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Efficient Methods for Trace Analysis
Parallelization

Fabien Reumont-Locke and Naser Ezzati-Jivan and Michel R. Dagenais, Member, IEEE

Abstract—Tracing provides a low-impact, high-resolution way to observe the execution of a system. As the amount of parallelism in
traced systems increases, so does the data generated by the trace. Most trace analysis tools work in a single thread, which hinders their
performance as the scale of data increases. In this paper, we explore parallelization as an approach to speedup system trace analysis.
We propose a solution which uses the inherent aspects of the CTF trace format to create balanced and parallelizable workloads. Our
solution takes into account key factors of parallelization, such as good load balancing, low synchronization overhead and an efficient
resolution of data dependencies. We also propose an algorithm to detect and resolve data dependencies during trace analysis, with
minimal locking and synchronization. Using this approach, we implement three different trace analysis programs: event counting, CPU
usage analysis and I/O usage analysis, to assess the scalability in terms of parallel efficiency. The parallel implementations achieve
parallel efficiency above 56% with 32 cores, which translates to a speedup of 18 times the serial speed, when running the parallel trace
analyses and using trace data stored on consumer-grade solid state storage devices. We also show the scalability and potential of our
approach by measuring the effect of future improvements to trace decoding on parallel efficiency.

Index Terms—Tracing, trace analysis, parallel computing

✦

1 INTRODUCTION

Highly parallel computer architectures are now increas-
ingly commonplace, whether in commercial or consumer-
grade systems. Detecting and solving runtime problems, in
software running in a parallel environment, is a complicated
task, where classic debugging tools are of little help. Tracing,
by providing a detailed log of low-level events across the
system, allows one to gather enough information to solve a
variety of behavioral and performance problems [1, 2], with
a very low impact on system performance. The LTTng tracer
[3], for example, allows for very low overhead when tracing
and is optimized for scalability as the number of parallel
processors increases [4].

However, as the number of parallel units in the traced
system increases, so does the amount of data generated in the
trace. This problem also compounds when tracing distributed
systems, where each individual node may have many-core
processors. The amount of trace data for such systems can
be staggering, with traces of a few seconds of execution
containing several gigabytes of data. Since manual inspection
of these traces is not viable, a trace analysis tool is often used
to analyze data and extract meaningful information from the
traces. However, the current trace analysis tools are designed
for serial analysis on a single thread. For instance, Trace
Compass1 (formerly TMF) and the Babeltrace command-line
trace analysis tool2, both use a single-threaded approach
to analyze trace logs. This is problematic, because as the
architecture of the traced systems becomes more and more
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parallel, the gap between the amount of data to be produced
and the single-threaded analysis speed will widen. This is
why the present paper explores trace analysis parallelization
as an efficient method to overcome this ever widening gap.

This research therefore explores the use of parallel
processing in order to accelerate trace analysis. The aim
is to develop a scalable parallel method for analyzing kernel
traces. However, trace analysis parallelization is not simple,
and must take into account a number of challenges. Indeed,
the trace analysis is a task that is intrinsically sequential:
events are read in chronological order, and processing an
event has implications for the analysis of subsequent events.
Moreover, trace analysis is a stateful task usually based
on a state system, which implies a large number of data
dependencies.

Furthermore, traces, being potentially very large, are
not kept entirely in memory and must be read from disk.
However, reading from disk is much slower than reading
from memory, by several orders of magnitude. Since the
parallelization operates on the part of the program running
on the processor, these memory accesses can be seen as
sources of sequential processing, because the disk can only
execute one query at a time. However, recent advances in
SSD (Solid State Drive) technology could lessen the impact of
this problem for a number of programs whose performance
is based on access to the disk. It is therefore necessary, in
order to demonstrate that parallelization is a viable approach
to the performance problem of trace analysis, to not only
set up a parallel analysis method, but also to prove that
related problems such as reading trace data from disk do not
jeopardize the scaling of our solution.

The contributions of this paper can be summarized by
the following points:

1) Identify an analysis model that lends itself to efficient
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parallelization, while remaining applicable to several
types of analysis;

2) Develop a parallel method for trace analysis using
this model, taking into account load balancing con-
straints, synchronization and data dependencies;

3) Test the parallel efficiency of different analyses
implemented with the proposed solution;

4) Validate the scalability of the methods on different
storage devices while also taking into account possi-
ble improvements to trace decoding and serial trace
analysis performance.

Although the proposed algorithm uses the specifications
of the CTF format to parallelize the workload and analysis,
we should note that a “trace” is a very generic concept that is
applicable to a wide range of use cases. Any communication
that follows a protocol would also present the same type of
problems and solutions for parallel analysis. Therefore, the
proposed methods of this research can be applied to other
applications in various time series of metrics (e.g. parallel
stock market evolution analysis).

This paper is organized as follows: section 2 describes
related work while section 3 surveys the background of
this work. Section 4 focuses on the proposed solution and
methodology used to achieve the stated objectives above.
Section 5 contains the evaluation and the core results of this
research. Finally, section 6 contains a conclusion summarizing
the research and results, before offering an overview of
possible future work.

2 RELATED WORK

2.1 Tracing tools

A variety of tracing tools is available for the Linux operating
system. Ftrace tracer [5] allows for kernel-space only tracing
using static and dynamic tracepoints provided by the Linux
kernel. SystemTap [6] relies on user-provided scripts that
are compiled into kernel modules before being executed as
the system is traced, a very flexible approach that comes
at a cost in performance, especially when scaling to many-
core systems [4]. The perf tool [7], once used mainly to
retrieve performance counter values through a sampling-
based approach, can also provide tracing capabilities, though
with lower performance than ftrace due in part to a less
efficient ring buffer implementation. LTTng [3] provides
correlated traces of user and kernel-space execution [8] with
minimal overhead and in a highly scalable manner [4].

Tracing as a diagnostic tool has been used in a variety
of use cases, such as system verification and system metrics
extraction. Trace analysis can be modeled using a finite-state
machine approach [9, 10], where each analysis is executed as
an automaton reading events and executing analysis code
on transitions to states. These automatons could be good
candidates for parallelization (i.e. one automaton per thread)
but, since many analyses depend on similar data (process
scheduling data, for example), the finite-state machine
approach has been generalized into a global state system,
which does not lend itself as easily to parallelization. The
state system works by storing the current state of the whole
system, which can be accessed for any time stamp within
the trace. Montplaisir et al.Kouame et al. [11], Montplaisir

et al. [12] propose a method for building this state system by
reading a trace sequentially and storing the state system’s
data into an efficient disk-based interval tree called a State
History Tree.

2.2 Parallel trace analysis

A major problem with the parallel analysis of kernel traces
comes from the strong sequential dependencies within the
trace data. This is due to most analyses being stateful,
meaning that analyzing certain events requires information
contained in previous events. A method called unipar-
allelism, proposed by Veeraraghavan et al. [13], aims at
solving this problem through “epoch-parallel execution” [14],
also called “Predictor/Executor” [15] and “Master/Slave
Speculative Parallelization” [16]. Uniparallelism works by
splitting the program’s execution into epochs, which are
sequences of chronologically executed instructions, and by
running two versions of the program in parallel, one epoch-
sequential (i.e. a regular execution) and one epoch-parallel.
The epoch-sequential execution then runs a light-weight
analysis which will provide the speculated starting state for
the epoch-parallel execution. The epoch-parallel executions
may then be executed in a parallel pipeline along the epoch-
sequential execution. While this solution is interesting to
solve data dependencies, it ignores possible optimizations
inherent to trace analysis, which removes the need for the
epoch-sequential execution (i.e. the “Predictor”).

The KOJAK EXPERT tool enables the automatic analysis
of MPI application traces, for example to find wait states
caused by inefficient communications [17]. However, these
types of analyses become impossible to run on systems with
a high number of parallel computing nodes, due to a lack
of processing power and memory space. Geimer et al. [18]
propose a scalable parallel approach to wait state diagnosis,
which was improved by Geimer et al. [19]. Their approach is
based on replaying run-time communications between nodes
at trace analysis time. This allows not only the synchroniza-
tion of the trace analysis, but also the communication of data
dependencies between the analysis nodes. This approach is
interesting for the analysis of distributed traces, but is not
efficient in a shared memory trace analysis context, where
communications between “nodes” (CPUs) are frequent.

Network Intrusion Detection Systems, or NIDS, analyse
network traffic in order to detect certain patterns suggesting
unusual network activity. However, the NIDS throughput
must be able to keep up as network traffic increases. Some
have explored parallelization as a solution to scaling NIDS
processing power. String matching being a large part of a
NIDS’s work, it is an obvious candidate for parallelization
[20]. However, it is not the only place where parallelization
can come into play. Flow-level parallelization, for example,
adds a level of parallelism by assigning the analysis of
one flow per execution thread, where a flow is defined
as a communication between two endpoints comprised of
network packets. Schuff et al. [21] propose two methods, one
conservative and the other optimistic, in order to allow for
load balancing between the flows. A similar flow-parallel
method was used by Vasiliadis et al. [22] and enhanced by
adding intra-flow parallelism by offloading part of the work
within a flow to the GPU. In the context of trace analysis, a
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similar method could be used, with the concept of “flow”
being applied to the events generated by one processor of
the traced system (i.e. the content of a specific per-CPU ring
buffer).

Though not directly related to trace analysis, parallel
execution of state machines is an interesting avenue to
consider, since trace analysis is often expressed in terms of
finite automatons [9, 10]. Since state machines are an essential
part of computing, their parallel execution was studied for
many years. Most methods are based on the parallel prefix
sum algorithm. A prefix sum calculation returns the running
total (prefix sum) at every point in an array of values. Though
seemingly inherently serial, due to calculations needing ac-
cess to previous results, this problem has an efficient parallel
implementation (often called parallel scan), detailed by Ladner
and Fischer [23], and can be generalized for the calculation of
any sequence of associative binary operations. By encoding
transitions as functions and using function composition as
the operator for a parallel prefix sum, Hillis and Steele Jr
[24] offer a method for the parallelization of finite-state
machine execution. Using these concepts, Mytkowicz et al.
[25] propose an implementation that executes a FSM using
an enumerative approach, where the current state is kept
for each possible starting state. It exploits modern computer
architectures as well as properties of most FSMs to efficiently
perform this enumerative execution. However, it requires
two passes through the input data, which greatly hinders
scalability in a trace analysis context: indeed, decoding trace
data, as we will see, is a major part of the CPU work for trace
analysis.

3 BACKGROUND

In order to identify potential parallelization solutions, we
must understand how serial trace analysis functions. This
section will focus on the current trace analysis design,
including the trace data format, the parsing of trace files
and the analysis model. Since we are using traces generated
by LTTng, we will be using the Common Trace Format (CTF),
in which LTTng traces are generated, and the babeltrace
library, which allows reading and writing CTF traces.

3.1 CTF trace format

CTF is a flexible, compact binary trace format which caters
to the needs of the embedded, telecom, high-performance
and kernel communities [26]. Its particularity resides in its
ability to specify the exact structure of the trace and its events
through the Trace Stream Description Language (TSDL). The
trace definition, written in TSDL, is stored in a metadata file
which is then parsed in order to create the binary parser used
to read the trace. This allows a large amount of flexibility in
terms of the data stored in the trace, letting the user define
the size, alignment and endianness of basic types, as well as
compound types such as structures and unions.

The CTF trace format uses the concept of streams of events.
Each stream represents a subset of the events of the trace,
often coming from the same source. In the case of LTTng
kernel traces, each stream contains the events of one CPU on
the traced system. A stream is further divided into variable-
sized packets, which represent contiguous sets of events. The

LTTng kernel tracer creates a packet every time a sub-buffer
from the trace ring buffer is committed (e.g., ready to write
to disk or send through the network).

Each packet within a stream contains a packet header. This
header contains information on the packet, such as its size
and start time. Whenever a packet is added to a stream, its
packet header is also written in the stream’s packet index (see
Figure 1). This packet index therefore contains all the packet
headers for the stream, thus allowing for fast seeking in the
trace using the packet’s start time and size to determine the
offset of a specific time position in the trace.

As we will see, the trace format already hints at potential
parallelization candidates: streams, for example, do not
share information other than the read-only metadata and
are good candidates for processing in parallel. Also, the
concept of packet and the packet index will prove useful
when discussing trace data partitioning and load balancing,
in section 4.1.3.

3.2 Babeltrace trace reader

In order to read CTF traces, we will be using babeltrace.
Babeltrace includes a basic CTF-to-text converting program
in order to quickly read events from a CTF trace, as well as a
C library in order to parse CTF traces from our program. In
order to do so, the library first parses the TSDL metadata file,
creating a binary parser. This parser is then used to decode
the event data within the trace. The program may then query
the library in order to obtain the event data.

Babeltrace works iteratively: the user creates an iterator
at a specific timestamp in the trace, and the events are then
parsed one-by-one and returned as the iterator advances. The
concept of stream packets is also used here: babeltrace maps
entire packets into memory one-by-one, unmapping the last
one after all its events have been read. That way, the amount
of memory used is small and nearly constant, even for very
large traces.

3.3 Trace analysis model

Trace analysis is based on the concept of a state system.
This state system holds what is called the trace’s current
state, which represents the exact state of the system at the
latest point in time during the analysis. It holds information
such as a map of all processes and their state (e.g. running,
preempted or interrupted), the amount of data read from
and written to every file, or the average latencies for every
interrupt. The current state keeps both the information that
will be presented at the end of the analysis and allows the
analysis to do stateful processing, for example by allowing
to only consider preemption during system calls.

To illustrate this, we can look at an analysis of the latency
of I/O system calls per process. A part of its execution is
shown in Figure 2. It’s current state is represented as a map
of the system’s processes, as well as the currently running
process for each CPU. When a process is scheduled to run
by a CPU, the current state updates the currently running
process for this CPU. If an I/O system call entry event is
read, it records the currently running system call along with
its start time for the currently running process. Then, when
the system call exit event is read, it retrieves the ongoing
system call for the currently running process and calculates
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Figure 1: Event stream, packets and packet index

the difference between the end time and start time. It then
adds this latency to a list of system call latencies for the
currently running thread. As we can see, the current state
serves both as input and output to the analysis.

This processing, at first sight, seems to be inherently
serial: the fact that events provide feedback to the current
state, which in turn drives large parts of the analysis, means
that there are strong serial dependencies between the events.
However, as we will see in section 4.2, some features of
traces and trace analysis may be exploited in order to
break these dependencies, or more precisely to reduce their
impact and defer their resolution without the need for costly
synchronization.

4 PROPOSED SOLUTION

In this section we use the concepts discussed above to
propose a new technique for efficient parallel trace analysis.
In section 4.1, we discuss the problem of partitioning trace
data in order to obtain good load balancing, and in section 4.2,
we discuss the problem of resolving the data dependencies
that arise from this partitioning.

4.1 Trace data partitioning

Data partitioning plays an important role in parallelization:
how the workload is divided among the processing nodes
has an impact on the communications between nodes, the
synchronization strategy as well as the load balancing. An
improper partition of the data may lead to highly inefficient
behavior and poor scalability.

Trace data may be organized along two “dimensions”:
the time dimension, with events arranged chronologically
along a timeline, and the stream dimension, with events
arranged by their source. In the case of kernel traces, these
sources correspond to the CPUs of the traced system. Data
partitioning therefore arises from these two dimensions: the
trace data can be partitioned per stream or per time range.

4.1.1 Per-stream partitioning

Per-stream partitioning assigns each stream in the trace to
an analysing thread, as can be seen in Figure 3b. If there are
more streams than processors, then the streams are enqueued
and analyzed when a processor is free.

However, this approach presents a number of problems.
The main problem is that it puts an upper bound on the
number of parallel processing units that can be used for
analysis. For example, if a 64-core machine is used to analyse
a trace coming from an 8-core machine, 56 of its cores will be
unused. It is also possible that some streams contain more
events than others (i.e. some processors were more busy),
thus creating load balancing problems.

Figure 2: Current state updating as trace events are read

4.1.2 Per-time range partitioning

Another solution would be to partition the trace along the
time axis, as shown in Figure 3a. Each processor would then
parse and analyse the events from all streams between two
specific timestamps.

This solution solves the main problem of the per-stream
partitioning by removing the upper bound on the number
of parallel units that can be used. Furthermore, it solves the
data dependency problems of the per-stream analysis: each
segment of trace data may be treated as an individual trace,
since each processor has access to the data of every stream.
But this approach is also problematic, mainly due to the fact
that trace events are unevenly distributed through time, as
shown in Figure 3, by the grey-scale heat-maps. This means
that some processors will have more events to parse and
analyse than others, leading to load balancing problems and
hindering scalability. Another problem is the possibility of
arising temporal data-dependencies: events that occurred in
a previous time range may have an effect on the analysis of
the current time range, but are not accessible to the processor.
These data dependencies must also be solved in order to
obtain an accurate analysis.

4.1.3 Hybrid packet-based partitioning

In order to solve the problem of load balancing, we use an
element of the CTF trace format called the stream packet
index. As described in section 3.1, CTF traces define trace
streams as a series of packets, which represent contiguous
trace data. Each packet contains a packet header followed by
the events’ data. The packet header includes metadata such
as the starting timestamp of the packet and its size, which
is used when parsing the trace. Furthermore, every packet
header is also written to an index file called the stream packet
index. This index allows for fast timestamp seeking in a trace
stream by enabling a binary search to be done on packet start
times, and getting an offset in the stream file where to start
reading.

Our solution to the data partitioning problem is to use
this packet index to create balanced workloads for which
the number of events is almost the same. If we assume that
packet size is proportional to the number of events (as shown
in Figure 1) and each event has more or less the same size
(e.g., 32 bytes in case of LTTng kernel tracer), we can use
the packet size in order to estimate the number of events in
a packet. By iterating through the stream packet index, we
can accumulate packets until a certain threshold size is met
and thus create chunks of data from a single stream between
two timestamps, as in Figure 3c. These chunks can then be
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Figure 3: (a) Per-time range, (b) per-stream and (c) hybrid partitioning schemes, with gradient showing event density

added to a shared queue for analysis by the processing nodes.
Please note that we previously assumed that the events are
from the same size but that assumption was only for finding
a fair method to partition the trace events. However, since
the events are probably from the different sizes, then there
might be slight differences in the size of chunks which is
negligible in our case. Our goal is to have approximately,
but not exactly, the same size workloads of trace events, to
be processed simultaneously by the different processors and
having slight differences in the workload sizes would not
change neither the algorithms, nor the results, and as long as
it’s better than the two other alternatives, it’s kind of a win
as far as load-balancing goes.

We therefore use a hybrid data partitioning scheme,
splitting workloads both per-stream and per-time range,
while assuring that the number of events in each partition
is approximately constant. This solves the problem of load
balancing by creating equal workloads, whose size can be
parameterized using a smaller or larger threshold.

4.2 Resolving data dependencies

The aforementioned problems of data dependencies are
closely linked to the design of trace analyses. Most trace
analyses proceed using the concept of a current state, which
is both read and written to as the analyser reads the trace
events (see section 3.3). This current state holds, for example,
the state of each process running on the system (e.g. running,
blocked, preempted) or the amount of data read from and
written to each file. Analyses can write to the current state
to update the values that will be presented at the end of
the analysis, but can also read from it in order to know, for
example, the starting time of the current system call in order
to calculate its latency.

4.2.1 Temporal dependencies

In our solution, each thread holds its own independent cur-
rent state, which is empty when the thread starts. Problems
arise when some parts of the current state are unknown due
to some events being in a previous chunk of trace data. Since
the trace is partitioned in time ranges, the current state at
the beginning of each time range is unknown to the thread
processing it. For example, it is possible that a system call
spans two time ranges, with its entry event in one time range
and its exit in the next time range. The thread processing
the second time range does not have access to the start time
and input parameters of the system call, while the thread
processing the first time range does not have access to its
end time and return value.

Fortunately, most analyses are not deeply dependant on
the system’s initial state: unknown state does not radically

affect the results of the analysis by propagating erroneous
values. Indeed, this unknown state happens invariably at
the beginning of any trace, even if analysed sequentially.
Some events, implemented by the LTTng tracer, provide
complementary information (such as the file names linked
to file descriptors that were open before tracing started) and
are triggered only at the beginning of the trace, but these are
usually not a hard requirement for analyses. We can therefore
tolerate this unknown state for certain values, provided
that the next event affecting this value will determine
unambiguously its new state. In more formal terms, our
analysis must have a 1-to-1 relationship between transitions
and state, such that each transition points to one and only
one state.

The algorithm for resolving data dependencies goes as
such: each worker thread keeps a thread-local current state
initialised to default values. It then iterates through the
events of the trace data that was assigned to it, updating the
current state as events are read. If an event causes processing
that depends on an unknown current state value, the worker
thread saves the necessary information separately from the
current state. Once all the events are read, the worker thread
returns its current state which holds the results of the analysis
on its chunk of data, plus all the unknown state values that
need further processing.

In order to resolve the unknown values, a merging
phase is executed on the results of the worker threads. The
merging routine does two things: first, it gathers the content
of both states in order to obtain a single current state, for
example by summing the total amount of data read from a
file during both time ranges. Second, it resolves unknown
values by propagating values from the earlier chunks’ current
state to the later chunks. For example, an interrupt that
spanned two chunks will have the interrupt’s start event in
a first chunk and the end event in a second chunk. When
merging the chunks, we detect both an unfinished interrupt
in the first chunk and an unknown interrupt ending in the
second. By matching these two, we can reconstruct the whole
information for that specific interrupt and add its latency, for
example, to a global list of interrupt latencies.

The merging phase operates in a sum-like fashion,
whereas the current states of the first two chunks are merged
into a resulting current state, which is then merged with the
third chunk’s current state, and so on. The final current state
will therefore hold all the merged information from all the
chunks. This means that merging must occur in chronological
order. While this seems to introduce strongly serial process-
ing to the algorithm, two aspects can be exploited in order
to exploit parallelism during the merge phase. First, merging
is a relatively small task executed once for every chunk, and
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can easily be pipelined into the general processing described
before: as soon as the chunks are processed, they may be
merged in parallel while the rest of the trace is analysed.
This is hampered by the fact that chunks must be treated in
chronological order, but assuming that chunks are balanced
and processed in chronological order, this fact should not
cause bad pipeline stalling. Second, merging is an associative
binary operation, meaning that the parallel scan algorithm
described in section 2.2 could possibly be used to introduce
parallelism into the merge phase.

4.2.2 Inter-stream dependencies

The above data dependency resolving strategy works well for
temporal dependencies. However, the hybrid packet-based
trace data partitioning scheme detailed above introduces
another data dependency problem: inter-stream dependen-
cies, where some of the dependent information is located in
another stream. This happens, for example, when a process
is migrated from one CPU to another during tracing, such
that its events are on different streams.

In order to solve these dependencies, we can use a similar
approach as to the one described above. The difference
is that dependent events may now occur both in a prior
chunk as well as in a “concurrent” chunk, meaning a chunk
whose time range overlaps the time range of the current
chunk. Since inter-stream dependencies happen on process
migrations, we can detect these migrations by reading the
migration event, and treat all subsequent analysis of the
migrated thread as dependant on its execution in another
stream. We therefore need to keep multiple current states,
one for each “execution”, where an execution is a series
of events for a process separated by a migration. We may
then apply the same merging algorithm as before on these
executions, and thus propagate unknown values throughout
our analysis.

In Figure 4, the analysis would work as follow:

1) As chunk 0 is analyzed, a migration event occurs.
The current state is saved for execution A. When the
process migrates back to chunk 0, its current state is
saved.

2) In parallel, the other chunks are processed. They treat
migration events similarly, and we get a number of
executions (A, B, C, D, E).

3) Once analysis is done, the merging begins. Merging
is done in chronological order of start time, such that
chunks 0 and 1 are merged first.

4) The executions in chunks 0 and 1 are sorted by start
time. Executions A, B and C are merged. Execution
E is kept unmerged, since it occurs after the end of
chunk 0 and is dependent on execution D, which is
not yet available.

5) The merged results of chunks 0 and 1 are then
merged with chunk 2. The temporal dependency
at execution D is merged, then the inter-stream
dependency at E. All the chunks have been merged
and the analysis is done.

This solution adds additional work in two ways: first,
it requires chunks to be merged in order of starting time,
meaning that the chunks from different streams must be
sorted after iterating through the packet indexes. Second,

Figure 4: Data dependencies between executions across
streams and chunks

it requires the execution of the merging routine for every
“sub-chunk” created when a migration occurs. These two
factors do not affect the overall performance greatly, since
the number of chunks is relatively low and therefore fast to
sort, and since migrations are unfrequent and therefore do
not add a significant amount of merging.

5 EXPERIMENTAL RESULTS

5.1 Experimental methodology

In order to assess whether parallelization is a viable strategy
to enhance the performance of trace analysis, we must not
only show that our method provides speedup in the analysis
of trace data, but also that this speedup is efficient: it is
sometimes possible to obtain large speedups given larger
amounts of computing power, but that may come at the cost
of wasted computing power due to low efficiency.

Furthermore, trace analysis suffers from relying on stor-
age device speed, since trace data resides on disk and may
not be able to fit into main memory. Since disk accesses are
orders of magnitude slower than accesses to memory and
cache, they can become a bottleneck if the amount of work
on the CPU is less than the time spent retrieving data from
disk.

Finally, the CPU workload of trace analysis is strongly
dependent on the speed of trace decoding (in our case
provided by the babeltrace library). Testing our parallel
trace analyses using this library ignores possible future
improvements to trace decoding which could hinder the
efficiency of parallelization by lowering the CPU workload
and increasing the effect of the I/O bottleneck.

For our suggested method to be deemed efficient, we
must explore these possibilities and weight their effect
on trace analysis parallelization. To do this, we created
a simulation program, described in the following section,
which allows us to run experiments that will help calculate
bounds on the parallel efficiency on various storage devices
and with (simulated) faster trace decoding.

The following results were all obtained on a server
equipped with a quad-socket Supermicro H8QGL mother-
board, with 4 AMD Opteron 6272 16-core 2.1 GHz processors
(for a total of 64 cores) and 128 GB of DDR3 SDRAM.

5.2 Workload simulation

In order to better assess the effect of memory and I/O
operations on parallel trace analysis, our simulation program
simulates the CPU, memory and disk workload of a trace
analysis program. The simulation program works as follows:
a single file is given as input to the program, which separates
the reading of the file to multiple threads. Each thread
maps a part of the file into memory, then proceeds to read
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every first byte aligned on page boundaries. This way, we
ensure that each byte read will trigger a page fault with
minimum accompanying CPU work. The program then does
an arbitrary amount of work for every byte in the form of a
loop by simply incrementing a counter. Once all the threads
are finished, the program returns the sum of all the thread
results. Listing 1 shows a simplified version of the code used.
The actual program was implemented using the OpenMP
compiler instructions.

This program allows us to tweak certain parameters in
order to observe the program’s scalability under different
conditions. We can change the amount of CPU work done per
page fault by setting a higher or lower number of iterations.
This allows us to simulate a more or less complex trace
analysis, or to simulate a more optimized trace decoding.
We can also experiment with different sizes for the memory
mapped regions in order to simulate trace packets of various
sizes. Finally, we can also tweak the parameters sent to the
I/O functions, allowing us to activate or deactivate features
such as read-ahead or pre-faulting of pages.

By tweaking the parameters of the program, we can
simulate a throughput similar to that of reading a trace file
sequentially, without doing any analysis. This will give us
an upper bound in terms of how much trace analysis can
benefit from parallelization on various I/O hardware [27].

5.2.1 Concurrent memory operations

When running benchmarks on the simulation program,
significant slowdowns were observed as the number of
concurrent threads increased. This effect can be seen in
Figure 5. However, these slowdowns were unrelated to I/O
operations and were mainly observable during cache hot
benchmarks, meaning that the trace data was contained
entirely within the system’s page cache (i.e. the disk-backed
pages kept in memory by the operating system). This
slowdown was not created by a contention in our program
either, nor by cache thrashing, since no data was shared
between the threads.

Upon further inspection, it appeared that the bottleneck
was within the kernel itself, more specifically within the

Listing 1: Simulation program code
1 threadRoutine(size_t chunk_size, void *

chunk_offset, int file) {

2 char *buffer = mmap(NULL, chunk_size,

PROT_READ, MAP_PRIVATE, file,

chunk_offset);

3 size_t i;

4 unsigned long sum;

5 for (i = 0; i < chunk_size; i += PAGE_SIZE)

{

6 sum += buffer[i];

7 /* burn CPU */

8 int j;

9 for (j = 0; j < ITERATIONS; j++) {

10 sum++;

11 }

12 }

13 munmap(buffer);

14 return sum;

15 }

Figure 5: Speedup of concurrent memory operations for
increasing CPU workloads (number of iterations)

memory management module of the kernel. Under the
Linux operating system, each process holds a data structure
describing its virtual memory, as well as a single read/write
lock for the whole address space. These components are
shared by all the threads within the process, since threads
operate on the same address space. Whenever a memory
operation (i.e. mmap and munmap system calls) or a page
fault occurs, the global lock is taken in order to protect the
global structures from concurrent accesses. This means that
the memory operations and page faults of our simulation pro-
gram are being serialized, thus creating a strong contention
on the kernel lock and causing the observed slowdown.

A workaround to this problem would be to use processes
instead of threads, thus separating the address spaces of our
workers. However, this approach increases the complexity
of the code, since inter-process communications must be
handled instead of relying on shared memory. Another
approach would be to modify the kernel code in order to
improve the scalability of memory operations, as proposed
by Clements et al. [28].

In order to work around this issue without modifying the
kernel or making our application too complex, we decided
to simply use a pipelined approach in order to remove the
overhead due to lock contention. The pipelined program
works by doing all the memory operations and page faults
serially: one thread map the chunks in a serial manner and
hands them off to be processed in parallel, with the final
stage of the pipeline doing a serial unmapping of the chunks.
This pipelined program was implemented using the Intel
Threading Building Block (TBB) library, which allows the
creation of pipelined tasks using a C++ API.

5.2.2 Parallel efficiency on various storage devices

The following results were obtained by running our
pipelined simulation program on different storage devices.
The program’s parameters were selected such that the
sequential throughput in terms of data processed per second
would be on par with the throughput of a sequential reading
of a trace using the babeltrace reader. The devices used
are summarized in Table 1. The sequential read speed was
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acquired experimentally using the command hdparm -t,
which gives sequential read speed without file system
overhead.

Figure 6 shows the parallel efficiency for our simulation
program reading trace data from various storage hardware
as well as directly from memory (i.e. from the page cache).
Parallel efficiency is measured as the percentage of linear
speedup achieved, using the formula E = S/N where S is
the speedup obtained using N threads. Speedup is defined
as S = t1/tN where t1 is the serial time and tN the time with
N threads. An optimal solution would have a constant 100%
parallel efficiency for any N and an efficiency of 1/N means
no speedup over the sequential solution.

The reason we will use efficiency rather than acceleration
is that, in general, acceleration is a metric that is sometimes
too optimistic and difficult to contextualize and compare.
Indeed, it is often possible to obtain ever greater accelera-
tions by increasing the amount of parallel computing units.
However, this implies that a potentially large number of
cycles is wasted. Parallel efficiency is also easy to evaluate,
since it is enough to compare to a perfect efficiency of 100%.

The results indicate that the efficiency of processing data
from a hard disk drive quickly drops as the number of
threads increases. However, we still maintain a 60% parallel
efficiency at 8 threads, which translates to a speedup of 5. In
other words, a parallel trace analysis could expect up to 5
times speedup using 8 threads, or process 5 times as much
data in the same time period.

If better storage devices are used, such as an SSD, we get
a higher than 70% parallel efficiency up to 16 threads, which
translates to a speedup of 11. For a high-performance PCIe
SSD, the parallel efficiency is above 63% up to 64 threads,
which translates to a speedup of 40. At the moment of this
writing, such high-performance SSDs are becoming readily
available in consumer- and server-grade markets, pushing
back the boundary on I/O-boundedness for many types of
programs.

5.2.3 Parallel efficiency with optimized trace decoding

In order for trace analysis to be efficiently parallelizable, it is
important to consider the impact of possible future optimiza-
tions in the CPU efficiency of trace decoding. In other words,
if trace decoding becomes more efficient in its CPU usage,
will trace analysis become bounded by I/O operations, and
will therefore cease to gain from parallelization?

In order to test this scenario, we changed our benchmarks
such that the simulation program would run not only with
parameters that simulated throughput similar to current
sequential trace decoding, but also with parameters that
simulated the cases where decoding would be twice, 4 times,
8 times and 16 times as fast. These benchmarks were again
run on the storage devices from Table 1 and on memory. The
results are shown in Figure 7.

The parallel efficiency of analyzing data from a hard drive
drops dramatically as simulated trace decoding improves.
This is due to the data being analyzed faster than it is read
from disk, because of the slow accesses to the drive. We
could therefore argue that parallelization is not a future-
proof solution, since its efficiency is greatly hindered when
using better trace decoding. However, hard disk drives are
being supplanted by more efficient storage devices, namely

Table 1: Test storage devices specifications

Model Interface
Sequential Read

Speed (MB/s)

WD RE4 HDD SATA II 135

Intel SSD 520 SATA II 250

Intel DC SSD P3700 PCIe 2.0 1145

Figure 6: Parallel efficiency of simulation for various storage
devices

high performance solid state drives. When using these types
of drives, the drop in efficiency is not as severe as before:
using a regular SATA SSD, we keep decent parallel efficiency
even with twice and 4 times faster trace decoding. Using a
high performance PCIe SSD, we stay above 50% efficiency
up to 32 threads with a 4 times faster trace decoding, and
decent parallel efficiency for 8 times faster trace decoding.

An aspect to keep in mind is that the results shown
above represent a lower bound on parallel efficiency: they
represent the worst case scenario for trace analysis, since the
workload simulates events that are only decoded, without
analysis. Normal trace analyses execute possibly heavy CPU
operations when events are read, meaning that the actual
CPU workload (and therefore parallelization opportunity)
would in fact be greater, thus improving parallel efficiency.
Furthermore, by freeing up CPU time from trace decoding,
we would possibly be able to run more complex analyses or
a higher number of simultaneous analyses, which would in
turn benefit from the parallel execution.

5.3 Parallel trace analysis efficiency

We have shown in the previous section that parallel
trace analysis would not be seriously hindered by I/O-
boundedness problems, whether with the current trace
decoding speed or with better trace decoding. We can now
look at the parallel efficiency for actual trace analyses, using
an implementation of the proposed solution.

The solution was implemented using the Qt Concurrent3

3. http://doc.qt.io/qt-5/qtconcurrent-index.html
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Figure 7: Parallel efficiency as simulated trace decoding speed increases

framework, which offers a simple MapReduce-like API for
parallelization. The framework allows for the creation of map
and reduce tasks, which are used for the chunk analysis and
merge phases, respectively. The trace on which the analyses
were run is from an 8-core machine (thus contains 8 streams
of events) and contains 44,897,970 events.

5.3.1 Test analyses

The following three analyses were tested:

• count: the count analysis represents the simplest pos-
sible “useful” analysis. It simply counts the number
of events in the trace and returns the total to the
user. This analysis does little more than parsing the
events, and can be treated as a lower bound in terms
of parallelization potential since so little CPU work is
done.

• cpu: the cpu analysis is a more useful, but still simple
analysis. It gathers the percentage of active CPU time
per-CPU and per-thread using scheduling events. This
analysis is slightly more complex than count, but only
looks at scheduling events.

• io: the io analysis gathers the amount of data read
and written by every process. It does so by parsing

read- and write-related system calls. This analysis is
more complex than the last two: it requires stateful
processing (in order to know which system call
exited, since system call exit events do not specify
the system call that has exited) and slightly more
complex merging. It therefore requires more CPU
work, and should benefit more from parallelization.

The results in Figure 8 and Table 2 show the elapsed
time, speedup and parallel efficiency for the three different
analyses, with trace data stored on the storage devices from
Table 1 and in memory. It is important to note that the
current parallel trace analyses suffer from the concurrent
memory operation problem mentioned in section 5.2.1 since
the memory operations are not yet pipelined.

We can see that parallel efficiency is lower than with
our simulation program. This is due to various factors: the
bottleneck in the kernel due to the non-pipelined memory
operations, inefficiencies within the trace decoding library
and less efficient I/O operations (e.g. no read-ahead or pre-
faulting), for example. There is also a fixed amount of serial
work at the beginning of the analysis due to the parsing of
the trace metadata, which becomes proportionally smaller as
trace data size increases. As for the serial work done in the
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Figure 8: Parallel efficiency of trace analyses for various storage devices

Table 2: Benchmark results for trace analyses on PCIe SSD

Threads

Analysis Metric 1 2 4 8 16 32 64

count Time (s) 108.21 60.95 29.14 16.70 9.96 7.35 7.82
Speedup - 1.78 3.71 6.48 10.87 14.73 13.84
Efficiency - .888 .928 .810 .679 .460 .216

cpu Time (s) 116.94 61.72 32.31 17.30 10.80 8.28 9.02
Speedup - 1.89 3.62 6.76 10.83 14.12 12.96
Efficiency - .947 .905 .845 .677 .441 .202

io Time (s) 191.48 97.99 52.17 27.29 15.78 10.55 11.31
Speedup - 1.95 3.67 7.02 12.13 18.15 16.93
Efficiency - .977 .918 .877 .758 .567 .265

merge phase, it should not affect the total run time, since this
phase can be pipelined into the rest of the program, meaning
that every time a chunk is ready to be merged, the merge is
done in parallel with the other chunks being processed.

The babeltrace trace reading library was the source of
various bottlenecks: its inability to create multiple iterators

on a single trace led to a work-around which functioned
by copying a certain amount of shared data when creating
a new iterator. However, this method brought its own set
of inefficiencies, mainly in the form of a certain amount
of unwanted and unnecessary locking during the copy.
We can therefore attribute a part of the loss of parallel
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efficiency to the serial design of the trace decoding library,
which had nothing to do with problems in the detailed
solution. More details about this limitation is available
in the full dissertation, available electronically from Ecole
Polytechnique de Montreal [29].

Still, the benchmarks show appreciable efficiency up to 16
threads, and efficiency above 80% up to 8 threads, which are
typical levels of parallelism found in regular workstations.
These efficiencies translate to speedups of one order of
magnitude (> ×10) on consumer-level hardware. This is
a significant speedup, allowing for time-consuming analyses
to be processed in seconds rather than minutes.

As we can see from the results, the parallel efficiency is
higher when running more complex analyses, visible here in
the io analysis. This is expected, since more complex analyses
rely on higher CPU workloads which are better suited to
parallelization. However, it is interesting to note that a slight
increase in complexity (in this case mainly due to the usage
of a hash-map in the io analysis) translates to significantly
better parallel efficiency: the efficiency with 32 threads for
the io analysis is 28.5% higher than for the cpu analysis (from
44.1% up to 56.7%). More complex analyses could potentially
benefit even more from parallelization.

We also see that, apart from the results where trace data
was stored on a hard-drive, the analysis is not bound by the
accesses to the storage devices. We can therefore conclude
that trace decoding in its current implementation is not
I/O bound when reading trace data from solid state drives.
Furthermore, using the results from the previous section, we
can extrapolate that this efficiency will hold even as trace
decoding improves.

6 CONCLUSION AND FUTURE WORK

This research has shown that parallelization provides an
efficient way to enhance the performance of trace analysis.
We developed a solution which provides balanced workloads
using data available directly from the trace format, and
which keeps locking and synchronization to a minimum
by deferring the resolution of data dependencies. Using this
solution, we implemented parallel trace analyses that yielded
speedups of up to 18 times, with good parallel efficiency up
to 32 threads. We also showed, using our simulation program,
that trace analysis is no longer I/O-bound when using
modern but readily-available solid state storage devices, and
that this holds even as trace decoding improves.

In order to achieve better scaling, improvements must be
made to the trace decoding library. These improvements
will allow for more efficient parallelization by reducing
unnecessary copying of data and lock contention. Since only
read-only data is shared between the threads, the potential
speedup could be brought up at least to the level of the
simulation program. Furthermore, the problem of concurrent
memory operations in the Linux kernel could be resolved, or
worked around, for interesting scalability gains. We know
that these improvements will enhance scalability, since we
showed in section 5.2 that potentially better speedups are
possible with good enough storage devices.

Trace analysis results can be stored in the State History
Tree database in order to allow fast access to the current state
at any moment in the trace. For the moment, the construction

of the State History Tree relies on intervals being added in
sorted time order, to avoid rebalancing. A possible future
work would be to allow the history tree to be rebalanced, so
that we may add unsorted intervals, therefore allowing for
parallel analysis to output into a State History Tree.

Distributed trace analysis would also be an interesting
solution, especially in the context of analyzing distributed
traces: the concepts detailed in the present research could
possibly be applied to analyzing trace data on multiple nodes,
allowing for dedicated analysis nodes within a computing
infrastructure. Furthermore, some current trace analyses
allow for live processing of traces streamed over the network.
Future work could adapt parallel trace analysis to the context
of live tracing.
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