) o n o [T} ~ ~ <
~— ~— o~ o~ M ~M < < ~ n [Ts)

Query length

Fig. 10 SWIMM 2.0 performance for the different instruction sets used varying the query
length on the Xeon Gold 6128.
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Fig. 11 Performance comparison among SWIMM 2.0, SWIMM 1.0, SWIPE, Parasail and
libssa on the Xeon Gold 6128.

seems to be almost independent of the query length. The peak performances
achieved are 153.7, 306.3, 99.6/107.7 and 301.4/302 GCUPS for the SSE4.1,
AVX2, AVX-512F (QP/SP) and AVX-512BW (QP/SP) implementations.

Finally, we compare our newly-developed SWIMM 2.0 against SWIMM 1.0,
SWIPE, Parasail and libssa in Figure[[Il The behavior observed is quite similar
to the Xeon Phi case: SWIPE beats Parasail for the six smallest queries while
libssa outperforms both of them for all query lengths. SWIMM 2.0 outperforms
all of them, running 1.15x, 1.17x, 1.94x and 2.08x faster than SWIMM 1.0,
libssa, Parasail and SWIPE, respectively.
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Fig. 12 SWIMM 2.0 performance for the different instruction sets and profile techniques
used varying the number of threads on the Xeon Gold 6138.

5.4 Performance Results on the Intel Xeon Gold 6138

The usage of the dual Intel Xeon Gold 6138 allows us to assess scalability
issues in the SKL micro-architecture taking into account that this server has a
considerably larger number of cores (2x20) compared to the Xeon Gold 6128
server (2x6). Figure [2shows the performance of the different instruction sets
and profile techniques used when varying the number of threads. As in the
previous Xeon Gold experiments, the SSE4.1 implementation outperforms the
AVX-512F versions and again both QP and SP present similar performances
for AVX-512BW instructions. However, in contrast to the slight performance
improvement of the AVX2 version over the AVX-512BW alternatives, this
gap is much more noticeable on the Intel Xeon Gold 6138. In particular, the
performance difference is 1.09x for 40 threads but grows upto 1.12x when
all available hardware threads are used. Using hardware counters and Intel’s
VTune tool, it was observed that this divergence is due to a higher pressure
in the memory hierarchy of the AVX-512BW version. In fact, 19% of pipeline
slots are stalled due to memory demand in AVX-512BW approach while only
13% was observed for AVX2 version. Additionally, the memory bound effect
becomes even more remarkable when hyper-threading is enabled increasing by
2% for AVX-512BW versus 1.5% in AVX2. The performance rates show that
AVX2 implementation beats all the rest counterparts reaching 722.9 GCUPS
on average and a peak of 734 GCUPS.

Finally, we compare SWIMM 2.0 against the other SIMD-based alterna-
tives on the Xeon Gold 6138 too (see Figure[[3)). SWIMM 2.0 takes advantage
of the largest number of cores available in this server obtaining even greater
performance differences compared to the Xeon Gold 6128 case. In particular,
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Fig. 13 Performance comparison among SWIMM 2.0, SWIMM 1.0, SWIPE, Parasail and
libssa on the Xeon Gold 6138.

our SWIMM 2.0 implementation runs 1.19x, 1.26x, 2.06x and 2.26x faster
than SWIMM 1.0, libssa, Parasail and SWIPE, respectively.

5.5 Performance and Power Efficiency Comparison with GPUs and FPGAs

We have also carried out a performance and power efficiency comparison with
GPUs and FPGAs. For CUDA-enabled GPUs, CUDASW++ series [TO[IT]
stand as the fastest option [9. The latest version, CUDASW++ 3.0, is an hy-
brid CPU-GPU implementation optimized for Kepler architecture. This tool
employs SSE intrinsics for the host and CUDA PTX video instructions (8-bit)
for the accelerator. Since these video instructions were removed from subse-
quent NVIDIA architectures, we also selected CUDASW++ 2.0 implementa-
tion. This version computes using 32-bit integer data but allow us to include
newer GPUs in the analysis. For FPGA accelerators, we have chosen the OS-
WALD package [ in its hybrid configuration because it offers a satisfactory
performance-power tradeoff.

Table 2] presents power efficiency ratios considering the GCUPS peak per-
formance and the Thermal Design Power (TDP) of each platform. At the
GPU side, it can be seen that newer generations improve performance-power
ratio. While CUDASW++ 3.0 reaches more GCUPS than its previous ver-
sion on the GTX980, the associated high power consumption results in lower
GCUPS/Watt quotient. The best result is presented by CUDASW++ 2.0 on
the newest GTX1080. Regarding FPGA accelerators, OSWALD achieves an

12 Once again, we have discarded the comparison with the SWhybrid framework [I5] be-
cause we detected inconsistent alignment results in most of the experiments.

13 As CUDASW++ 2.0 is not and hybrid CPU-GPU implementation, only GPU power is
considered
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Table 2 Performance and power efficiency comparison with GPUs and FPGAs.

Implementation Platform GCUPS (peak) Watt GCUPS/Watt
1 Xeon Phi 7250 511 215 2.38
SWIMM 2.0 2 2% Xeon Gold 6128 306 2% 115 1.33
3 2x Xeon Gold 6138 734 2x125 2.94
CUDASW++ 3.0 5 Xeon E5-1620 v3 + Tesla K20c 97 365 0.27
4 GTX1080 154 18013 0.86
CUDASWA++ 20— GTX980 81 16513 0.49
OSWALD 6 2xIntel Xeon E5-2695 v3 + 2xStratix V 442 290 1.52

important performance peak but at the expense of a non-negligible power con-
sumption. It is important to note that 83% of the power requirements corre-
spond to the host. In an ideal situation with isolated FPGAs, the performance-
power tradeoff could be increased upto 2 GCUPS/Watt according to [I9].

On its behalf, SWIMM 2.0 outperforms all CUDASW++ implementations
not only from performance perspective but also from power efficiency point of
view. On the Xeon Gold 6138, SWIMM 2.0 obtains 2.4x more GCUPS than
on the 6128 version. Because the first only requires 1.08x more Watts than
the second, SWIMM 2.0 improves it power efficiency ratio from 1.33 to 2.94.
Regarding the Xeon Phi 7250 processor, SWIMM 2.0 places behind the Xeon
Gold 6138 but still reaching a remarkable GCUPS/Watt ratio (2.38).

6 Conclusions

The study and acceleration of the SW algorithm on different platforms has
generated great interest in the scientific community due to its increasing rele-
vance in Bioinformatics. In this paper, we have presented the recently released
SWIMM 2.0 software, which incorporates new capacities to take advantage
of Intel’s latest AVX-512 SIMD extensions. In this regard, we have evaluated
SWIMM 2.0 by using two different novel architectures: a Xeon Phi KNL ac-
celerator and two Xeon Skylake general purpose processors.
Among the main contributions of this study we can highlight:

— The exploitation of low-range integer vectors is crucial in achieving optimal
performance rates. Remarkable speedups were achieved on all platforms
through enabling more SIMD parallelism.

— To the best of the authors’ knowledge, this is the first evaluation of the
SW algorithm with the AVX-512BW extensions. Regarding Xeon Skylake
processors, AVX-512BW and AVX2 versions reported similar performances
when using a small number of cores since the benefit in doubling the vector
capacity of the first is compensated for doubling the number of simultane-
ous instructions of the latter. However, as the number of cores increases,
AVX-512BW performance is penalized due to a higher memory bound.

— Multi-threading must be carefully evaluated. On KNL accelerators, differ-
ent numbers of threads produced the best results for each instruction set. In
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the same way, enabling hyper-threading not always improved performance
on the SKL architecture.

— The usage of MCDRAM provides some additional GCUPS with practically
no programmer intervention on KNL.

— The AVX2 instruction set still remains as the best choice for current HPC
platforms from Intel. The peak performances observed are 511, 306.3 and
734 GCUPS on the KNL accelerator, the Xeon Gold 6128 and the Xeon
Gold 6138, respectively.

— SWIMM 2.0 outperformed other state-of-the-art SIMD-based implementa-
tions on all platforms under study. In addition, SWIMM 2.0 also showed
better performance than other implementation achieving less energy foot-
print rates: 2.38 GCUPS/Watts on the Xeon Phi 7250 and 2.94 GCUPS/Watts
on the Xeon Gold 6138.

In view of the results obtained, we forecast a promising opportunity to
accelerate SW database searches on future Xeon SKL processors since these
devices will include more dedicated VPUs (enabling more SIMD parallelism).
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