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Abstract

The ETSI has recently published a front-end processing standard for distributed speech
recognition systems. The key idea of the standard is to extract the spectral features of
speech signals at the front-end terminals so that acoustic distortion caused by communication
channels can be avoided. This paper investigates the effect of extracting spectral features
from different stages of the front-end processing on the performance of distributed speaker
verification systems. A technique that combines handset selectors with stochastic feature
transformation is also employed in a back-end speaker verification system to reduce the
acoustic mismatch between different handsets. Because the feature vectors obtained from
the back-end server are vector quantized, the paper proposes two approaches to adding
Gaussian noise to the quantized feature vectors for training the Gaussian mixture speaker
models. In one approach, the variances of the Gaussian noise are made dependent on the
codeword distance. In another approach, the variances are a function of the distance between

some unquantized training vectors and their closest code vector. The HTIMIT corpus was
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used in the experiments and results based on 150 speakers show that stochastic feature
transformation can be added to the back-end server for compensating transducer distortion.
It is also found that better verification performance can be achieved when the LMS-based
blind equalization in the standard is replaced by stochastic feature transformation.
Keywords: Distributed speaker verification, DSR, DSR front-end processing, feature

transformation.

1 Introduction

The use of mobile and hand-held devices has become increasingly popular in recent years. While
the continuous shrinkage of these devices is a key reason behind their popularity among con-
sumers, the increasing number of tasks that these devices can perform also play an important
role. In particular, the ability to surf the Internet and perform financial transactions over the
wireless network via the next generation of mobile devices is expected to raise the revenue of the
telecommunication industry and the E-commerce market. However, due to their intrinsically
small keypads, inputting text and data to these devices is very time consuming and difficult.
While speech input is an ideal alternative for this task, mobile phone users tend to use their

phones in noisy environment, making robust speech and speaker recognition a challenging task.

Traditionally, speech signals are encoded at the client-side and coded speech signals are
transmitted to the server. Recognition is then performed on the server-side after the recon-
struction and parameterization of the decoded speech signals. However, it has been found
that channel- and codec-distortion can degrade recognition performance significantly (Euler and
Zinke, 1994; Lilly and Paliwal, 1996). To address this problem, the European Telecommunica-
tions Standard Institute (ETSI) has recently published a front-end processing standard in which
feature vectors are extracted at the client-side (Pearce, 2000; ETSI, 2002). The technology is

commonly referred to as distributed speech recognition (DSR) in the literature.

Typically, a DSR system can be divided into two parts: a front-end terminal and a
back-end server. In the front-end terminal, 13 Mel-frequency cepstral coefficients (from ¢g to
c12) and log-energy are extracted from 25ms speech frames at a rate of 100Hz. The features
are then compressed using split vector quantization. A 4.8Kbps data channel is established for
transmitting the compressed features to a back-end server. In the server-side, the bit-stream
is unpacked and recognition can be carried out based on the decompressed feature parameters.
Since data in the data channel contain the recognition parameters only, codec distortion can
be eliminated. The client/server architecture of DSR systems is highly flexible. In addition
to wireless networks, the architecture is also applicable to robust speech recognition over IP
networks (Ferandez and Mateo, 2002).



There are studies that compare the recognition performance between the features ex-
tracted from the DSR front-end and those extracted from other transcoded speech (Kelleher
et al., 2002). The results show that the DSR front-end achieves a significantly better recogni-
tion performance. Because mobile phone users typically use their phones in noisy environments,
different noise reduction schemes for DSR have been proposed (Andrassy et al., 2001; Noe et al.,

2001). These schemes, however, introduce extra computation burden on the front-end processor.

Unlike Andrassy et al. (2001) and Noe et al. (2001) where noise reduction is performed
at the client side, this paper proposes and evaluates a distributed speaker recognition system in
which channel compensation is performed at the back-end server. Because the LMS algorithm
used in the ETSI standard is a kind of linear equalization algorithm, it may not perform sat-
isfactorily on telephone handsets with nonlinear characteristics. To overcome the limitation of
the LMS algorithm, this paper incorporates a feature transformation algorithm (Mak and Kung,
2002; Mak et al., 2004; Tsang et al., 2002, 2003) into the back-end recognizer to enhance the
robustness of the speaker verification system against handset variations. Experiments with and

without using the LMS-based blind equalization were also performed for comparison.

The organization of the paper is as follows. Section 2 provides a brief introduction to
speaker recognition and highlights the elements of a speaker verification system. In Section
3, the techniques of stochastic feature transformation and handset identification are briefly
discussed. Section 4 introduces two feature-vector perturbation methods that enable us to use
quantized feature vectors to train GMM-based speaker models. In Section 5, speaker verification
experiments are presented and results are reported in Section 6. Finally, conclusions of the paper

are provided in Section 7.

2 Speaker Verification

The goal of automatic speaker recognition is to recognize a speaker from his or her voice (Camp-
bell Jr., 1997; Furui, 1997). Speaker recognition can generally be divided into two categories:
speaker identification and speaker verification. The former determines the identity of an un-
known speaker from a group of known speakers, whereas the latter authenticates the identity of
a speaker based on his or her own voice. A speaker claiming an identity is called a claimant, and
an unregistered speaker pretending to be a registered speaker is called an impostor. An ideal
speaker recognition system should not reject registered speakers (false rejections) or accept

impostors (false acceptances).

Typically, a speaker verification system is composed of a front-end feature extractor, a

set of client speaker models, a set of background speaker models, and a decision unit. The



feature extractor derives speaker-specific information from the speech signals. It is well known
from the source-filter theory of speech production (Fant, 1970) that spectral envelopes implicitly
encode vocal-tract shape information (e.g., length and cross-section area) of a speaker and that
pitch harmonics encode the glottal source information. Because it is commonly believed that
vocal-tract shape varies from speaker to speaker, spectral features, such as linear-predictive
cepstral coefficients (LPCCs) (Rabiner and Juang, 1993) and mel-frequency cepstral coefficients
(MFCCs) (Davis and Mermelstein, 1980), are often used. A set of speaker models is trained from
the spectral features extracted from client utterances. A background model is also trained using
the speech of a large number of speakers to represent speaker-independent speech (Reynolds
et al., 2000). Basically, the background models are used to normalize the scores of the speaker
models to minimize nonspeaker related variability such as acoustic noise and channel effect. To
verify a claimant, speaker scores are normalized by the background scores and the resulting
normalized score is compared with a decision threshold. The claimant is accepted (rejected)
if the score is larger (smaller) than the threshold. As almost perfect verification has become
achievable for clean speech, researchers have focused on the problems of transducer mismatches

and robustness in recent years.

3 Stochastic Feature Transformation and Handset Identification

Stochastic feature transformation (Sankar and Lee, 1996; Mak and Kung, 2002) is based on the
assumption that clean feature vectors X; can be recovered from distorted vectors y; using the

transformation
Xt = fu(yt) = Ay + b, (1)

where v = {A, b} denotes the transformation parameters and f,(-) is the transformation func-
tion. For zeroth-order transformations, A is an identity matrix; for first-order transformations,
A is a scaling and rotation matrix. In both cases, b is a bias vector representing convolutional
distortion in the cepstral domain. For computational simplicity, all off-diagonal elements of A
are set to zero (i.e., A = diag{a1,a9,...,ap} where D is the feature dimension). The trans-
formation parameters v = {A,b} can be estimated by the EM algorithm. More specifically,
given the current estimate v/ = {A’, b’} and an M-component Gaussian mixture model (GMM)
Ax = {wj, 1, E; } " | representing clean speech, the new estimate v = {A, b} is computed by

maximizing an auxiliary function
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where h;(f,/(y:)) is the posterior probability given by

. wip(fur (ye) |1, 35)
hi(fo(y)) = P(jlye, Ax, V') = =37 7 (3)
S wp(fo (yo)l e, S1)
and |J,(y¢)| is the determinant of a Jacobian matrix with (r,s)-th entry given by J,(y¢)rs =
Of,(yt)s/Oysr. For detailed derivation, see (Kung et al., 2004).

In this work, the feature transformation was combined with a handset selector (Tsang
et al., 2002; Mak et al., 2004) for robust speaker verification. Specifically, before verification takes
place, we compute one set of transformation parameters for each type of handsets that claimants
are likely to use. Then, during a verification session, we identify the most likely handset that
is used by the claimant and select the best set of transformation parameters accordingly. Let
us denote I'y as the GMM representing the speech obtained from the k-th handset. Given an

utterance, the most likely handset is selected according to
* H T
k' =argmaxy | logp(yi[Tx), (4)

where H is the number of handsets and p(y|T'x) is the density function of the distorted data
given the k-th handset. The transformation parameters corresponding to the k*-th handset are

then used for transforming the distorted vectors.

4 Perturbation of Quantized Vectors

Because the feature vectors at the server-side are vector quantized, the distribution of the
quantized vectors is discrete. As a result, it is difficult to train a GMM (whose output represents
a continuous density function) to fit the quantized data. To overcome this problem, we propose
adding zero-mean random vectors to the quantized MFCCs to produce the training vectors.

Specifically, the training vectors u;’s are obtained by

u; = Q(Xt) + Uz

where Q(-) and x; represent the quantization operation and unquantized vectors, respectively,
and n, ~ N (0,%) are D-dimensional Gaussian vectors with zero mean and diagonal covariance

matrix ¥ = diag{o?, ... ,a%}. Here, we outline two approaches to estimating the values of o;’s.

4.1 Approach I: Inter-Codeword Distance Dependent Perturbation

In this approach, a VQ codebook V = {v;}7_, = {Uij}jD:p where S is the number of code vectors

and D the feature dimension, is derived from the VQ codebooks {Q%!,... Q!%!} defined in



the ETSI standard. The code vectors in V are arranged such that vectors with consecutive
indexes are closest to each other in the Euclidean sense. Given the codebook V), the standard

derivation of each component of the Gaussian noise n, is found by

1 S—1

05 =« ﬁ Z (U’L] - U(i—i—l)j)za j=1...,D, (5)
=1

where « is a scaling factor to be found empirically using training data. According to the ETSI
standard, S = 64 and D = 12.

4.2 Approach II: Data-to-Codeword Distance Dependent Perturbation

In approach II, unquantized feature vectors {xtbk)}fy:l extraced from N background speakers

during the training phase are used to build an index table

)
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where S is the codebook size and T}, is the number of training vectors from the k-th background

speaker. Let us define o} = [0} 10 ... 0% p)? as the standard deviation vector corresponding

to the k-th background speaker. The components of o7 are found by

T,
1 b 2
oh = T—kZ(ng)—vmkt,j) , j=1,....Dandk=1,...,N, (7)
t=1
where xt(z-k) and vy, ; are the j-th component of th’“) and v,,,, respectively. Finally, the

diagonal elements of the covariance matrix 3 are calculated by

oj =

2|2

N
Y ot J=1,...,D, (8)
k=1

where « is a scaling factor that is estimated using enrollment data. Note that one can access
the unquantized feature vectors derived from the background speakers but not from the client
speakers. This is because for client speakers, the server can only extract quantized vectors
Q(x¢) from the DSR bit-stream. Because background speakers’ speech can be obtained from
prerecorded speech copora, it is possible to implement the DSR front-end in software to obtain

the unquantized spectral vectors.



Table 1: Feature sets for training and verification. Unquantized denotes the MFCCs before vector
quantization in the client side, and gquantized denotes the vector quantized MFCCs extracted

from the bit-stream in the server side (see Figure 2).

Feature Set

Training ‘ Verification
Condition A || Unquantized MFCC | Unquantized MFCC
Condition B || Unquantized MFCC Quantized MFCC
Condition C Quantized MFCC Quantized MFCC

4.3 Comparing Approach I and Approach 11

Figure 1 shows the projection of the quantized feature vectors on the ci-co plane before and
after random vectors were added using Approach I and Approach II. We can observe from the
figure that both approaches can make the distribution of the perturbed features very similar to

the unquantized one. As a result, training the GMM speaker models will become possible.

One should bear in mind that the objective of adding the random vectors is to enable the
EM algorithm to train the GMM speaker models instead of recovering the unquantized feature
vectors from their quantized counterparts. In this respect, the noise variance 0']2- should not be
too large; otherwise the speaker characteristics contained in the noise-added vectors cannot be
maintained. In fact, in a preliminary experiment, we have tried removing the square root in
Eq. (5) and found that the resulting speaker models cannot discriminate client speakers from

impostors.

5 Experiments

5.1 Speech Data

The HTIMIT corpus (Reynolds, 1997) was used to evaluate the speaker features extracted
from different stages of the DSR front-end. HTIMIT was obtained by playing a subset of
the TIMIT corpus (Fisher et al., 1986) through four carbon button telephone handsets (cbl-
cb4), four electret handsets (ell—el4), a portable handset (ptl), and a Sennheizer head-mounted
microphone (senh). Unlike other telephone speech databases where no handset labels are given,
every utterance in HTIMIT is labelled with a handset name (cbl-cb4, ell—el4, ptl or senh).
This feature makes HTIMIT appropriate for the study of transducer effect in speech/speaker
recognition, and HTIMIT has been used in speaker recognition studies (Quatieri et al., 2000).



Speakers in the corpus were divided into a customer set (50 male and 50 female) and
an impostor set (25 male and 25 female). Each speaker in the corpus spoke two dialectal
sentences (the SA sentence set), five phonetically-compact sentences (the SX sentence set) and
three phonetically-diverse sentences (the SI sentence set). Each speaker spoke the same set
of sentences in the SA sentence set. In the SX sentence set, some speakers spoke the same
sentences. However, all sentences in the SI sentence set are different. Therefore, the HTIMIT
corpus allows us to perform text-independent speaker verification by using SA and SX sentence

sets as the training set and the SI sentence set as the test set.

5.2 Quantized and Unquantized Feature Vectors

According to the ETSI standard for DSR systems (ETSI, 2002), blind equalization is applied to
the spectral features (MFCCs) during the feature extraction stage. To compare the performance
of stochastic feature transformation against blind equalization, two sets of experiments were
performed. In one set of experiments, LMS-based blind equalization was applied, while in
another set, no blind equalization was applied. Two sets of feature vectors, an unquantized
set and a quantized set, were extracted from different stages of the front-end processor of the
ETSI standard (cf. Figure 2). More precisely, the unquantized set was extracted before feature
compression in the terminal front-end while the quantized set was extracted just after server
feature processing. To obtain a better comparison, speaker verification was performed under

three conditions shown in Table 1.

Although the ETSI standard specifies that a total of 39 coefficients (¢, ca, . .., c12,{In E & ¢p},
and their first- and second-derivatives) per speech frame can be extracted from server-end bit-
streams, only 12 MFCCs (c1, ¢a, . .., c12) per frame were used in the experiments reported here.

Therefore, the values of S and D in Eqs. (5) through (8) were set to 64 and 12, respectively.

5.3 Enrollment Procedures

Similar to our previous work (Mak and Kung, 2002; Mak et al., 2004; Yiu et al., 2003; Tsang
et al., 2002), we trained a personalized 32-center GMM to model the characteristics of each
client speaker in the system.! The feature vectors derived from the SA and SX sentence sets of
the corresponding speaker were used for training, i.e., 7 sentences per GMM. A collection of all

SA and SX sentences uttered by all speakers in the customer set were used to train a 64-center

1We chose not to use MAP adaptation (Reynolds et al., 2000) because we have enough data to create individual
speaker models. Our recent study (Sit et al., 2004) also shows that when sufficient training data are available,

the maximum likelihood approach can create better speaker models than the MAP approach.



Table 2: Equal error rates (EERs) for different values of a using (a) Approach I and (b) Ap-
proach II. Speech data from handset cbl were used and Condition C was used for training and

verification.

| o | 0250 [ 0280 | 0300 |

| EER || 7.31% | 6.63% | 7.00% |
(a) Approach I

| o [ 0139 [ 0140 | 0.143 |

[ EER [ 6.76% [ 5.85% | 7.31% |
(b) Approach II

GMM background model (Reynolds et al., 2000). The handset senh was used as the enrollment

handset and its utterances were considered to be clean.

The optimum values of « in Egs. (5) and (8) were determined empirically using the speech
data of handset cbl. Table 2 shows the equal error rates—the rate at which the probability of
false acceptance is equal to that of false rejection—for different values of . Based on Table 2,

we set a = 0.28 for Approach I and a = 0.140 for Approach II in all experiments.

5.4 Feature Transformation

The clean utterances (from handset senh) of 10 speakers were used to create a 2-center GMM
clean model Ay, i.e., M = 2 in Eq. (2). Using this model and the estimation algorithms
described in Section 3, a set of feature transformation parameters v were computed for each
handset. In particular, the utterances from handset senh were considered as clean and were used
to create the clean speech model, while those from other 9 handsets (cbl-cb4, ell-el4, and ptl)
were used as distorted speech. Zeroth-order (f,(y:) = y++b) and first-order (f,(y:) = Ay:+b)

transformations were used in this work.

5.5 Verification Procedures

During verification, a vector sequence Y derived from a claimant’s utterance (SI sentence) was
fed to a handset selector. According to the outputs of the handset selector, a set of transforma-
tion parameters was selected. The features were transformed and then fed to a 32-center GMM
speaker model (M;) and the 64-center GMM background model (M}) to obtain a normalized
score:

s(Y) =logp(Y|M;) — log p(Y | My). 9)



The normalized score s(Y) was compared with a threshold for decision making. For ease of
comparison, we collect the scores of 100 client speakers, each being impersonated by 50 impos-
tors, to compute the speaker-independent equal error rate (EER) and to produce a detection
error trade-off curve (Martin et al., 1997). Therefore, speaker-independent decision thresholds
were used, and for each handset in an experimental setting, there were 300 client speaker trials
(100 client speakers x 3 sentences per speaker) and 15,000 impostor trials (50 impostors per

client speaker x 100 client speakers x 3 sentences per impostor).

Table 3: EERs (in %) with LMS blind equalization for matched and mismatched handsets
in three training and verification conditions. STO and ST1 stand for zeroth- and first-order
stochastic transformations, respectively. C(I) and C(II) represent Condition C in Table 1 with

Approach I and Approach II being used for creating the training vectors, respectively.

Trans. Equal Error Rate (%)

Cond. | Method || cbl ‘ cbh2 ‘ ch3 ‘ ch4 ‘ ell ‘ el2 ‘ el3 ‘ el4 ‘ ptl H Average H senh
A Baseline || 7.35 | 6.54 | 15.96 | 12.34 | 5.68 | 12.63 | 11.74 | 12.26 | 9.51 10.45 3.54
A STO 6.35 | 5.82 | 15.30 | 10.77 | 5.46 | 11.13 | 12.17 | 9.19 | 8.26 9.38 3.52
A ST1 6.19 | 5.57 | 14.53 | 10.89 | 5.34 | 10.90 | 11.65 | 8.86 | 8.57 9.17 3.66
B Baseline || 7.55 | 7.02 | 15.92 | 13.01 | 5.99 | 12.14 | 11.98 | 11.26 | 9.66 10.50 2.97
B STO 5.95 | 5.87 | 16.19 | 12.22 | 5.81 | 10.98 | 12.92 | 9.40 | 9.15 9.83 2.97
B ST1 5.92 | 5.58 | 14.88 | 11.29 | 5.88 | 10.63 | 11.50 | 9.02 | 8.91 9.29 2.98

C (I) Baseline || 6.63 | 6.55 | 16.59 | 11.67 | 5.33 | 10.76 | 10.71 | 9.97 | 8.83 9.67 3.15

C(I) STO 6.60 | 5.65 | 15.97 | 11.58 | 6.07 | 10.07 | 11.89 | 9.57 | 8.66 9.57 3.26

C (I) ST1 6.60 | 5.24 | 15.08 | 11.81 | 5.53 | 10.19 | 11.66 | 8.80 | 8.34 9.25 3.22

C (II) | Baseline || 6.56 | 6.29 | 15.51 | 10.87 | 5.22 | 10.92 | 10.28 | 10.65 | 8.69 9.44 2.78

C (1) STO 5.85 | 5.62 | 15.67 | 10.85 | 5.10 | 9.43 | 10.30 | 7.86 | 7.97 8.74 2.94

C (I1) ST1 6.32 | 547 | 14.18 | 10.24 | 554 | 9.24 | 9.90 | 7.43 | 8.06 8.49 2.98

6 Results and Discussions

Tables 3 and 4 show the EERs achieved by the feature transformation approach and the baseline
(without feature transformation) under different training and verification conditions for the cases
with and without LMS blind equalization, respectively. All error rates are based on the scores
of 100 genuine speakers and 50 impostors. The average EERs under the label Average were
computed by taking the average of all the EERs corresponding to the nine mismatched handsets
(cbl—cb4, ell-el4, and ptl). Likewise, the EERs under senh correspond to the EERs obtained

by using the enrollment handset (senh) for verification.
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Table 4: EERs (in %) without LMS blind equalization for matched and mismatched handsets
in three training and verification conditions. STO0 and ST1 stand for zeroth- and first-order
stochastic transformations, respectively. C(I) and C(II) represent Condition C in Table 1 with
Approach I and Approach II being used for creating the training vectors.

Trans. Equal Error Rate (%)

Cond. | Method cbl ‘ cb2 ‘ cb3 ‘ cb4 ‘ ell ‘ el2 ‘ el3 ‘ el4 ‘ ptl H Average H senh
A Baseline 11.10 | 12.95 | 26.40 | 22.86 | 7.54 | 23.01 | 13.67 | 21.60 | 18.20 17.48 2.19
A STO 5.27 3.64 | 13.39 | 830 | 445 | 8.01 | 10.68 | 6.01 5.51 7.25 2.19
A ST1 528 | 3.58 | 13.29 | 857 | 445 | 7.89 | 9.88 | 5.56 | 5.78 7.14 2.20
B Baseline 11.15 | 13.58 | 26.14 | 23.36 | 7.35 | 19.51 | 13.66 | 21.54 | 18.27 17.17 2.18
B STO 4.88 391 | 1538 | 896 | 5.88 | 11.84 | 10.65 | 6.55 7.77 8.42 2.24
B ST1 4.88 3.88 | 13.94 | 821 | 591 | 11.02 | 10.86 | 5.57 8.34 8.07 2.24

C Baseline 10.52 | 13.46 | 24.51 | 20.65 | 6.44 | 18.05 | 11.90 | 17.92 | 17.82 15.70 2.45
c STO 4.41 3.33 | 1323 | 7.65 | 4.42 | 743 8.91 5.59 6.60 6.84 2.49
C ST1 4.50 3.25 | 11.55 | 7.25 | 4.37 | 7.15 8.94 5.46 5.87 6.48 2.52

C (I1) Baseline 10.32 | 13.52 | 24.22 | 19.61 | 6.42 | 18.76 | 11.89 | 19.35 | 17.00 15.68 2.26

C (1I1) STO 4.43 3.61 | 12.65 | 7.98 | 4.01 | 8.30 9.33 5.52 6.25 6.90 2.27

C (I1) ST1 430 | 3.84 | 11.66 | 7.78 | 4.01 | 7.86 | 892 | 5.55 | 6.60 6.72 2.28

6.1 Performance Under Different Training and Verification Conditions

Comparing the results in the handset-mismatch cases of Conditions A and B in Table 3 and
Table 4, it is obvious that the error rates are generally higher in Condition B regardless of
whether LMS blind equalization is used or not. This is because in Condition B, unquantized
MFCCs were used for training whereas quantized MFCCs were used for verification. As a result,
in addition to handset mismatches between enrollment and verification, there are also feature

mismatches.

6.2 Performance Under Handset-Match and Handset-Mismatch Conditions

To facilitate discussion and comparison of results, we extract the figures in Tables 3 and 4
and summarize them in Figures 3 and 4. In particular, Figure 3 depicts the effect of LMS
blind equalization on handset-match and handset-mismatch situations in the baseline case, and
Figure 4 compares the average EERs for matched and mismatched handsets using stochastic

transformation under the three training and verification conditions.
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The results in Figure 3 show that LMS blind equalization can reduce error rates under
handset-mismatch conditions, but it degrades the performance when enrollment and verification
use the same handset. From Figure 4(b), we can observe that for mismatched handsets, the
amount of error reduction achieved by stochastic feature transformation is larger than that by
LMS. However, we can observe from Figure 4(a) that, for the handset-match conditions, feature
transformation is inferior to the baseline. This is mainly because in the cases where both training
and verification use the same handset (senh), the handset selectors may misclassify some of the
senh utterances as recorded from other handsets. As a result, some of the LMS-feature vectors
may not be transformed correctly. Although this handset misclassification leads to performance
degradation in handset-match conditions, the degradation is insignificant when compared to the
performance improvement in the handset-mismatch cases. The combination of handset selector
and feature transformation can therefore still help improve the performance when the handset-

mismatch conditions are also taken into account.

6.3 Effect of LMS Blind Equalization on Verification Performance

Evidently, Figure 4(b) shows that stochastic feature transformation gives the largest error reduc-
tion in handset-mismatch conditions when both training and verification vectors are extracted
from the bit-streams at the server side (Condition C). With LMS blind equalization, feature
transformation reduces the average EER by 4.35% for Approach I (from 9.67% to 9.25%). The
percentage reduction increases to 58.70% for Approach I (from 15.70% to 6.48%) when LMS
was not used. Similarly, with LMS blind equalization, the average percentage reduction in EER
is about 10.13% for Approach II (from 9.44% to 8.49%) and is about 57.10% (from 15.68% to
6.72%) for Approach II without using LMS.

Figure 5 shows the detection error tradeoff curves of handset cbl under Condition C.
The curves allow us to observe the effect of LMS blind equalization on speaker verification
performance under various speaker-independent decision thresholds. Three observations can
be obtained from the figure. First, the figure shows that feature transformation performs bet-
ter than the baseline system. Second, LMS blind equalization improves the performance of
the baseline system (compare Curves I and II). Third, the transformation technique is more
effective when blind equalization is not applied (compare Curves III and IV). This suggests
that using stochastic feature transformation alone is even better than using stochastic feature

transformation with LMS.

While the results suggests that stochastic feature transformation can improve the veri-
fication performance of DSR systems, the performance will be further improved if LMS blind

equalization is not applied. This is reasonable because LMS blind equalization on one hand
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minimizes convolutional distortion, but on the other it removes some of the speaker character-
istics. While both LMS and stochastic feature transformation shift the positions of the feature
distributions in the feature space, LMS will shift the means of the speaker distributions towards
the origin of the feature space. This may reduce the discriminative power of the speaker and

background models.

7 Conclusions

Features extracted from different stages of the ETSI-DSR front-end in the context of distributed
speaker verification have been evaluated. It was found that the best performance can be obtained
from the condition where feature vectors for both training and verification are extracted from
the server side. Also, the technique of combining stochastic feature transformation and handset
identification has been applied to the extracted features. Results show that the transformation
technique can significantly reduce the error rates of an ETSI-compliance distributed speaker
verification system. The recognition accuracy is even higher when LMS blind equalization in

the ETSI standard is replaced by the feature transformation approach.
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Figure 1: Projection of training vectors on the cj-co space. (a) Unquantized feature vectors.
(b) Quantized feature vectors before adding random vectors. (c) Quantized training vectors
after adding random vectors to the quantized vectors in (b) using Approach I (Inter-codeword
distance dependent perturbation). (d) Similar to (c) but use Approach II (Data-to-codeword

distance dependent perturbation).
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Figure 5: DET curves for handset cbl under (a) Condition A (b) Condition B (¢) Condition C

using Approach I and (d) Condition C using Approach II. ST1 stands for first-order stochastic
feature transformation.
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