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Abstract—Cache attacks exploit memory access patterns of
cryptographic implementations. Constant-Time implementation
techniques have become an indispensable tool in fighting cache
timing attacks. These techniques engineer the memory accesses
of cryptographic operations to follow a uniform key independent
pattern. However, the constant-time behavior is dependent on the
underlying architecture, which can be highly complex and often
incorporates unpublished features. CacheBleed attack targets
cache bank conflicts and thereby invalidates the assumption
that microarchitectural side-channel adversaries can only observe
memory with cache line granularity. In this work, we propose
MemJam, a side-channel attack that exploits false dependency of
memory read-after-write and provides a high quality intra cache
level timing channel. As a proof of concept, we demonstrate
the first key recovery attacks on a constant-time implementation
of AES, and a SM4 implementation with cache protection in
the current Intel Integrated Performance Primitives (Intel IPP)
cryptographic library. Further, we demonstrate the first intra
cache level timing attack on SGX by reproducing the AES key
recovery results on an enclave that performs encryption using the
aforementioned constant-time implementation of AES. Our re-
sults show that we can not only use this side channel to efficiently
attack memory dependent cryptographic operations but also to
bypass proposed protections. Compared to CacheBleed, which
is limited to older processor generations, MemJam is the first
intra cache level attack applicable to all major Intel processors
including the latest generations that support the SGX extension.

I. INTRODUCTION

In cryptographic implementations, timing channels can be
introduced by key dependent operations, which can be ex-
ploited by local or remote adversaries [1, 2]. Modern microar-
chitectures are complex and support various shared resources,
and the operating system (OS) maximizes the resource sharing
among concurrent tasks [3, 4]. From a security standpoint,
concurrent tasks with different permissions share the same
hardware resources, and these resources can expose exploitable
timing channels. A typical model for exploiting microarchitec-
tural timing channels is for a spy process to cause resource
contention with a victim process and to measure the timing
of its own or of the victim operations [5, 6, 7, 8]. The
observed timing behavior give adversaries strong evidence
on the victim’s resource usage pattern, thus they leak crit-
ical runtime data. Among the shared resources, attacks on
cache have received significant attention, and their practicality
have been demonstrated in scenarios such as cloud comput-
ing [5, 8, 9, 10, 11, 12]. A distinguishable feature of cache
attacks is the ability to track memory accesses with high

temporal and spatial resolution. Thus, they excel at exploiting
cryptographic implementations with secret dependent memory
accesses [2, 13, 14, 15]. Examples of such vulnerable im-
plementations include using S-Box tables [16], and efficient
implementations of modular exponentiation [17].

The weakness of key dependent cache activities has mo-
tivated researchers and practitioners to protect cryptographic
implementations against cache attacks [7, 18]. The simplest
approach is to minimize the memory footprint of lookup ta-
bles. Using a single 8-Bit S-Box in Advanced Encryption Stan-
dard (AES) rather than T-Tables makes cache attacks on AES
inefficient in a noisy environment, since the adversary can only
distinguish accesses between 4 different cache lines. Combin-
ing small tables with cache state normalization, i.e., loading all
table entries into cache before each operation, defeats cache
attacks in asynchronous mode, where the adversary is only
able to perform one observation per operation. More advanced
side channels such as exploitation of the thread scheduler [19],
cache attack on interrupted execution of Intel Software Guard
eXtension (SGX) [20], performance degradation [21] and
leakage of other microarchitectural resources [22, 23] remind
us the importance of constant-time software implementations.
One way to achieve constant-time memory behavior, is the
adoption of small tables in combination with accessing all
cache lines on each lookup [7]. The overhead would be limited
and is minimized by the parallelism we can achieve in modern
processors. Another constant-time approach adopted by some
public cryptographic schemes is interleaving the multipliers in
memory known as scatter-gather technique [24].

Constant-time implementations have effectively eliminated
the first generation of timing attacks that exploit obvious key
dependent leakages. The common view is that performance
penalty is the only downside which, once paid, there is no
need to be further worried. However, this is far from the
reality and constant-time implementations may actually give
a false sense of security. A commonly overlooked fact is
that constant-time implementations and related protections are
relative to the underlying hardware [25]. In fact, there are
major obstacles preventing us from obtaining true constant-
time behavior. Processors constantly evolve with new mi-
croarchitectural features rolled quietly with each new release
and the variety of such subtle features makes comprehensive
evaluation impossible. A great example is the cache bank con-
flicts attack on OpenSSL RSA scatter-gather implementation:
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it shows that adversaries with intra cache level resolution can
successfully bypass constant-time techniques relied on cache-
line granularity [26]. As a consequence, what might appear as
a perfect constant-time implementation becomes insecure in
the next processor release–or worse–an unrecognized behavior
might be discovered, invalidating the earlier assumption.

A. Our Contribution

We propose an attack named MemJam by exploiting false
dependency of memory read-after-write, and demonstrate key
recovery against two different cryptographic implementations
which are secure against cache attacks with experimental
results on both regular and SGX environments. In summary:

• False Dependency Attack: A side-channel attack on the
false dependency of memory read-after-write. We show
how to dramatically slow down the victim’s accesses to
specific memory blocks, and how this read latency can
be exploited to recover low address bits of the victim’s
memory accesses.

• Attack on protected AES and SM4: Attacks utilizing
the intra cache level information on AES and SM4
implementations protected against cache attacks. The
implementations are chosen from Intel Integrated Perfor-
mance Primitives (Intel IPP), which is optimized for both
security and speed.

• Attack on SGX Enclave: The first intra cache level
attack against SGX Enclaves supported by key recovery
results on the contant-time AES implementation. The
aforementioned constant-time implementation of AES is
part of the SGX SDK source code.

• Protection Bypass: Bypasses of remarkable protections
such as proposals based on constant-time techniques [7,
24], static and runtime analysis [27, 28] and cache
architecture [29, 30, 31, 32].

B. Experimental Setup and Generic Assumptions

Our experimental setup is a Dell XPS 8920 desktop machine
with Intel(R) Core i7-7700 processor running Ubuntu 16.04.
The Core i7-7700 has 4 hyper-threaded physical cores. Our
only assumptions are that the attacker is able to co-locate on
one of the logical processor pairs within the same physical
core as the victim. In the cryptographic attacks, the attacker
can measure the time of victim encryption. The attacker further
knows which cryptographic implementation is used by the
victim, but she does not need to have any knowledge of the
victim’s binary or the offset of the S-Box tables. We will
discuss assumptions that are specific to the attack on SGX
at Section VI.

II. RELATED WORK

Side channels including power, electromagnetic and timing
channels have been studied for a few decades [1, 33, 34].
Timing side channels can be constructed through the processor
cache to perform key recovery attacks against cryptographic
operations such as RSA [15], ECDSA [14], ElGamal [9],
DES [13] and AES [2, 8]. On multiprocessor systems, attacks

on the shared LLC—a shared resource among all the cores—
perform well even when attacker and victim reside in different
cores [8]. Flush+Reload, Prime+Probe, Evict+Reload, and
Flush+Flush are some of the proposed attack methodologies
with different adversarial scenarios [2, 11, 12]. Performance
degradation attacks can improve the channel resolution [19,
21]. LLC attacks are highly practical in cloud, where an
attacker can identify where a particular victim is located [5, 9].
Despite the applicability of LLC attacks, attacks on core-
private resources such as L1 cache are as important [23, 35].
Attacks on SGX in a system level adversarial scenario are
notable examples [20, 36]. There are other shared resources,
which can be utilized to construct timing channels [37].
Exploitation of Branch Target Buffer (BTB) leaks if a branch
has been taken by a victim process [22, 23, 36]. Logical units
within the processor can leak information about the arithmetic
operations [38, 39]. CacheBleed proposes cache bank conflicts
and false dependency of memory write-after-read as side chan-
nels with intra-cache granularity [26]. However, cache bank
conflicts leakage does not exist on current Intel processors, and
we verify the authors’ claim that the proposed write-after-read
false dependency side channel does not allow efficient attacks.

Defense: software and hardware strategies have been pro-
posed such as alternative lookup tables, data-independent
memory access pattern, static or disabled cache, and cache
state normalization to defend against cache attacks [7]. Scatter-
Gather techniques have been adopted by RSA and ECC imple-
mentations [24]. In particular, introducing redundancy and ran-
domness to the S-Box tables for AES has been proposed [18].
A custom memory manager [40], relaxed inclusion caches [31]
and solutions based on cache allocation technology (CAT)
such as Catalyst [29] and vCat [32] are proposed to defend
against LLC contention. Sanctum [30] and Ozone [41] are new
processor designs with respect to cache attacks. Detection-
based countermeasures have also been proposed using perfor-
mance counters, which can be used to detect cache attacks
in cloud environments [27, 42]. MASCAT [28] is proposed to
block cache attacks with code analysis techniques. CachD [43]
detects potential cache leakage in the production software.
Nonetheless, these proposals assume that the adversary cannot
distinguish accesses within a cache line. That is, attacks
with intra cache-line granularity are considered out-of-scope.
Doychev et al. proposed the only software leakage detector
that consider full address bits as its leakage model [44].

III. BACKGROUND

A. Multitasking

The memory management subsystem shares the dynamic
random-access memory (DRAM) among all concurrent tasks,
in which a virtual memory region is allocated for each task
transparent to the physical memory. Each task is able to use
its entire virtual address space without meddling of memory
accesses from others. Memory allocations are performed in
pages, which each virtual memory page can be stored in a
DRAM page with a virtual-to-physical page mapping. The
logical processors are also shared among these tasks and each



logical processor executes instructions from one task at a time,
and switches to another task. Memory write and read instruc-
tions work with virtual addresses, and the virtual address is
translated to the corresponding physical address to perform the
memory operation. The OS is responsible for page directory
management and virtual page allocation. The OS assists the
processor to perform virtual-to-physical address translation by
performing an expensive page walk. The processor saves the
address translation results in a memory known as Translation
Look-aside Buffer (TLB) to avoid the software overhead
introduced by the OS. Intel microarchitecture follows a multi-
stage pipeline and adopts different optimization techniques to
maximize the parallelism and multitasking during the pipeline
stages [45]. Among these techniques, hyper-threading allows
each core to run multiple concurrent threads, and each thread
shares all the core-private resources. As a result, if one
resource is busy by a thread, other threads can consume the
remaining available resources. Hyper-threading is abstracted
to the software stack: OS and applications interact with the
logical processors.

B. Cache Memory

DRAM memory is slow compared to the internal CPU
components. Modern microarchitectures take advantage of
a hierarchy of cache memories to fill the speed gap. Intel
processors have two levels of core-private cache (L1, L2),
and a Last Level Cache (LLC) shared among all cores. The
closer the cache memory is to the processor, the faster, but also
smaller it is compared to the next level cache. Cache memory
is organized into different sets, and each set can store some
number of cache lines. The cache line size, which is 64 byte,
is the block size for all memory operations outside of the
CPU. The higher bits of the physical address of each cache
line is used to determine which set to store/load the cache
line. When the processor tries to access a cache line, a cache
hit or miss occurs respective of its existence in the relevant
cache set. If a cache miss occurs, the memory line will be
stored to all 3 levels of cache and to the determined sets.
Reloads from the same address would be much faster when
the memory line exists in cache. In a multicore system, the
processor has to keep cache consistent among all levels. In
Intel architecture, cache lines follow a write-back policy, i.e,
if the data in L1 cache is overwritten, all other levels will be
updated. The LLC is inclusive of L2 and L1 caches, which
means that if a cache line in LLC is evicted, the corresponding
L1 and L2 cache lines will also be evicted [45]. These policies
help to avoid stale cached data where one processor reads
invalid data mutated by another processor.

C. L1 Cache Bottlenecks

L1 cache port has a limited bandwidth and simultaneous
accesses will be block each other. This bottleneck is criti-
cal in super-scalar multiprocessor systems. Older processors’
generation adopted multiple banks as a workaround to this
problem [46], in which each bank can operate independently
and serve one request at a time. While this partially solved the

bandwidth limit, it creates the cache bank conflicts phenomena
which simultaneous accesses to the same bank will be blocked.
Intel resolved the cache bank conflicts issue with the Haswell
generation [45]. Another bottleneck mentioned in various
resources is due to the false dependency of memory addresses
with the same cache set and offset [45, 46]. Simultaneous
read and write with addresses that are multiples of 4 kB
is not possible, and they halt each other. The processor
cannot determine the dependency from the virtual address, and
addresses with the same last 12 bits have the chance to map
to the same physical address. Such simultaneous access can
happen between two logical processors and/or during the out-
of-order execution, where there is a chance that a memory
write/read might be dependent on a memory read/write with
the same last 12 bits of address. Such dependencies cannot be
determined on the fly, thus they cause latency.

D. Cache Attacks

Cache attacks can be exploited by adversaries where they
share system cache memory with benign users. In scenar-
ios where the adversary can colocate with a victim on the
same core, she can attack core-private resources such as L1
cache, e.g., OS adversaries [20, 36]. In cloud environment,
virtualization platforms allow sharing of logical processors to
different VMs; however, attacks on the shared LLC have a
higher impact, since LLC is shared across all the cores. In
cache timing attacks, the attacker either measure the timing
of the victim operations, e.g, Evict+Time [2] or the timing of
his own memory accesses, e.g, Prime+Probe [8]. The attacker
needs to have access to an accurate time resource such as the
RDTSC instruction. In the basic form, attacks are performed
by one observation per entire operation. In certain scenarios,
these attacks can be improved by interrupting the victim and
collecting information about the intermediate memory states.
Side channel attacks exploiting cache bank conflicts rely on
synchronous resource contention. CacheBleed methodology is
somewhat similar to Prime+Probe, where the attacker performs
repeated operations, and measures it’s own access time [26].
In a cache bank conflicts attack, the adversary repeatedly
performs simultaneous reads to the same cache bank and
measures their completion time. A victim on a colocated
logical processor who access the same cache bank would cause
latency to the attacker’s memory reads.

IV. MemJam: READ-AFTER-WRITE ATTACK

MemJam utilizes false dependencies. Data dependency oc-
curs when an instruction refers to the data of a preceding
instruction. In pipelined designs, hazards and pipeline stalls
can occur from dependencies if the previous instruction has
not finished. There are cases where false dependencies occur,
i.e. the pipeline stalls even though there is no true dependency.
Reasons for false dependencies are register reuse and limited
address space for the Arithmetic Logic Unit (ALU). False
dependencies degrade instruction level parallelism and cause
overhead. The processor eliminates false dependencies arising
from register reuse by a register renaming approach. However,



l oop :
r d t s c p ;
mov %eax , (% r9 ) ;
movb 0 x0000(% r10 ) , %a l ;
movb 0 x1000(% r10 ) , %a l ;
movb 0 x2000(% r10 ) , %a l ;
movb 0 x3000(% r10 ) , %a l ;
movb 0 x4000(% r10 ) , %a l ;
movb 0 x5000(% r10 ) , %a l ;
movb 0 x6000(% r10 ) , %a l ;
movb 0 x7000(% r10 ) , %a l ;
add $4 , %r9 ;
dec %r11 ;
j n z loop ;

Listing 1: Probe Reads

l oop :
r d t s c p
mov %eax , (% r9 ) ;
movb %al , 0 x0000(% r10 ) ;
movb %al , 0 x1000(% r10 ) ;
movb %al , 0 x2000(% r10 ) ;
movb %al , 0 x3000(% r10 ) ;
movb %al , 0 x4000(% r10 ) ;
movb %al , 0 x5000(% r10 ) ;
movb %al , 0 x6000(% r10 ) ;
movb %al , 0 x7000(% r10 ) ;
add $4 , %r9
dec %r11
j n z loop

Listing 2: Probe Writes

Listings 1 and 2 are used to probe 8 parallel reads and writes, respectively. r9
points to a measurement buffer, and r11 is initialized with the probe count.

Fig. 1: Based on the attack model,
thread A and B both run on
the same core, and introduce and
probe stall hazards.

there exist other false dependencies that need to be addressed
during the software optimization [45, 47].

In this work, we focus on a critical false dependency
mentioned as 4K Aliasing where data that is multiples of 4k
apart in the address space is seen as dependent. 4k Aliasing
happens due to virtual addressing of L1 cache, where data
is accessed using virtual addresses, but tagged and stored
using physical addresses. More than one virtual addresses
can refer to the same data with the same physical address
and the determination of dependency for concurrent memory
accesses, requires virtual address translation. Physical and
virtual address share the last 12 bits, and any data accesses
whose addresses differ in the last 12 bits (i.e. the distance is not
4k) cannot have a dependency. For the fairly rare remaining
cases, address translation needs to be done before resolving the
dependency, which causes latency. Note that the granularity
of the potential dependency, i.e. whether two addresses are
considered “same”, depends also on the microarchitecture,
as dependencies can occur at the word or cache line gran-
ularity (i.e. ignoring the last 2 or last 6 bits of the address,
respectively). These rare false dependencies due to 4K aliasing
can be exploited to attack memory, since the attacker can
deliberately process falsely dependent data by matching the
last 12 bits of his own address with a security critical data
inside a victim process.

4K Aliasing has been mentioned in various places as
an optimization problem existing on all major Intel proces-
sors [45, 46]. We verify the results of Yarom et al. [26],
the only security related work regarding false dependencies,
which exploited write-after-read dependencies. The resulting
timing leakage by write stall after read is not sufficient to
be used in any cryptographic attack. MemJam exploits a
different channel due to the false dependency of read-after-
write, which causes a higher latency and is thus simply
observable. Intel Optimization Manual highlights the read-
after-write performance overhead in various sections [45]. As
described in Section 11.8, this hazard occurs when a memory

write is closely followed by a read, and it causes the read
to be reissued with a potential 5 cycles penalty1. In Section
B.1.4 on memory bounds, write operations are treated under
the store bound category. In contrast to load bounds, Top-down
Microarchitecture Analysis Method (TMAM)2 reports store
bounds as fraction of cycles with low execution port utilization
and small performance impact. These descriptions in various
sections highlight that read-after-write stall is considered more
critical than write-after-read stall.

A. Memory Dependency Fuzz Testing

We performed a set of experiments to evaluate the memory
dependency behavior between two logical processors. In these
experiments, we have thread A and B running on the same
physical core, but on different logical processors, as shown
in Figure 1. Both threads perform memory operations; only
thread B measures its timing and hence the timing impact of
introduced false dependencies.

Read-after-read (RaR): In the first experiment, the two
logical threads A and B read from the same shared cache and
can potentially block each other. This experiment can reveal
cache bank conflicts, as used by CacheBleed [26]. B uses
Listing 1 to perform read measurements and A constantly
reads from different memory offsets and tries to introduce
conflicts. A reads from three different type of offsets: (1)
Different cache line than B, (2) same cache line, but different
offset than B, and (3) same cache line and same offset as
B. As depicted, there is no obvious difference between the
histograms for three cases in Figure 2a verifying the lack of
cache bank conflicts on 7th generation CPUs.

Write-after-read (WaR): The histogram results for the sec-
ond experiment on false dependency of write-after-read is

1LD_BLOCKS_PARTIAL.ADDRESS_ALIAS Performance Monitoring
Unit (PMU) event counts the number of times reads were blocked.

2Top-Down Characterization is a hierarchical organization of event-based
metrics that identifies the dominant performance bottlenecks in an applica-
tion. [48]
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(c) RaW

Fig. 2: Three different scenario where different cache line (green), same cache line (blue) and same offset (red) have been
accessed by two logical processors. Experiment (c) on RaW latency has distinguishable characteristics for the conflicted word
offset (red), while (a) and (b) feature nimble differences.

shown in Figure 2b, in which the cache line granularity is
obvious. Thread A constantly reads from different type of
memory offsets, while thread B uses Listing 2 to perform
write measurements. The standard deviation for conflicted
cache line (blue) and conflicted offset (red) between thread
A and B is distinguishable from the green bar where there
is no cache line conflict. This shows a high capacity cache
granular behavior, but the slight difference between conflicted
line and offset verifies the previous results stating a weak offset
dependency [26].

Read-after-write (RaW): Figure 2c shows an experiment
on measuring false dependency of read-after-write, in which,
thread A constantly writes to different memory offsets. Thread
B uses Listing 1 to perform read measurements. Accesses to
three different types of offsets are clearly distinguishable. The
conflicted cache line accesses (blue) are distinguishable from
non-conflicted accesses (green). More importantly, conflicted
accesses to the same offset (red) are also distinguishable from
conflicted cache line accesses, resulting in a side channel with
intra cache-line granularity. There is an average of 2 cycle
penalty if the same cache line has been accessed, and a 10
cycle penalty if the same offset has been accessed. Note that
the word offsets in our platform have 4 byte granularity. From
an adversarial standpoint, this means that an adversary learns
about bits 2-11 of the victim memory access, in which 4 bits
(bits 2-5) are related to intra cache-line resolution, and thus
goes beyond any other microarchitectural side channels known
to exist on 6th and 7th generation Intel processors (Figure 5).

Read-after-weak-Write (RawW): In this experiment on the
read-after-write conflicts, we followed a less greedy strategy
on the conflicting thread. Rather than constantly writing to
the same offset, A executes write instructions to the same
offset with some gaps filled with other memory accesses and
instructions. As shown in Figure 3, the channel dramatically
became less effective. This tells us that causing read access
penalty will be more effective with constant writes to the same
offset without additional instruction. In this regard, we will use
Listing 3 in our attack to achieve the maximum conflicts.
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Fig. 3: RawW: Compared to figure 2c, this shows a lower
impact on access latency.
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Fig. 4: The cycle count for mixed operations with RaW
conflicts. More conflicts cause higher delay.

Read-after-Write Latency: In the last experiment, we tested
the delay of execution over a varying number of conflicting
reads. We created a code stub that includes 64 memory read
instructions and a random combination of instructions between
memory reads to create a more realistic computation. The
combination is chosen in a way to avoid unexpected halts and
to maintain the parallelism of all read operations. We measure



Fig. 5: Intra Cache Level Leakage: MemJam latency is related
to 10 address bits, in which 4 bits are intra cache level bits.

mov %[ t a r g e t ] , %r a x ;
w r i t e l o o p :

. r e p t 100 ;
movb $0 , (% r a x ) ;
. end r ;

jmp w r i t e l o o p ;

Listing 3: Write Conflict Loop: Unnecessarily instructions are
avoided to minimize usage of other processor units thus it
maximizes the RaW conflict effect.

the execution time of this computation on B, whileA is writing
to a conflicting offset. First, we measured the computation with
64 memory reads to addresses without conflicts. Our randomly
generated code stub takes an average of 210 cycles to execute.
On each step of the experiments, as shown in Figure 4, we
change some of the memory offsets to have the same last 12
bits of address as of Aś conflicting write offset. We observe a
growth on read accesses’ latency by increasing the number of
conflicting reads. Figure 4 shows the results for a number of
experiments. In all of them, the overall execution time of B is
strongly dependent on the number of conflicting reads. Hence,
we can use the RaW dependency to introduce strong timing
behavior using bits 2-11 of a chosen target memory address.

V. MemJam CORRELATION ATTACK

MemJam uses read-after-write false dependencies to in-
troduce timing behavior to otherwise constant-time imple-
mentations. The resulting latency is then exploited using a
correlation attack. MemJam proceeds with the following steps:

1) Attacker launches a process constantly writing to an
address using Listing 3 where the last 12 bits match
the virtual memory offset of a critical data that is read
in the victim’s process.

2) While the attacker’s conflicting process is running, at-
tacker queries the victim for encryption and records a
ciphertext and execution time pair of the victim. Higher
time infers more accesses to the critical offset.

3) Attacker repeats the previous step collecting ciphertext
and time pairs.

The attack methodology resembles the Evict+Time strategy
originally proposed by Tromer et al. [7], except that the
attacker uses false dependencies rather than evictions to slow
down the target and that the slowdown only applies to an
4-byte block of a cache line. Furthermore, all of the victim’s

accesses addresses with the same last 12 bits are slowed down
while an eviction only slows the first memory access(es).

Based on the intra cache level leakage in Figure 5, we divide
a 64 byte cache line into 4-byte blocks and hypothesize that
the access counts to a block are correlated with the running
time of victim, while the attacker jams memory reads to that
block, i.e, the attacker expects to observe a higher time when
there are more accesses by the victim to the targeted 4-byte
block and lower time when there are lower number of accesses.
Based on this hypothesis, we apply a classical correlation
based side-channel approach [33] to attack implementations of
two different block ciphers, namely AES and SM4, a standard
cipher. SM4 among AES, Triple DES, and RC4 are the only
available symmetric ciphers as part of Intel’s IPP crypto
library [49]3. Both implementations have optimizations to
hinder cache attacks. In fact, the AES implementation features
a constant cache profile and can thus be considered resistant
to most microarchitectural attacks including cache attacks and
high-resolution attacks as described in [20]. MemJam can
still extract the keys from both implementations due to the
intra cache-line spatial resolution as depicted in Figure 5. We
describe the targeted implementations next, as well as the
correlation models we use to attack them.

A. Attack 1: IPP Constant-Time AES

AES is a cipher based on substitution permutation net-
work (SPN) with 10 rounds supporting 128-bit blocks and
128/192/256-bit keys [53]. The SubBytes is a security-critical
operation and the straightforward way to implement AES
SubBytes operation efficiently in software is to use lookup
tables. SubBytes operates on each byte of cipher state, and
it maps an 8-bit input to an 8-bit output using a non-linear
function. A precomputed 256 byte lookup table known as S-
Box can be used to avoid recomputation. There are efficient
implementations using T-Tables that output 32-bit states and
combine SubBytes and MixColumns operations. T-Table im-
plementations are highly vulnerable to cache attacks. During
AES rounds, a state table is initiated with the plaintext, and
it holds the intermediate state of the cipher. Round keys are
mixed with states, which are critical S-Box inputs and the main
source of leakage. Hence, even an adversary who can partially
determine which entry of the S-Box has been accessed is able
to learn some information about the key.

Among the efforts to make AES implementations more se-
cure against cache attacks, Safe2Encrypt_RIJ128 func-
tion from Intel IPP cryptographic library is noteworthy. This
implementation is the only production-level AES software
implementation that features true cache constant-time behavior
and does not utilize hardware extensions such as AES-NI or
SSSE3 instruction sets. This implementation is also part of
the Linux SGX SDK [54] and can be used for production
code if the SDK is compiled from the scratch, i.e., it does
not use prebuilt binaries. We verified the match between the
implementation in Intel IPP binary and SGX SDK source code

3Patents investigated by Intel verify the importance of SM4 [50, 51, 52]



Fig. 6: Constant-Time table lookup used by Intel IPP: Each lookup preloads 4 values to a cache aligned buffer, thus it accesses
all the 4 S-Box cache lines. The actual output will be chosen from the buffer using the high address bits.

through reverse engineering. This implementation follows a
very simple direction: (1) it implements AES using 256 byte
S-Box lookups without any optimization such as T-Tables, (2)
instead of accessing a single byte of memory on each S-Box
lookup, it fetches four values from the same vertical column
of 4 different cache lines and saves them to a local cache
aligned buffer, finally, (3) It performs the S-Box replacement
by picking the correct S-Box entry from the local buffer. This
implementation is depicted in Figure 6. This implementation
protects AES against any kind of cache attacks, as the attacker
sees a constant cache access pattern: The S-Box table only
occupies 4 cache lines, and on each SubBytes operation, all
of them will sequentially be accessed. This implementation
can be executed in less than 2000 cycles on a recent laptop
processor. This is fast enough for many cryptographic appli-
cations, and it provides full protection against cache attacks,
even if the attacker can interrupt the execution pipeline.

Based on MemJam 4-byte granular leakage channel, and
the design of AES, we can create a simple correlation model
to attack this implementation. The accessed table index of the
last round for a given ciphertext byte c and key byte k is given
as index = S−1(c ⊕ k). We define matrix A for the access
profile where each row corresponds to a known ciphertext,
and each column indicates the number of accesses when
index < 4. While we assume that the attacker causes slow-
downs to the first 4-byte block of S-Box, we define matrix L
for leakage where each row corresponds to a known ciphertext
and each column indicates the victim’s encryption time. Then
our correlation attack is defined as the correlation between A
and L, in which the higher the number of accesses, the higher
the running time. Our results will verify that correlation is
high, even though the implementation has dummy accesses to
the monitored block. These can be ignored as noise, slightly
reducing our maximum achievable correlation.
AES Key Recovery Results on Synthetic Data: We first
verified the correctness of our correlation model on synthetic
data using a noise free leakage (generated by PIN [55]). For
each of the 16 key bytes using a vector that matches exactly

to the number of accesses to the targeted block of S-Box for
different ciphertexts, all the correct key bytes will have the
highest correlation after 32,000 observations with the best and
worst correlations of 0.046 and 0.029 respectively.
AES Key Recovery Results using MemJam: Relying on
the verification of Synthetic Data, we plugged in the real
attack data vector, which consists of pairs of ciphertext and
time measured through repeated encryption of unknown data
blocks. Results on AES show that we can effectively exploit
the timing information, and break the so-called constant-
time implementation. The victim execution of AES encryption
function takes about 1700 and 2000 cycles without and with an
active thread on the logical processor pair, respectively. The
target AES implementation performs 640 memory accesses
to the S-Box, including dummy accesses. If the spy thread
constantly writes to any address that collides with a S-Box
block offset, the time will increase to a range between 2000
and 2300 cycles. The observed variation in this range has
a correlation with the number of accesses to that block.
Figure 7 shows the linear relationship between the correlation
of synthetic data and real attack data for one key byte after
2 million observations. Most of the possible key candidates
for a target key byte have a matching peak and hill between
the two observations. The highest correlation points in both
cases declare the correct key byte (0.038 red, 0.014 blue).
The quantitative difference is due to the expected noise in the
real measurements.

Figure 8 shows the correlation of 4 different key bytes after
2 million observations with the correct key bytes having the
highest correlations. Our repeated experiments with different
keys and ciphertexts show that 15 correct key bytes have the
highest correlation ranks, and there is only the key byte at
index 15 that has a high rank but not necessarily the highest.
Figure 9 shows the key ranks over the number of observations.
Key byte ranks take values between 1 and 256, where 1
means that the correct key byte is the most likely one. As
it is shown, after only 200,000 observations, the key space is
reduced to a computationally insecure space and a key can be
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Fig. 7: Linearity of the number of accesses to the first block and the execution time of AES: The synthetic correlation and
MemJam observed correlation show similar behavior with slight difference due to the added noise.
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tions. Correct key byte candidates have the highest correla-
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Fig. 9: The rank for correct key bytes are reduced with more
observation. After 2 million observations, 15 out of 16 key
bytes are recovered.

found with an efficient key enumeration method [56]. After
2 million observations, all key bytes except one of them are
recovered. The non-optimized implementation of this attack
processes this amount of information in 5 minutes.

B. Attack 2: IPP Cache Protected SM4

SM4 is a block cipher4 that features an unbalanced Feistel
structure and supports 128-bit blocks and keys [57]. SM4
design is known to be secure and no relevant cryptanalytic
attacks exist for the cipher. Figure 10 shows a schematic of
one round of SM4. T1-T4 are 4 × 32-bit state variables of
SM4. Within each round, the last three state variables and a
32-bit round key are mixed, and each byte of the output will
be replaced by a non-linear S-Box value. After the non-linear
layer, the combined 32-bit output of S-Boxes x are diffused
using the linear function L. The output of L is then mixed with
the first 32-bit state variable to generate a new random 32-bit
state value. The same operation is repeated for 32 rounds, and
each time a new 32-bit state is generated as the next round
T4 state. The current T2, T3, T4 are treated as T1, T2, and
T3 for the next round. The final 16 bytes of the entire state
after the last round produce the ciphertext. SM4 Key schedule
produces 32×32-bit round keys from a 128-bit key. Since the

4Formerly SMS4, the standard cipher for Wireless LAN Wired Authenti-
cation and Privacy Infrastructure (WAPI)

key schedule is reversible, recovering 4 repeated round keys
provides enough entropy to reproduce the cipher key.

All the SM4 operations except the S-Box lookup are per-
formed in 32-bit word sizes. Hence, SM4 implementation is
both simple and efficient on modern architectures. We chose
the function cpSMS4_Cipher from Intel IPP Cryptography
library. Our target is based on the straightforward cipher
algorithm with addition of S-Box cache state normalization.
We recovered this implementation through reverse engineer-
ing of Intel IPP binaries. The implementation preloads four
values from different cache lines of S-Box before the first
round, and it mixes them with some dummy variables, forcing
the processor to fill the relevant cache lines with S-Box
table. This cache prefetching mechanism protects SM4 against
asynchronous cache attacks. On our experimental setup, the
implementation runs in about 700 cycles, which informs us
that this implementation maintain a high speed while secure
against asynchronous attacks. Interrupted attacks that leak in-
termediate states would not be as simple, since the interruption
need to happen faster than 700 cycles. We will further discuss
the difficulty of correlating any cache-granular information,
even if we assume the adversary can interrupt the encryption
and perform some intermediate observations.

Single-round attack on SM4: We define c1, c2, c3, c4 as the
four 32-bit words of a ciphertext and kr as the secret round
key for round r. We recursively follow the cipher structure



Fig. 10: SM4 Feistel Structure: In each round, the last three words from the state buffer and the round key will be added.
Each byte of the output will be replaced by S-Box lookup. The function L performs a linear bit permutation.

from the last round with our ciphertext words as inputs, and
write the last 5 rounds’ relations as Equation 1. In each round,
xi
r is the S-Box index, and i is the byte offset of the 32-

bit word xr. With a similar approach to the attack on AES,
we define matrix A for the access profile, where each row
corresponds to a known ciphertext, and each column indicates
the number of accesses when xi

r < 4. Then we define the
matrix L for the observed timing leakage and the correlation
between A and L similar to the AES attack. In contrast, S-
Box indices in the AES attack are defined based on a non-
linear inverse S-Box operation of key and ciphertext, which
eventually maps to all possible key candidates. In SM4, the
index xi

r is defined before any non-linear operation. As a
result, an attack capable of distinguishing accesses of 4 out
of 256 S-Box entries reveals only 6 bits per key byte. In the
mentioned relations, performing the attack using this model
on xi

32, recovers the 6 most significant bits of each key byte
i for the last round key (Total of 24 out of the 32 bits).

x32 = c1 ⊕ c2 ⊕ c3 ⊕ k32 d2 = c1, d3 = c2, d4 = c3

d1 = L(s(x1
32), s(x

2
32), s(x

3
32), s(x

4
32))⊕ c4

x31 = d1 ⊕ d2 ⊕ d3 ⊕ k31 e2 = d1, e3 = d2, e4 = d3

e1 = L(s(x1
31), s(x

2
31), s(x

3
31), s(x

4
31))⊕ d4

x30 = e1 ⊕ e2 ⊕ e3 ⊕ k30 f2 = e1, f3 = e2, f4 = e3

f1 = L(s(x1
30), s(x

2
30), s(x

3
30), s(x

4
30))⊕ e4

x29 = f1 ⊕ f2 ⊕ f3 ⊕ k29 g2 = f1, g3 = f2, g4 = f3

g1 = L(s(x1
29), s(x

2
29), s(x

3
29), s(x

4
29))⊕ f4

x28 = g1 ⊕ g2 ⊕ g3 ⊕ k28

(1)

Multi-round attack on SM4: The relationship for round
31 can be used not only to recover 6-bit key candidates of
round 31, but also the remaining unknown 8 bits of entropy
for round 32. This is due to the linear property of function
L and the recursive nature of newly created state variables.
After the attack on round 32, similar to the round key, we
only have certainty about 24 bits of the new state variable
d1, but this information will be propagated as the input to
round 31. The next round of attack for key byte of round
31 needs more computation to process an 8 bit of unknown
key and 8 bit of unknown state (total of 16 bit), but this is
computationally feasible, and the 8-bit key from round 32 with

highest correlation can be recovered by attacking the S-Box
indices in round 31. We recursively applied this model to each
round resulting a correlation attack with the following steps,
which gives us enough entropy to recover the key:

1) x32 → 24 bits of k32.
2) x31 → 24 bits of k31 + 8 bits of k32
3) x30 → 24 bits of k30 + 8 bits of k31
4) x29 → 24 bits of k29 + 8 bits of k30
5) x28 → 24 bits of k28 + 8 bits of k29
6) Recover the key from k32, k31, k30, k29

SM4 Key Recovery Results on Synthetic Data: Our noise-
free synthetic data shows that 3000 observations are enough
to find all correct 6-bit and 8-bit round key candidates with
the highest correlations. Even in an interrupted cache attack
or without cache protection, targeting this implementation
using a cache-granular information would be much harder and
inefficient due to the lack of intra cache-line resolution. If we
only distinguish the 64-byte cache lines out of a 256-byte S-
Box, we only learn 4 × 2-bit (total of 8 bits) out of 32-bit
round keys, and on each round, we need to solve 8 bits +
24 bits of uncertainty. Although solving 32-bit of uncertainty
sounds possible for a noise-free data, it is computationally
much harder in a practical noisy setting. Our intra cache line
leakage can exploit SM4 efficiently in a known-ciphertext
scenario, while the best efficient cache attack on SM4 requires
chosen plaintexts [58].

SM4 Key Recovery Results using MemJam: The results
on SM4 show even more effective key recovery against
this implementation compared to AES. Figure 11 shows the
correlation for 6-bit round keys after 5 rounds of repeated
attack, and the correlation for 12-bit key candidates can be
seen in Figure 12. The attack expects assurance on the correct
key candidates for each round of attack before proceeding
to the next round due to the recursive structure of SM4. In
our experiment using real measurement data, we have noticed
that 40,000 observations are sufficient to have assurance of
correct key candidates with the highest correlations. Our
implementation of the attack can recover the correct 6-bit
and 8-bit keys, and it takes about 5 minutes to recover the
cipher key. In Figure 12, we plotted the accumulated per
byte correlations for all 8-bit candidates within each round of
attack. During the computation of 6-bit candidates, the 8-bit
candidates relate to 4 different state bytes. This accumulation
greatly increases the result and the correct 8-bit key candidates
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Fig. 12: The accumulated correlations for SM4 8-bit keys after
5 rounds using 40,000 observations. Each correct candidate has
the highest correlation.

have a very high aggregated correlation compared to the 6-bit
candidates.

VI. MemJamING SGX ENCLAVE

Intel SGX is a trusted execution environment (TEE) exten-
sion released as part of Skylake processor generation [54]. The
main goal of SGX is to protect runtime data and computation
from system and physical adversaries. Having said that, SGX
must remain secure in the presence of malicious OS, thus
modification of OS resources for facilitation of side-channel
attacks is relevant and within the considered threat model.
Previous works demonstrate high resolution attacks with 4 kB
page [59, 60] and 64 B cache line granularity [20, 61]. Intel
declared microarchitectural leakages out of scope for SGX,
thus pushing the burden of writing leakage free constant-time
code onto enclave developers. Indeed, Intel follows this design
paradigm and ensures constant cache-line accesses for its AES
implementation, making it resistant to all previously known
microarchitectural attacks in SGX.

In this section, we verify that MemJam is also applicable to
SGX enclaves, as there is no fundamental microarchitectural
changes to resist against memory false dependencies. We
repeat the key recovery results against Intel’s constant-time
AES implementation after moving it into an SGX enclave. The
results verify the exploitability of intra cache level channel
against SGX secure enclaves. In fact, the attack can be
reproduced in a straightforward manner. The only difference
is a slower key recovery due to the increased measurement
noise resulting from the enclave context switch.

A. SGX Enclave Experimental Setup and Assumptions

Following the threat model of CacheZoom [20, 36], we
assume that the system adversary has control over various OS
resources. Please note that SGX was exactly designed to thwart
the threat of such adversaries. The adversary uses its OS-level
privileges to decrease the setup noise: We isolate one of the
physical cores from the rest of the running tasks, and dedicate
its logical processors to MemJam write conflict thread and
the victim enclave. We further disable all the non-maskable
interrupts on the target physical core and configure the CPU

power and frequency scaling to maintain a constant frequency.
We assume that the adversary can measure the execution
time of an enclave interface that performs encryption, and the
enclave interface only returns the ciphertext to the insecure
environment. Both plaintexts and the secret encryption key
are generated at runtime using RDRAND instruction, and they
never leave the secure runtime environment of SGX enclave.
The RDTSC instruction cannot be used inside an enclave.
The attacker uses it right before the call to the enclave
interface and again right after the enclave exit. As a result, the
entire execution of the enclave interface, including the AES
encryption, is measured. As before, an active thread causing
read-after-write conflicts to the first 4-byte of AES S-Box is
executed on the neighboring virtual processor of the SGX
thread.

B. AES Key Recovery Results on SGX

Execution of the same AES encryption function as Sec-
tion V-A inside an SGX enclave interface takes an average of
14,600 cycles with an active thread causing read-after-write
conflicts to the first 4-byte of AES S-Box. The additional
overhead is caused by the enclave context switch, which
significantly increases the noise of the timing channel due
to the variable timing behavior. Having that, this experiment
shows a more practical timing behavior where adversaries
cannot time the exact encryption operation, and they have
to measure the time for a batch of operations. This not only
shows that SGX is vulnerable to MemJam attack, but it also
demonstrates that MemJam is applicable in a realistic scenario.
Figure 13 shows the key correlation results using 50 million
timed encryptions in SGX, collected in 10 different time
frames. We filtered outliers, i.e. measurements with high noise
by only considering samples that are in the range of 2000
cycles of the mean. Among the 50 million samples, 93% pass
the filtering, and we only calculated the correlations for the
remaining traces. Figure 14 shows that we can successfully
recover 14 out of 16 key bytes, revealing sufficient information
for key recovery after 20 million observations.

These results show that even cryptographic libraries de-
signed by experts that are fully aware of current attacks and
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Fig. 13: Correlations for 6 key bytes using 5 million ob-
servations. All of the correct candidates have the highest
correlations.
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Fig. 14: The rank for correct key bytes with respect to the
number of observations. Using the entire data set, after filtering
the outliers, we can recover 14 out of 16 key bytes.

of the leakage behavior of the target device may fail at writing
unexploitable code. Modern microarchitectures are so complex
that assumptions such as constant cache line profiles result
in unexploitable constant-time implementations are seemingly
impossible to fulfill.

VII. DISCUSSION

The Safe2Encrypt_RIJ128 AES implementation has
been designed to achieve a constant cache access profile
by ensuring that the same cache lines are accessed every
time regardless of the processed data. The 4-byte spatial
resolution of MemJam, however, thwarts this countermea-
sure by providing intra cache-line resolution. One approach
to restore security and protect against MemJamis to apply
constant memory accesses with a 4-byte granularity. That
would require accessing every fourth byte of the table for
each memory lookup for the purpose of maintaining a uniform
memory footprint. At that point, it might be easier to just do a
true constant time implementation and access all entries each
time, resting assured that there is no other effect somewhere
hidden in the microarchitecture resulting in a leak with byte
granularity. As we discussed in the related work, system-wide
defense proposals that apply to cache attacks are not relevant
and cannot detect or prevent MemJam. Also, an adversary
performing the MemJam attack does not need to know about
the offset of S-Box in the binary, since she can simply scan
the 10-bits address entropy through introducing conflicts to
different offsets and measuring the timing of victim. This is
important when it comes to obfuscated binaries or scenarios,
where the offset of S-Box is unknown.

Hardware based, e.g, AES-NI or hardware assisted, e.g,
SIMD-based bit-sliced implementations of AES or SM4
should exclusively be used to protect the targeted imple-
mentation in an efficient manner. Intel IPP has different
variants optimized for various generations of Intel instruction
sets [62]. Intel IPP features different implementations of AES
as well as SM4 in these variants. A list of these variants and
implementations are given in Table I. All of them have at

least one vulnerable implementation. In cases where there is
an implementation based on the AES-NI instruction set (or
SSSE3 respectively), the library falls back to the basic version
at runtime if the instruction set extensions are not available.
The usability of this depends on the compilation and runtime
configuration. Developers are allowed to statically link to a
more risky variants [63], and they need to assure not to use
the vulnerable versions during linking. These ciphers should be
avoided in cases where the hardware does not provide support,
e.g, Core and Nehalem does not support AES-NI, e.g, AES-NI
can be disabled in some BIOS. After all, the current hardware
support for cryptographic primitives are restricted and if any
other cipher is demanded, this limitation and vulnerability
endangers the security of cryptographic systems. A temporary
workaround to defend against the source of leakage on current
Intel microarchitectures is to disable hyper-threading.

Prior to MemJam it might have seemed reasonable to design
SGX enclaves under the paradigm that constant cache line
accesses result in leakage-free code. However, the increased
4-byte intra cache-line granularity of MemJam shows that only
code with true constant-time properties, i.e. constant execution
flow and constant memory accesses can be expected to have
no remaining leakage on modern microarchitectures.

Responsible Disclosure We have informed the Intel Product
Security Incident Response Team of our findings on August
2nd, 2017. They have acknowledged the receipt and are
currently reviewing our findings.

VIII. CONCLUSION

This work proposes MemJam, a new side-channel attack
based on false dependencies. For the first time, we discovered
new aspects of this side channel and its capabilities, and
show how to extract secrets from modern cryptographic imple-
mentations. MemJam uses false read-after-write dependencies
to slow down accesses of the victim to a particular 4-byte
memory blocks within a cache line. The resulting latency of
otherwise constant-time implementations was exploited with
state-of-the art timing side-channel analysis techniques. We



TABLE I: SM4 and AES implementations in all variants of
Intel IPP library version 2017 update 3 [62]. The variants
will be merged at linker and each variant is optimized for a
different generation of the Intel instruction set [63]. Developers
can statically link specific variants with single processor static
linking mode [62].

Implementation
Technique

Function Name l9
n0
y8
k0
e9

m7
mx

n8 Linux
SGX
SDK

AES-NI Encrypt RIJ128 AES NI × ×
(pre-
built)

AES Bitsliced SafeEncrypt RIJ128 ×
(pre-
built)

AES Constant-
Time

Safe2Encrypt RIJ128 × ×
(source)

SM4 Bitsliced
using AES-NI

cpSMS4 ECB aesni × × N/A

SM4 Cache
Normalization

cpSMS4 Cipher N/A

TABLE II: Intel processor families and availability of the leak-
age channels. Major Intel processors suffer from 4k aliasing,
and are vulnerable to MemJam [46].

Release Family Cache
Bank
Conflicts

4K
Aliasing

2006 Core
2008 Nehalem ×
2011 Sandy bridge
2013 Silvermont, Haswell, Broadwell ×
2015 Skylake ×
2016 KabyLake ×

showed how to apply the attack to two recent implementations
of AES and SM4. According to the available resources, the
source of leakage forMemJam attack is present in all Intel
CPU families released in the last 10 years [45, 46]. Our
results also verified that MemJam is the first intra cache
level attack applicable to SGX enclaves. Table II highlights
the availability of the cache bank conflicts and 4k aliasing
leakage source. MemJam is another piece of evidence that
modern microarchitectures are too complex and constant-
time implementations cannot simply be trusted with wrong
assumptions about the underlying system. The remaining data-
dependent addressing within a cache line is exploitable.
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