
HAL Id: hal-03991412
https://hal.sorbonne-universite.fr/hal-03991412

Submitted on 10 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Accelerating OCaml Programs on FPGA
Loïc Sylvestre, Emmanuel Chailloux, Jocelyn Sérot

To cite this version:
Loïc Sylvestre, Emmanuel Chailloux, Jocelyn Sérot. Accelerating OCaml Programs on FPGA. Inter-
national Journal of Parallel Programming, 2023, 51 (Special Issue on High-Level Parallel Programming
and Applications (HLPP 2022)), pp.186-207. �10.1007/s10766-022-00748-z�. �hal-03991412�

https://hal.sorbonne-universite.fr/hal-03991412
https://hal.archives-ouvertes.fr

International Journal of Parallel Programming manuscript No.
(will be inserted by the editor)

Accelerating OCaml programs on FPGA

Loı̈c Sylvestre · Emmanuel Chailloux ·
Jocelyn Sérot

Received: date / Accepted: date

Abstract This paper aims to exploit the massive parallelism of Field-Programmable
Gate Arrays (FPGAs) by programming them in OCaml, a multiparadigm and stati-
cally typed language. It first presents O2B, an implementation of the OCaml virtual
machine using a softcore processor to run the entire OCaml language on an FPGA.
It then introduces Macle, a language to express, in ML-style, hardware-accelerated
user-defined functions, implemented as gates and registers on the same FPGA. Macle
allows to implement pure computations and compose them in parallel. It also supports
processing dynamic data structures such as arrays, matrices and trees allocated by
the OCaml runtime in the memory of the softcore processor. Macle functions can
then be called, as hardware accelerators, by OCaml programs executed by O2B. This
combination of Macle and OCaml codes in a single source program enables to easily
prototype FPGA applications mixing numeric and symbolic computations.

Keywords High-level parallel programming, FPGA, OCaml, Virtual machine,
Hardware acceleration, Compiling

1 Introduction

Reconfigurable circuits, like Field-Programmable Gate Arrays (FPGAs), are suited
to design custom architectures exploiting the concurrent nature of hardware struc-
tures [6]. The configuration of an FPGA is commonly produced by a synthesis tool-
chain from a description expressed in hardware description language (HDL) such
as VHDL or Verilog. Other examples of more expressive HDLs include Chisel [4]

Loı̈c Sylvestre · Emmanuel Chailloux
Sorbonne Université, CNRS, LIP6, F-75005 Paris, France
E-mail: Loic.Sylvestre@lip6.fr, Emmanuel.Chailloux@lip6.fr

Jocelyn Sérot
Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-
Ferrand, France
E-mail: Jocelyn.Serot@uca.fr

2 Loı̈c Sylvestre et al.

embedded in Scala, Clash [3] in Haskell, MyHDL [10] in Python and HardCaml1

in OCaml. Nevertheless, the Register Transfer Level (RTL) programming model, on
which HDLs are based, is characterized by a very low level of abstraction. Hence,
different approaches aim to hardware-accelerate software applications using FPGAs.

– There have been some attempts to compile small applicative languages, such as
SHard [23], FLOH [27] and Basic SCI [14], directly to RTL [13]. A representative
example is SAFL (Statically Allocated Functional Language) [20], which is a
first-order ML-like language limited to tail recursion and static data structures.

– For more complex languages, custom processors or virtual machines can be im-
plemented in RTL to run high-level languages on FPGA. JAIP [28] is a Java
Virtual Machine (JVM) written in VHDL, calling a softcore processor2 to handle
dynamic class-loading. JikesRVM [19] is a JVM implemented on a CPU using an
FPGA for accelerating automatic dynamic memory management.

– High-Level Synthesis (HLS) promotes the use of imperative languages to design
hardware [21]. Most HLS tools, such as Catapult C or Handel-C, support a subset
of C annotated with pragmas to optimize the compilation to RTL. LegUp [5] runs
C programs on a softcore processor while compiling functions – those that do
not use dynamic allocation and recursion – to RTL. Pylog [15] proposes a similar
approach for running Python on FPGA platforms having a hardcore processor.

– Other HLS tools3 use OpenCL to express parallel applications and target hete-
rogenous architectures involving Multicores, GPUs and FPGAs. Aparapi [24] and
GVM [12] implement the JVM in OpenCL. TAPA [7] is a framework for task pa-
rallelism targeting OpenCL. TornadoVM [22] compiles specially annotated Java
code to OpenCL. These tools, however, do not sufficiently expose the fine-grained
parallelism available on the FPGAs nor their customization possibilities.

– FPGAs allows implementing parallel programming models [18] like task-paralle-
lism [7] and parallel skeletons [9]. For instance, Lime [2] is a task-based data-flow
programming language compiled to OpenCL or Verilog and interacting with Java
bytecode running on a CPU. Kiwi [25] is a subset of C♯ compiled to RTL and
offering events, monitors and threads. RIPL [26] is an image processing language
with a collection of parallel skeletons.

The work described in this paper builds on the results of these experiments, by
proposing an approach in which:

– a runtime system, implemented on a softcore processor, is used to allow high-
level programming on FPGA (like JAIP);

– hardware acceleration of user-defined functions (like SAFL) is provided by par-
titioning the application code between the host and the accelerated code (like
Pylog);

– the host language, running the softcore processor, and the embedded language
used to describe accelerated functions are similar (like Lime);

– some predefined parallel constructs are provided to ease exploitation of the mas-
sive parallelism offered by FPGAs (like Kiwi).

1 https://github.com/janestreet/hardcaml
2 A softcore processor is processor implemented in the reconfigurable part of an FPGA.
3 Such as AMD Vivado HLS and Intel OpenCL SDK.

https://github.com/janestreet/hardcaml

Accelerating OCaml programs on FPGA 3

To this end, we have:

1. ported the OCaml virtual machine (VM) and its runtime (including a garbage
collector) on a softcore processor to support the entire OCaml language.

2. combined this VM approach with hardware acceleration of user-defined functions
expressed in an ML-like language. This language is extended with parallelism
skeletons in order to process dynamic data structures allocated by the OCaml
runtime in the memory of the softcore processor.

This approach allows to take full advantage of the fine-grained parallelism of
FPGAs, while programming them in OCaml, and hence supporting quick prototyp-
ing, static type-checking, simulation and debugging of applications mixing numeric
and symbolic computations.

Our contributions are:

– O2B4 (OCaml On Board), a port of OMicroB [29] (an implementation of the
OCaml Virtual Machine) targeting the Nios II softcore processor realized on an
FPGA. O2B enables to call custom hardware accelerators from OCaml programs.

– Macle5 (ML accelerator), a subset of OCaml designed to express hardware-acce-
lerated user-defined functions, called Macle circuits. These functions – distin-
guished with a special keyword “circuit” – are compiled to VHDL and syn-
thetised on an FPGA to be used as hardware accelerators from OCaml source
programs executed by O2B. Glue code is automatically generated. It includes C
and OCaml code, VHDL descriptions and scripts to control the end-to-end syn-
thesis workflow. Macle supports OCaml data structures (such as lists, trees, arrays
and matrices) allocated in the OCaml VM heap. Macle allows general recursion
by automatically rewriting it into tail-recursion with a local stack implemented
in on-chip memory. Finally, Macle provides parallelism skeletons over OCaml
arrays to expose fine-grained parallelism and optimize memory transfers.

The remainder of this paper is organized as follows. Sect. 2 introduces the O2B in-
frastructure to run OCaml programs on an FPGA. Sect. 3 proposes an approach to ac-
celerate OCaml programs augmented with Macle circuits. Sect. 4 presents the compi-
lation of Macle, using an intermediate language (HSML, Hierarchical State Machine
Language) to abstract the VHDL target. Sect. 5 evaluates our approach on different
benchmarks to measure the speedup resulting from using hardware-acceleration in
Macle. Sect. 6 describes a mechanism using parallel skeletons to optimize memory
transfers when accessing the OCaml heap. Sect. 7 discusses the acceleration possi-
bilities and the programming style obtained and then identifies future work.

2 The O2B framework

O2B (OCaml On Board) is a tool to run OCaml programs on FPGAs. It is based
on OMicroB [29], an implementation of the OCaml VM dedicated to high-level pro-
gramming of microcontrollers with scarce resources.

4 https://github.com/jserot/O2B
5 https://github.com/lsylvestre/macle

https://github.com/jserot/O2B
https://github.com/lsylvestre/macle

4 Loı̈c Sylvestre et al.

2.1 Compilation flow for OCaml to FPGAs

Fig. 1 describes the configuration process used to run OCaml programs on an Intel
FPGA6 via O2B. The bytecode generated by the OCaml compiler is transformed into
a static C array, then embedded in the C program implementing the bytecode inter-
preter and the O2B runtime library, including a garbage collector (GC). The OCaml
heap and stack are C static arrays. This program is associated with the functions of the
Board Support Package (BSP) giving access to the hardware resources of the target
board. The resulting application is compiled to binary code executable by the Nios II
softcore processor.

Source
program

.ml

OMicroB
Bytecode

+ interpreter
+ runtime

.c

gcc-
nios

Binary
executable

.elf

QSysTM
FPGA
config

BSP lib

QuartusTM

synthetizer
.vhd

Bitstream
.sof

.c

NiosII

IO

FPGA

BOARD

F1

C1

Avalon bus

Cn
...

NiosII
config.

Fn
...

IO...

Fig. 1 Compilation flow targeting Intel FPGAs

The complete FPGA configuration includes the exact architecture of the proces-
sor used as well as a set of external RTL descriptions F1 · · · Fn to be implemented
as custom components C1 · · · Cn. Technically, this configuration step is carried out
by the QSys tool of the Intel Quartus chain. It generates a set of VHDL files which
constitutes the description of the hardware platform. This description includes the
components C1 · · · Cn and the Nios II processor to be synthesized through the Quar-
tus chain to reconfigure the FPGA.

The OCaml heap and stack can be stored either in the on-chip memory of the tar-
get FPGA (for small programs) or in the external memory (SDRAM) of the board. In
both cases, access is provided by means of an interconnection bus7. This bus also sup-
ports data transfers between the custom components and the binary code executed by
the processor. Both the softcore and the custom components can access the physical
IOs of the FPGA.

6 This process is general and can be adapted to target other FPGA families.
7 Avalon bus for Intel platforms.

Accelerating OCaml programs on FPGA 5

2.2 Calling accelerators from OCaml programs

The OCaml language offers an OCaml/C foreign function interface (FFI) to call C
functions from OCaml programs. These C functions, running on the softcore, can in
turn invoke custom components implemented on the FPGA. It is thus possible to use
custom components from OCaml programs compiled to bytecode executed by O2B.
The communication layer between O2B and a custom component is done via a set of
dedicated registers associated to the component and mapped into the memory of the
softcore processor.

Fig. 2 shows the source code of an OCaml program designed to run with O2B.
It defines three implementations of the greatest common divisor (GCD) algorithm:
one in OCaml using a tail recursion, one in C using a loop, and one in C using an
hardware accelerator that will be defined at Fig. 7 in VHDL.

external gcd_c : int -> int -> int ;;
external gcd_rtl : int -> int -> int ;;

let rec gcd_caml a b =
if a > b then gcd_caml (a-b) b else
if a < b then gcd_caml a (b-a)

else a ;;

let chrono f a b =
let t1 = Timer.get_us () in
let res = f a b in
let t2 = Timer.get_us () in
print_int (t2-t1) ;;

let main() =
Timer.init () ;
let a = 5000 and b = 7000 in
chrono gcd_caml a b ;
chrono gcd_c a b ;
chrono gcd_rtl a b ;;

main () ;;

(a) OCaml program

value gcd_c(value m, value n){
int a, b;
a = Int_val(m);
b = Int_val(n);
while (a != b) {

if (a > b) a = a-b;
else b = b-a;

}
return Val_int(b);

}

value gcd_rtl(value m, value n){
int res;
GCD_ARG(0,Int_val(m));
GCD_ARG(1,Int_val(n));
GCD_START();

while (! GCD_RDY())
;

res = GCD_RESULT();
return Val_int(res);

}

(b) external C code

Fig. 2 An OCaml program using external C code on O2B

The difference between two calls to Timer.get_us (before and after a computa-
tion) in the OCaml function chrono gives the execution time of the argument func-
tion call in microseconds. The C function printf, and by extension, the OCaml func-
tions print_int and print_string use the Board Support Package of the FPGA
target to write on a console8. The gcd_c and gcd_rtl functions are defined as ex-
ternal functions in the OCaml code using the standard FFI mechanism. Calling a
custom component from the gcd_rtl function involves sending the argument to and
retrieving the result from the dedicated registers of the custom component. The corre-
sponding operations are abstracted by the C macros GCD_ARG, GCD_START, GCD_RDY

8 The FPGA board is connected to a host PC via an UART connection for printing and debugging.

6 Loı̈c Sylvestre et al.

and GCD_RESULT). The behavioral description of GCD in VHDL requires 50 lines
of code, plus 100 lines of VHDL glue code for argument and result passing. Finally,
this GCD component must be mapped into the global configuration of the system
implemented on the FPGA (called the System on Programmable Chip, SoPC), either
manually (using the QSys tool) or by scripting. In practice, this limits the use of the
O2B framework to programmers familiar both with VHDL and the target toolchain
(Intel Quartus in the current distribution).

In the rest of the paper, we describe how this limitation can be overcome by
providing a ML-like language, similar to OCaml, to describe hardware-accelerated
functions and automatically generate both the FPGA configuration and glue code to
interact with OCaml programs running on the softcore.

3 High-level FPGA programming

The proposed approach relies on a dedicated ML-like language to express hardware-
accelerated functions. This language, called Macle (ML Accelerator), can interoper-
ate with the OCaml runtime of O2B and therefore can be used to accelerate OCaml
host programs running on a softcore processor realized on an FPGA.

3.1 Compilation Flow

Fig. 3 shows our compilation flow of OCaml to FPGA. It automatically generates
the configuration of an FPGA from an OCaml program extended with hardware-
accelerated functions defined in Macle. The OCaml code is compiled to bytecode
to be executed by O2B targeting a softcore processor implemented on the FPGA
whereas each Macle circuit is compiled to VHDL and then synthesized as a cus-
tom hardware component usable from the OCaml program. The glue code (including
OCaml, C and VHDL files) is automatically generated from inferred types of Macle
circuits. The compilation flow can therefore be used by a programmer without prior
knowledge in VHDL or experience with the target FPGA programming toolset.

In Fig. 3, the two double arrows denote the calls of C functions from OCaml and
the use of VHDL code from C.

program softcore processor

OCaml

Macle FFI C/OCaml

VHDL

bytecode + VM + runtime
standard compilation

hardware acceleration

glue code generation

Fig. 3 Accelerating OCaml programs on FPGA using O2B and Macle

Accelerating OCaml programs on FPGA 7

3.2 The Macle language

Macle is a ML-like language which includes:

– a functional-parallel core language (called Macle Core) compiled to RTL;
– additional language constructs (implemented in RTL) to interact with the OCaml

runtime.

Fig. 4a defines the syntax of Macle Core. This language is independent of OCaml
and can be used to program synchronous circuits and compose them in parallel. We
denote by −→o (or o1 · · · on) a non-empty sequence of objects oi. Macle Core includes
variables (taken from a set of name X), constants, applications of builtin operators
and conditionals. It also offers local mutually tail-recursive functions, function calls
and let bindings. A simple let binding let x = e in e′ first computes e, then e′. By
extension, a multiple let-binding let x1 = e1 and · · · xn = en in e′ first computes the
expressions e1 · · ·en in parallel and synchronizes before computing e′. For instance,
the hardware implementation of (let x = factorial 10 and y = factorial 11 in x+ y)
instantiates twice the implementation of factorial function in order to enable their
parallel execution. Function calls use an implicit parallel let-binding to compute the
arguments passed to each function. Non-recursive functions can take functions as
arguments9.

circuit ci ::= circuit f x1 · · · xn = e

constant c ::= ⟨bool⟩ | ⟨integer⟩ | ()

variable x,y, f ∈X

operator1 ⊖ ::=− | not | ··

operator2 ⊕ ::=+ | < | ··

expression e ::= x | c |⊖ e | e1⊕ e2
| if e then e1 else e2
| e1 || e2
| e1 && e2
| let −−−−−−−−−−→f x1 · · · xn = e in e′

| let rec
−−−−−−−−−−→
f x1 · · · xn = e in e′

| f e1 · · · en
| let x1 = e1 and · · · xn = en in e′

| ··

(a) Macle Core

exception exn ::= Failure ⟨string⟩
| Stack overflow

| ··

pattern p ::=C(x1, · · · xn)
|C

expression e ::= ··
| raise exn
|match e with

−−−→
p→ e′

| ref e
| ! e
| e := e′

| e.(e′)
| e.(e′)← e′′

| array length e
| e ; e′

| for x = e to e′ do e′′ done

(b) Interaction with OCaml

Fig. 4 Syntax of the Macle language

Fig. 4b defines the syntax of the Macle subset interacting with the OCaml run-
time. It comprises:

9 Each call of these functions is specialized and inlined at compile time.

8 Loı̈c Sylvestre et al.

– raise exn for raising a built-in exception exn such as Failure (parametrized by
a literal strings) or Stack overflow;

– match · · · with · · · for destructuring (i.e., non-nested pattern matching) values
of an algebraic datatype;

– !e for accessing the content of the reference e;
– e := e′ for setting the content of the reference e to the value of e′;
– e.(e′) for accessing at the index e′ of the array e;
– e.(e′)← e′′ for setting the value of e′′ at the index e′ of the array e;
– array length e for accessing the length of the array e;
– e ; e′ which is a syntactic sugar for let x = e in e′ where x is a fresh name;
– for x = e to e′ do e′′ done which is a syntactic sugar for a tail-recursive formu-

lation using let rec.

Note that, currently, Macle circuits cannot allocate data structures; they can only
manipulate values allocated by the VM in the OCaml heap.

To preserve the semantics and the safety of the Macle code, multiple let-bindings
are sequentialized when they contain memory accesses or raise an exception.

General recursion is supported via a program transformation producing code con-
taining only tail-recursive calls and using an explicit stack. When the stack overflows,
an exception (Stack overflow) is raised. Recursion in Macle uses an explicit call
stack, as described in Sect. 5. Tail-recursion does not require a stack.

Fig. 5a shows three Macle circuits. The circuit gcd_rtl expresses the GCD al-
gorithm in Macle Core. The circuit collatz computes the stopping time of a Col-
latz [16] sequence (also called Syracuse) starting from a given integer. The circuit
sum_array sums the elements of a given OCaml array.

circuit gcd_rtl m n =
let rec gcd a b =

if a > b then gcd (a-b) b else
if a < b then gcd a (b-a)

else a
in gcd m n ;;

circuit collatz n =
let rec next len u =

if u <= 1 then len else
if u mod 2 == 0
then next (len+1) (u/2)
else next (len+1) (3*u+1)

in next 0 n ;;

circuit sum_array a =
let n = array_length a in
let rec loop acc i =

if i >= n then acc else
loop (acc + a.(i)) (i+1)

in loop 0 0 ;;

(a) Examples of Macle circuits

type exp =
| Int of int
| Var of int
| Add of exp * exp ;;

circuit eval_exp env e =
let rec eval e =
match e with
| Int(n) -> n
| Var(k) -> env.(k)
| Add(e1,e2) ->

eval e1 + eval e2
in eval e ;;

let main() =
let env = [|100|] in
let e = Add(Int(1),Var(0)) in
try print_int (eval_exp env e)
with Failure s -> print_string s ;;

main() ;;

(b) Example of program

Fig. 5 Examples of Macle circuits and OCaml program using a Macle circuit

Accelerating OCaml programs on FPGA 9

Fig. 5b shows an OCaml program calling a Macle circuit. It allocates an abstract
syntax tree in the OCaml heap and evaluates it using the eval_exp Macle circuit.
Accesses to the OCaml heap are safe since the exception Failure is (implicitly)
raised in case of an out-of-bounds index or a non-exhaustive pattern matching. This
exception can then be caught in OCaml by the try · · · with construct. In this example,
the program evaluates the expression Add(Int(1),Var(0)) recursively and prints
the result. Evaluating Var(0) fetches the value at the index 0 of the array.

4 Compiling Macle

The global compilation flow from Macle to VHDL is depicted Fig. 6. It involves four
passes. The first pass (1) consists in normalizing the source code:

– renaming all bindings in the source code with unique names;
– rewriting the code in so-called Administrative Normal Form [17] (introducing

let-bindings for each step of computation);
– inlining functions by recursively duplicating their body at each call site (except

recursive ones);
– transforming recursive functions which are not tail-recursive into tail-recursive

ones using an explicit stack.

The second pass (2) compiles Macle into an intermediate language, called HSML
(Hierarchical State Machine Language), allowing to express parallel composition of
hierarchical finite state machines. The third pass (3) flattens the hierarchical structure
of HSML. The fourth pass (4) translates a flat HSML description into VHDL. At
each point of the compilation flow, an OCaml backend is provided for simulation and
debugging on a PC, as indicated by the dotted arrows.

The rest of this section focuses on pass 2 and is restricted to Macle Core.

Macle HSML

OCaml VHDL

1
simulation

2
3

4

Fig. 6 Compilation flow of Macle to VHDL

4.1 Targeting the register transfer level

Synchronous finite state machines (FSM) are commonly used to describe computa-
tions at the register transfer level (RTL). An FSM is classically defined by a set of
states (names) and a set of transitions. Each transition connects a source state to a
destination state and can be associated to a set of guards and a set of actions. Guards
define when the transition is enabled. They can depend on inputs and local variables.

10 Loı̈c Sylvestre et al.

Actions are performed when the transition is enabled and can write outputs and
local variables. Transitions are only taken at the rising edge of a global clock. At each
clock edge, if a transition starting from the current state has all its guards validated, it
is enabled, the associated actions are performed (instantaneously) and the destination
state becomes the current state.

FSMs are classically encoded in VHDL as synchronous processes with asyn-
chronous reset. Inputs, outputs and local variables are implemented as VHDL signals
with a dedicated signal representing the current state. At each rising edge of the input
clock, depending on the value of the current state and some conditions involving in-
puts and local variables, the next state value is selected and the value of outputs and
local variables is updated. The FSM is re-initialized, asynchronously, whenever the
reset input signal becomes true.

Fig. 7 gives a graphical representation of an FSM describing the computation
of GCD and its encoding in VHDL. The start input and rdy output are used re-
spectively to start and signal the termination of the computation. In the VHDL code,
modifications of the state variable STATE as well as the outputs and local variables
use signal assignments (<signal_name> <= <expression>). Assignments occur-
ring at the same clock edge are performed concurrently, i.e., the expressions denoted
by the right hand sides (RHSs) are all evaluated in parallel and then, and only then,
the signals designated by the left hand sides (LHSs) are updated simultaneously.

Idle

Gcd
a > b

a← a−b
a < b

b← b− a

a = b
result← a

start
rdy← false

a←m
b← n

¬start
rdy← true

entity gcd_rtl is
port(signal clk, reset : in std_logic;

signal start : in std_logic;
signal rdy : out std_logic;
signal m, n : in signed(30 downto 0);
signal result : out signed(30 downto 0));

end entity;

architecture rtl of gcd_rtl is
type t_state is (Idle, Gcd);
signal STATE : t_state;
signal a, b : signed(30 downto 0);

begin process(reset,clk) begin
if reset = ’1’ then
STATE <= Idle;

elsif rising_edge(clk) then
case STATE is

when Idle =>
if start then

rdy <= false;
a <= m;
b <= n;
STATE <= Gcd;

else
rdy <= true;
STATE <= Idle;

end if;
when Gcd =>

if a > b then
a <= a - b;
STATE <= Gcd;

elsif a < b then
b <= b - a;
STATE <= Gcd;

else
result <= a;
STATE <= Idle;

end if;
end case;

end if
end process;

end architecture;

Fig. 7 FSM and VHDL implementation of the GCD algorithm (given in Macle Fig. 5)

Accelerating OCaml programs on FPGA 11

Note that in the code given Fig. 7, arguments and result are encoded as 31-bit
signed integers to have the same representation of OCaml value than in the O2B
runtime. This enhances the interoperability between Macle and OCaml.

By declaring separate processes – each encoding a given FSM – within the same
VHDL architecture, it is easy to implement synchronous parallel composition of
FSMs. Each FSM is triggered by the same global clock and has access to the signals
declared in the architecture. However, these signals can only be shared for reading as
a signal written by a process cannot be written by another process.

4.2 An FSM-based intermediate language

We do not compile Macle circuits directly to VHDL. Instead, we use an intermediate
language, HSML (Hierarchical State Machine Language) for describing the behavior
of FSMs and expressing their composition, and which can be easily translated to
VHDL. HSML is inspired by well-known FSM-based formalisms and languages with
notions of hierarchy and compositionality, such as Statecharts [11], Communicating
Hierarchical State Machines [1] and Lustre-like languages with automata [8].

Fig. 8 defines the syntax of HSML. A circuit is a parallel composition of FSMs
(A1 ∥ · · · An) depending on inputs, modifying outputs and using local variables. An
FSM is a set of zero or more mutually recursive transitions in the scope of a body used
to initialize it. A transition is a thunk f()= A associating a name f to an FSM A.
HSML offers a notion of hierarchy. For instance, given a transition t and an output x,
the FSM (do x← 0 then (let rec t in f())) is a hierarchical formulation of the FSM
(let rec t in (do x← 0 then f())).

circuit φ ::= circuit f −→xin returns −→xout = var −→x in P

parallel composition P ::= A1 ∥ · · · An

FSM A ::= let rec t1 and · · · tn in Ainit
| if e then A1 else A2
| do x1← e1 and · · · xn← en then A
| f()
| P in A

transition t ::= f()= A

expression e ::= x | c |⊖ e | e1⊕ e2

operator1 ⊖ ::= ··

operator2 ⊕ ::= ·· | ∧ | ∨

Fig. 8 Syntax of HSML

An FSM A is a mutually recursive definition of transitions (let · · · rec · · ·), a
conditional, an assignment (do · · · then · · ·), a branch f() to a transition f()= A
or a local parallel composition of FSM (A1 ∥ · · · An) in A. An assignment do x1← e1
and · · · xn ← en in A evaluates the expressions e1 · · · en, then assigns the results

12 Loı̈c Sylvestre et al.

to the variables x1 · · · xn and finally computes A. An expression e is a variable, a
constant or the application of a built-in operator. Logical operators ∧ and ∨ are strict.

Fig. 9 shows an HSML circuit corresponding to the VHDL code given Fig. 7. This
circuit was automatically generated from the Macle circuit gcd rtl defined Fig. 5.

circuit gcd_rtl (start, m, n) returns (rdy, result) = var a, b in
let rec idle() =

if start then (do rdy ← false and a ← m and b ← n then gcd()) else
(do rdy ← true then idle())

and gcd() =
if a > b then (do a ← (a-b) then gcd()) else
if a < b then (do b ← (b-a) then gcd()) else
(do result ← a then idle())

in
(do rdy ← true then idle())

Fig. 9 HSML circuit implementing the GCD algorithm

HSML exposes the semantics of the register transfer level (RTL, informally pre-
sented on the VHDL code of Fig. 7) while allowing hierarchical formulations that
makes it close to an expression language. In particular, some HSML constructs (such
as let rec and conditional) are common with Macle. Therefore, HSML constitutes a
useful intermediate language for compiling Macle to VHDL.

4.3 Compiling Macle Core to HSML

The compilation CJcircuit f −→x = eK of a Macle Core circuit is defined as the compi-
lation of the body e of the circuit, from which the inputs, outputs and local variables
are inferred.

CciJcircuit f −→x = eK = circuit f −→xin returns
−→xout = var −−→xlocal in

A︷ ︸︸ ︷
CJeKstart,rdy,result

where


−→xin,
−→xout and −−→xlocal are inputs, outputs and local

variables declarations inferred from A
start,rdy,result are fresh names

The compilation CJeKstart,rdy,result of a Macle Core expression e is a hierarchical FSM
initialized in a special state idle. It waits for the input start to be set to the value
true to start the computation. This computation assigns a value to the output re-
sult. The output rdy notifies when the computation is done. The auxiliary function
CeJeKresult,idle

ρ is defined next. The compilation environment ρ maps functions names
to the list of their formal arguments.

CJeKstart,rdy,result =


let rec idle()=
if start then (do rdy← false then CeJeKresult,idle

/0)
else (do rdy← true then idle())

in (do rdy← true then idle())


where idle is a fresh name

Accelerating OCaml programs on FPGA 13

The compilation CeJeKr,idle
ρ of a subexpression is inductively defined on the syntax of

the expressions. The compilation of a subexpression e which does not contain control
structures is defined as an affectation of e to a variable r continuing with a tail-call to
a destination.

CeJeKr,idle
ρ = do r← e then idle()

if e is a variable, a constant or an application of an operator

The compilation of a Macle conditional is an HSML conditional, subexpressions be-
ing inductively compiled.

CeJif x then e1 else e2K
r,idle
ρ = if x then CeJe1K

r,idle
ρ else CeJe2K

r,idle
ρ

Compiling a let rec globalizes function parameters. To achieve this, each function
name introduced by a let rec is bound to the list of its formal parameters within the
compilation environment ρ . The extension of ρ with a function name f bound to its
parameters x1 · · · xn is denoted by ρ[f 7→ (x1, · · · xn)], assuming that f is not in
the domain of ρ . Alternatively, the compilation of a function call (f x1 · · · xn) is an
assignment of the values x1 · · · xn to the formal parameters y1 · · · yn given by f (ρ),
continuing with a call to f().

Ce

u

v
let rec f1

−→x1 = e1
and · · · fn

−→xn = en
in e

}

~
r,idle

ρ

=

 let rec f1 ()= CeJe1K
r,idle
ρ ′

and · · · fn ()= CeJenK
r,idle
ρ ′

in CeJeKr,idle
ρ ′


where ρ ′ = ρ[f1 7→ −→x1] · · · [fn 7→ −→xn]

CeJ f x1 · · · xnK
r,idle
ρ = do y1← x1 and · · · yn← xn then f()

if ρ(f) = (y1, · · · yn)

The compilation CeJlet x = e in e′Kr,idle
ρ of a let with a single binding is defined as the

compilation of the subexpression e into the variable x continuing with the compilation
of the body e′.

CeJlet x = e in e′Kr,idle
ρ = let rec f()= CeJe′Kr,idle

ρ in CeJeKx, f
ρ

where f is a fresh name

The compilation of a let with more than one binding is defined as a parallel compo-
sition of FSMs followed by a synchronization barrier activating the execution of the
compiled body of the let.

Ce

u

v
let x1 = e1
and · · · xn = en
in e

}

~
r,idle

ρ

(if n > 1)

=



let rec f()=
do start1← false and · · · startn← false
then
((CJe1Kstart1,rdy1,x1∥· · · CJenKstartn,rdyn,xn) in

if rdy1∧·· · rdyn then CeJeKr,idle
ρ else f())

in
do start1← true and · · · startn← true
then f()


where

{
i ∈ {1, · · · n}
f ,starti,rdyi are fresh names

14 Loı̈c Sylvestre et al.

Parallel let-bindings provide the main possibilities of acceleration of OCaml pro-
grams on FPGA as shown in the next section.

5 Examples and benchmarks

We now evaluate the speedup that can be achieved by running OCaml programs on
FPGA via O2B and Macle. These programs are assessed by taking as reference an
equivalent C code running on the same softcore processor. We first consider pro-
grams using circuits written in Macle Core (defined Fig. 4a) and then Macle circuits
interacting with the OCaml runtime (using constructs defined Fig. 4b).

5.1 Methodology

Experimental setup We use a Max10 Intel FPGA embedded on a Terasic DE10-LITE
board. This FPGA has limited resources: 50K logic elements (LEs), and 1,638 Kbit
of on-chip memory. The board itself has 64 MB of external memory (SDRAM) and
a clock frequency of 50 MHz. From a given OCaml source program, O2B creates
a C program containing the bytecode generated by the OCaml compiler, the VM,
its runtime library (including a GC) and additional C code. The bytecode as well as
the OCaml stack and heap are implemented with C static arrays, both stored in ex-
ternal memory. The stack size is of 6,400 words of 4 bytes while the heap size is
of 4MB. The resulting C program is compiled via the Nios II backend of gcc with
optimizations enabled (-Os). The Macle circuits (compiled to VHDL) and the soft-
core processor are synthetized using Quartus 20.1. All data structures manipulated
by OCaml, C and Macle code use the OCaml heap. Bounds of OCaml arrays are
dynamically checked at each access.

Measuring elapsed time Macle circuits are called from a C block executed on the
softcore. For this, and as described in Sect. 2.2, it is necessary to write arguments in
the dedicated registers of the custom component implementing a circuit, start this cir-
cuit and wait for the end of the computation to read the result (again in the dedicated
registers of the custom component). These reads and writes are done via the Avalon
SOPC bus. We measure the execution time of each Macle circuit from the beginning
to the end of the corresponding C block. The reported times, therefore, include the
time to transfer the arguments and results.

5.2 Macle Core

Pure Computations The throughput of the Macle circuit gcd rtl given Fig. 5 is of
exactly one tail-call per clock tick at 50 Mhz (i.e. 50 million tail-calls per second).
We measure the execution time of gcd rtl compared to that of the C function gcd c

(given Fig. 2a) running on the softcore. The observed Macle vs C speedup factor is
28×. The hardware implementation of gcd rtl uses approximately 360 logic ele-
ments (LEs), i.e. 0.75% of the total number of LEs available on the FPGA. Fig. 10

Accelerating OCaml programs on FPGA 15

summarizes these results and gives similar examples of tail-recursive functions ex-
pressed in Macle vs C, both called from an OCaml program executed by O2B. This
benchmark comprises the greatest common divisor (GCD), the recursive sum of the
n-th first positives integers (SUM INT), The Fibonacci sequence (FIBONACCI), a
tail-recursive version of the McCarthy 91 function (F91), and the Collatz sequence
(COLLATZ) as defined Fig. 5a in Macle. The key point is that these “pure” Macle cir-
cuits have a throughput of one tail-call per clock tick while an iteration in the C code
results in a sequence of instructions, hence the speedup of Macle vs C depends on
the nature of the computation. Moreover, the size (in LEs) of the hardware generated
from Macle also depends on the nature of the computation.

tail-recursive function GCD SUM INT FIBONACCI F91 COLLATZ
speedup Macle vs C 28× 28× 42× 42× 60×
size (in LEs) 360 275 335 345 360

Fig. 10 Speedup factor of pure computations defined in Macle vs C along with resource usage

Parallel computations Fig. 11a gives a circuit sum gcd2 calling twice a function
gcd and combining results. The let · · · and · · · in · · · constructs is implemented by a
synchronization barrier involving a parallel composition of two instances of the FSM
given Fig. 7. The global execution time of the barrier is the max of the execution times
of the expressions (gcd ai y), to which is added the execution time of the rest of
the computation (here instantaneous). For instance, calling the circuit sum gcd2 with
equal arguments a1 and a2 doubles the previous 28× speedup reported in Fig. 10.

circuit sum_gcd2 a1 a2 y =
let rec gcd n m =

if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in
let x1 = gcd a1 y
and x2 = gcd a2 y in
(x1 + x2)

(a) circuit sum gcd2

sum gcdn size (LEs)
sum gcd2 753
sum gcd4 1,413
sum gcd8 2,828
sum gcd16 5,135
sum gcd32 9,823

(b) resource usage

Fig. 11 Parallelization of a computation and impact on the size of the generated hardware

Generalizing this example to circuits sum gcdn (computing n times gcd rtl and
summing the results) gives a speedup of 28× n in Macle vs C (e.g., sum gcd32 is
900 times faster in Macle than in C). This gain is only possible because the gcd

local function is inlined n times, the generated hardware using more LEs as shown
Fig. 11b.

16 Loı̈c Sylvestre et al.

5.3 Interacting with the OCaml runtime

Fig. 12 depicts the execution time of a Macle circuit sum array (given Fig. 5a) com-
puting the sum of the elements of an OCaml array. The size n of the array is its
number of elements. The input array is filled with the n first positive integers.

In Fig. 12a, the OCaml heap is limited to 64 KB and is allocated either in on-chip
memory or in external memory (SDRAM). Access times are longer (around two times
longer on this example) using external memory than on-chip memory. This is still
reasonable, considering that this allows to manipulate much larger data structures.

In Fig. 12b, the OCaml heap is allocated in SDRAM (with a heap size of 4MB).
The Macle version is 4.8 times faster than the C one. Compared to the speedup ob-
tained on pure computations, this example highlights a bottleneck when using mem-
ory accesses from Macle code.

0 500 1,000
0

0.5

1

size of the OCaml array

tim
e

(m
ill

is
ec

.)

Macle (SDRAM)
Macle (on-chip)

(a) using SDRAM vs on-chip memory

0 10,000 20,000 30,000 40,000
0

100

200

size of the OCaml array

tim
e

(m
ill

is
ec

.)

C
Macle

(b) using SDRAM

Fig. 12 Execution time of a Macle circuit summing the elements of an OCaml array

Fig. 13a shows the execution time of a Macle circuit matrix multiply multi-
plying two n×n matrices filled with positive integers smaller than n, vs a C version.
The Macle version (using a classic formulation with three nested loops) is 7.5 times
faster than the C one. The generated hardware uses 1,602 LEs.

Fig. 13b shows the execution time of the Macle circuit eval_exp (given Fig. 5a)
vs a C version, recursively evaluating trees of arithmetic expressions of various sizes
(in number of constants and variables). The Macle version is 13 times faster than
the C formulation. The realization of this Macle circuit uses 2,461 LEs and an ex-
plicit stack of 3,072 words implemented in on-chip memory (using RAM blocks and
without requiring bus accesses).

This preliminary evaluation shows that reformulating side-effect-free C functions
as Macle circuits can bring substantial speedups (eg., up to 28× for the gcd rtl of
Fig. 5). Replicating the hardware corresponding to these circuits, intrinsically resul-
ting in their parallel execution, allows to further boost these speedups (e.g., up to
960× for the sum gcd32 example given Fig. 10).

Accelerating OCaml programs on FPGA 17

0 20 40 60 80 100
0

10

20

order n of the two square matrices

tim
e

(s
ec

.)

C
Macle

(a) circuit matrix multiply

0 5,000 10,000 15,000
0

200

400

size of the arithmetic expression

tim
e

(m
ill

is
ec

.)

C
Macle

(b) circuit eval exp

Fig. 13 Execution time of Macle circuits using imperative features

It also show that for large data structures, such as arrays, the cost of accessing the
corresponding memory can quickly create a bottleneck.

6 Optimised transfers and parallel skeletons

As demonstrated in the previous section, allowing Macle circuits to manipulate val-
ues stored in the OCaml heap has a cost. Because this heap is implemented in shared
memory, each access requires a bus transaction. When manipulating large data struc-
tures, like arrays, the corresponding overhead can quickly become prohibitive. To
overcome this problem, Macle provides parallel skeletons aiming at minimizing this
overhead and offering higher-level parallelism. These skeletons are listed Fig. 14.

array map⟨k⟩ : (α → β)→ α array→ β array→ unit

array reduce⟨k⟩ : (α → β → α)→ α → β array→ α

array scan⟨k⟩ : (α → β → α)→ α → β array→ α array→ unit

Fig. 14 Simple parallel skeletons available in Macle

Each skeleton is parameterized by an integer literal k, which statically specifies
the size of a buffer used internally to transfer slices of the source and/or destination
arrays between the OCaml heap and the Macle circuits:

– (array map⟨k⟩ f src dst) copies the k first elements of the OCaml array src into a
VHDL array buf, computes the function f in parallel on each element of buf and
writes back the k resulting values in the OCaml array dst. Processing the whole
OCaml array is carried out by iterating this transfer-execution-transfer sequence.

– (array reduce⟨k⟩ f init a) sequentialy reduces the OCaml array a with the func-
tion f and an accumulator initialized to init by processing array elements k by k.
If the body of f is a combinatorial expression (i.e., a constant, a variable or an

18 Loı̈c Sylvestre et al.

operator applied to combinatorial expressions), each transfer-execution sequence
is pipelined thus avoiding the use of a buffer.

– (array scan⟨k⟩ f init src dst) sequentialy reduces the OCaml array src with the
function f and an accumulator initialized to init by processing array elements k
by k and write back each group of k intermediate steps in the OCaml array dst.

Example 1. Fig. 15a illustrates the use of a skeleton array reduce<k> to define an
optimized version sum array optimized of the Macle circuit sum array (given
Fig. 5a). Fig. 15b gives the execution time of the circuit sum array optimized vs
the circuit sum array. Using array reduce<k>, the size of the array is calculated
only once rather than at each array accesses. Moreover, since the body of the reduc-
tion function f is a combinatorial expression, the execution is piplined and the gener-
ated code does not need to use any buffer. The size of the circuit does not depend on
k. The sum array and sum array optimized circuits use respectively arround 570
and 590 LEs. The optimized version is 2.8 times faster than the unoptimized one.
Fig. 13a showed that the Macle circuit sum array is 4.8 times faster than C. As a
result, there is a speedup of 4.8× 2.8 = 13 when using sum array optimized vs
the C version.

circuit sum_array a =
(* given Fig. 5a *)
· · · ;;

circuit sum_array_optimized a =
let add n m = n + m in
array reduce<4> add 0 a ;;

let main () =
let n = 14 * 3200 in
let a = Array.init n (fun x -> x) in
print_int (sum_array a);
print_int (sum_array_optimized a) ;;

main ();;

(a) Source program

10,000 20,000 30,000 40,000
0

20

40

size n of the OCaml array

tim
e

(m
ill

is
ec

.)

sum array

sum array optimized

(b) Execution times

Fig. 15 OCaml program with a Macle circuit using the parallel skeleton array reduce<k>

Example 2. We consider an OCaml program using a Macle circuit filter mulk re-
placing all multiples of an integer y by zero in an OCaml array a of size n containing
integer from 1 to n. This Macle circuit uses a parallelism skeleton array map⟨k⟩
processing the array a in parallel by slice of k elements. Fig. 16a gives the corre-
sponding program for k := 64.

Fig. 16b shows the execution times of the Macle circuit filter mulk for different
k vs a C sequential version. Doubling the degree of parallelism k almost doubles both
the size of the generated hardware and the speedup (taking into account the transfer
time). For instance, when n = 96,000, filter mul1 is 28 times faster than the C
version, while filter mul64 is 60 times faster than filter mul1, resulting in a

Accelerating OCaml programs on FPGA 19

cumulated speedup of 28×60 = 1,680. This follows a classical space-time trade-off
as shown by Fig. 16c, given the sizes (in LEs) of filter mulk for different k.

Comparison with sequential code running on a PC. We assess the performance of
the Macle circuit filter mul 64 (given Fig. 16a) vs a C sequential version running
on a PC equipped with an Intel Core i7 at 2.2 GHz and 16 GB of RAM. This C code
is compiled with gcc option -Os and called from an OCaml program compiled to
native code with the ocamlopt compiler. The frequency ratio between the PC and the
FPGA is 2.2G/50M = 44. Due to licensing limitations, the Nios II architecture used
in our experiment is a basic, unoptimized one. The sequential C version running on
the softcore is 44×8.7 = 380 slower than the same C code running on the PC. Thus,
on this small benchmark, Macle code synthesized on the FPGA is 1,680/380 = 4.4
times faster than an equivalent C sequential code running on a PC.

circuit filter_mul_64 y a =

let rec gcd n m =
if n > m then gcd (n-m) m else
if n < m then gcd n (m-n)

else n
in

if y <= 1 then
raise (Failure "(y > 0) expected")

else
let zero_if_mul x =

if x <= 1 then 0 else
if x == y then x else
if gcd x y == 1 then x else 0

in
array map<64> zero_if_mul a a ;;

let interval n =
Array.init n (fun x -> x + 1) ;;

let main() =
let n = 32*1000 in
let a = interval n in
let y = 2 in

filter_mul y a ;;

main();;

(a) Source program

10,000 20,000 30,000
0

50

100

150

size n of the OCaml array

tim
e

(s
ec

.)

C (on softcore)
k := 1

10,000 20,000 30,000
0

2

4

size n of the OCaml array

tim
e

(s
ec

.)

k := 1
k := 2
k := 4
k := 8
k := 16
k := 32
k := 64

(b) Execution times

k 1 2 4 8 16 32 65
size (LEs) 1,240 1,655 2,487 4,182 7,521 15,107 29,739

(c) size of filter mul for different k

Fig. 16 OCaml program with a Macle circuit using the parallel skeleton array map<k>

20 Loı̈c Sylvestre et al.

7 Conclusion

In this paper, we have proposed an approach for programming FPGAs using the
OCaml language. This approach consists in:

– running OCaml programs by embedding their bytecode and the OCaml VM in a
C program running on a softcore processor;

– calling hardware-accelerated functions, user-defined in the Macle language from
OCaml.

Macle is a functional-imperative subset of OCaml supporting:

– parallel and sequential compositions of computations;
– mixing computations with sequential accesses to the OCaml heap (within the

dynamic memory of the softcore processor);
– use of parallelism skeletons on dynamic data structures with optimization of

memory transfers.

Hardware acceleration of OCaml functions is simply obtained by replacing a “let”
keyword in the original OCaml code by “circuit”. This facilitates porting of OCaml
applications, quick prototyping and debugging. Moreover, Macle is a statically typed
language that provides much stronger guarantees on the safety of the generated hard-
ware than classical HDLs.

We have presented an implementation of the proposed approach based on the O2B
framework augmented with a Macle compiler targeting VHDL. This compilation flow
is fully automatized on an Intel FPGA. It is simple to use and includes a simulation
mode generating OCaml code from different points of the Macle compiler to test the
applications on a PC before synthesizing them on the FPGA. The use of a local stack
implemented in on-chip memory (instead of LEs) to realize non-tail recursive Macle
functions (as evoked in Sect. 5.3) is a key point to allow large and complex symbolic
computations to be implemented on moderately sized FPGAs.

Preliminary results, obtained on small benchmarks are very encouraging. They
show in particular that important speedups (up to the three orders of magnitude, com-
pared to C code running on the embedded softcore) can be obtained by combining
the ability to compile a Macle function to hardware and the possibility to replicate the
corresponding hardware in order to exploit data parallelism. Parametrizable parallel
skeletons both offer a manner to address the bottleneck occurring when exchanging
data between the OCaml host program and the accelerated Macle functions. It is also
a very practical way to explore the space-time trade-off, which constitutes a clas-
sical issue when programming FPGAs (reducing computing time by increasing the
number of logic elements used).

The work described in this paper offers many interesting paths for future work.

First of all, scaling up for larger applications is an important point to convince
the OCaml community to use FPGAs, and the FPGA community to use high-level
languages. From a programmer’s point of view, it would be useful to allocate values
from the Macle code, support concurrent memory access, share Macle local functions
(rather than inline them), and use more parallel skeletons, possibly, domain-specific.

Accelerating OCaml programs on FPGA 21

Concerning the tool chain itself, we plan to switch to fully open source design
and synthesis tools, with the idea that using such tools would facilitate both the static
analysis of the Macle code and prediction of the efficiency of the generated hard-
ware (e.g., resource usage and execution time). These informations could be used,
for example, to decide which Macle function should be inlined and also to provide
guarantees on applications interacting with the outside world. This is especially nec-
essary for critical applications, for which it would be appropriate to use synchronous
programming models with similarities to the HSML intermediate language used in
the Macle compiler.

One can expect much higher speedups by using faster and/or more resourceful
FPGA boards. Moreover, although the use of softcore processors leads to some in-
efficiencies, it remains very suitable for multi-core programming, each core carrying
an instance of the OCaml VM.

In the longer term, we could also explore other ways to accelerate both the run-
time (memory and exception management) and the VM interpreter by partially im-
plementing them in hardware, or even using different levels of parallelism such as
multiple VMs sharing Macle code. The latter could provide an interesting approach
to exploit heterogeneous platforms including multi-cores, GPUs and FPGAs.

Acknowledgements Work on O2B and Macle is partially supported by the Center for Research and In-
novation on Free Software (IRILL).

References

[1] R. Alur, S. Kannan, and M. Yannakakis, “Communicating hierarchical state machines,” in Interna-
tional Colloquium on Automata, Languages, and Programming, Springer, 1999, pp. 169–178. DOI:
10.1007/3-540-48523-6_14.

[2] J. Auerbach, D. F. Bacon, P. Cheng, et al., “Lime: a java-compatible and synthesizable language for
heterogeneous architectures,” in ACM international conference on Object oriented programming
systems languages and applications, 2010, pp. 89–108. DOI: 10.1145/1869459.1869469.

[3] C. Baaij, M. Kooijman, J. Kuper, et al., “Clash: structural descriptions of synchronous hardware
using Haskell,” in 2010 13th Euromicro Conference on Digital System Design: Architectures, Meth-
ods and Tools, IEEE, 2010, pp. 714–721. DOI: 10.1109/DSD.2010.21.

[4] J. Bachrach, H. Vo, B. Richards, et al., “Chisel: constructing hardware in a Scala embedded lan-
guage,” in DAC Design Automation Conference 2012, IEEE, 2012, pp. 1212–1221. DOI: 10.1145/
2228360.2228584.

[5] A. Canis, J. Choi, M. Aldham, et al., “LegUp: high-level synthesis for FPGA-based processor/ac-
celerator systems,” in Proceedings of the 19th ACM/SIGDA international symposium on Field pro-
grammable gate arrays (FPGA), 2011, pp. 33–36. DOI: 10.1145/1950413.1950423.

[6] J. M. Cardoso, P. C. Diniz, and M. Weinhardt, “Compiling for reconfigurable computing: A survey,”
ACM Computing Surveys (CSUR), vol. 42, no. 4, pp. 1–65, 2010. DOI: 10.1145/1749603.
1749604.

[7] Y. Chi, L. Guo, J. Lau, et al., “Extending high-level synthesis for task-parallel programs,” in 2021
IEEE 29th Annual International Symposium on Field-Programmable Custom Computing Machines
(FCCM), IEEE, 2021, pp. 204–213. DOI: 10.1145/3431920.3439470.

[8] J.-L. Colaço, G. Hamon, and M. Pouzet, “Mixing signals and modes in synchronous data-flow
systems,” in Proceedings of the 6th ACM & IEEE International Conference on Embedded Software,
2006, pp. 73–82. DOI: 10.1145/1176887.1176899.

[9] M. Danelutto, G. Mencagli, M. Torquati, et al., “Algorithmic skeletons and parallel design patterns
in mainstream parallel programming,” Int. J. Parallel Program., vol. 49, pp. 177–198, 2021. DOI:
10.1007/s10766-020-00684-w.

https://doi.org/10.1007/3-540-48523-6_14
https://doi.org/10.1145/1869459.1869469
https://doi.org/10.1109/DSD.2010.21
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/2228360.2228584
https://doi.org/10.1145/1950413.1950423
https://doi.org/10.1145/1749603.1749604
https://doi.org/10.1145/1749603.1749604
https://doi.org/10.1145/3431920.3439470
https://doi.org/10.1145/1176887.1176899
https://doi.org/10.1007/s10766-020-00684-w

22 Loı̈c Sylvestre et al.

[10] J. Decaluwe, “MyHDL: a Python-based hardware description language,” Linux journal, pp. 84–87,
2004.

[11] D. Drusinsky and D. Harel, “Using statecharts for hardware description and synthesis,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 8, no. 7, pp. 798–807,
1989. DOI: 10.1109/43.31537.

[12] J. Fumero, A. Stratikopoulos, and C. Kotselidis, “Running parallel bytecode interpreters on hetero-
geneous hardware,” in 4th International Conference on Art, Science, and Engineering of Program-
ming, 2020, pp. 31–35. DOI: 10.1145/3397537.3397563.

[13] P. Gammie, “Synchronous digital circuits as functional programs,” ACM Computing Surveys (
CSUR), vol. 46, no. 2, pp. 1–27, 2013. DOI: 10.1145/2543581.2543588.

[14] D. R. Ghica, A. Smith, and S. Singh, “Geometry of synthesis IV: compiling affine recursion into
static hardware,” in Proceedings of the 16th ACM SIGPLAN international conference on Functional
programming, 2011, pp. 221–233. DOI: 10.1145/2034574.2034805.

[15] S. Huang, K. Wu, H. Jeong, et al., “Pylog: An algorithm-centric python-based FPGA programming
and synthesis flow,” IEEE Transactions on Computers, vol. 70, no. 12, pp. 2015–2028, 2021. DOI:
10.1109/TC.2021.3123465.

[16] Y. Ito and K. Nakano, “A hardware-software cooperative approach for the exhaustive verification
of the Collatz conjecture,” in 2009 IEEE International Symposium on Parallel and Distributed
Processing with Applications, IEEE, 2009, pp. 63–70. DOI: 10.1109/ISPA.2009.35.

[17] A. Kennedy, “Compiling with continuations, continued,” in 12th ACM SIGPLAN International
Conference on Functional programming, 2007, pp. 177–190. DOI: 10.1145/1291151.1291179.

[18] Y.-H. Lai, E. Ustun, S. Xiang, et al., “Programming and synthesis for software-defined FPGA
acceleration: status and future prospects,” ACM Transactions on Reconfigurable Technology and
Systems (TRETS), vol. 14, no. 4, pp. 1–39, 2021. DOI: 10.1145/3469660.

[19] M. Maas, K. Asanović, and J. Kubiatowicz, “A hardware accelerator for tracing garbage collec-
tion,” in 2018 ACM/IEEE 45th Annual International Symposium on Computer Architecture (ISCA),
IEEE, 2018, pp. 138–151. DOI: 10.1109/ISCA.2018.00022.

[20] A. Mycroft and R. Sharp, “A statically allocated parallel functional language,” in International
Colloquium on Automata, Languages, and Programming, Springer, 2000, pp. 37–48. DOI: 10.
1007/3-540-45022-X_5.

[21] R. Nane, V.-M. Sima, C. Pilato, et al., “A survey and evaluation of fpga high-level synthesis tools,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 10,
pp. 1591–1604, 2015. DOI: 10.1109/TCAD.2015.2513673.

[22] M. Papadimitriou, J. Fumero, A. Stratikopoulos, et al., “Transparent compiler and runtime spe-
cializations for accelerating managed languages on FPGAs,” The Art, Science, and Engineering of
Programming, vol. 5, no. 2, pp. 8–1, 2020. DOI: 10.22152/programming-journal.org/2021/
5/8.

[23] X. Saint-Mleux, M. Feeley, and J.-P. David, “SHard: a Scheme to hardware compiler,” in Workshop
on Scheme and Functional Programming, 2006.

[24] O. Segal, M. Margala, S. R. Chalamalasetti, et al., “High level programming framework for FPGAs
in the data center,” in 2014 24th International Conference on Field Programmable Logic and Ap-
plications (FPL), IEEE, 2014, pp. 1–4. DOI: 10.1109/FPL.2014.6927442.

[25] S. Singh and D. J. Greaves, “Kiwi: Synthesis of fpga circuits from parallel programs,” in 16th Inter-
national Symposium on Field-Programmable Custom Computing Machines, IEEE, 2008, pp. 3–12.
DOI: 10.1109/FCCM.2008.46.

[26] R. Stewart, K. Duncan, G. Michaelson, et al., “RIPL: a parallel image processing language for
FPGAs,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 11, no. 1,
pp. 1–24, 2018. DOI: 10.1145/3180481.

[27] R. Townsend, M. A. Kim, and S. A. Edwards, “From functional programs to pipelined dataflow
circuits,” in Proceedings of the 26th International Conference on Compiler Construction, 2017,
pp. 76–86. DOI: 10.1145/3033019.3033027.

[28] C.-J. Tsai, H.-W. Kuo, Z. Lin, et al., “A Java processor IP design for embedded SoC,” ACM Trans-
actions on Embedded Computing Systems, vol. 14, no. 2, pp. 1–25, 2015. DOI: 10.1145/2629649.

[29] S. Varoumas, B. Vaugon, and E. Chailloux, “A generic virtual machine approach for program-
ming microcontrollers: the OMicroB project,” in 9th European Congress on Embedded Real Time
Software and Systems (ERTS 2018), Jan. 2018.

https://doi.org/10.1109/43.31537
https://doi.org/10.1145/3397537.3397563
https://doi.org/10.1145/2543581.2543588
https://doi.org/10.1145/2034574.2034805
https://doi.org/10.1109/TC.2021.3123465
https://doi.org/10.1109/ISPA.2009.35
https://doi.org/10.1145/1291151.1291179
https://doi.org/10.1145/3469660
https://doi.org/10.1109/ISCA.2018.00022
https://doi.org/10.1007/3-540-45022-X_5
https://doi.org/10.1007/3-540-45022-X_5
https://doi.org/10.1109/TCAD.2015.2513673
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.22152/programming-journal.org/2021/5/8
https://doi.org/10.1109/FPL.2014.6927442
https://doi.org/10.1109/FCCM.2008.46
https://doi.org/10.1145/3180481
https://doi.org/10.1145/3033019.3033027
https://doi.org/10.1145/2629649

	Introduction
	The O2B framework
	High-level FPGA programming
	Compiling Macle
	Examples and benchmarks
	Optimised transfers and parallel skeletons
	Conclusion

