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Abstract While i-vectors with probabilistic linear discriminant analysis (PLDA)
can achieve state-of-the-art performance in speaker verification, the mismatch
caused by acoustic noise remains a key factor affecting system performance. In
this paper, a fusion system that combines a multi-condition SNR-independent
PLDA model and a mixture of SNR-dependent PLDA models is proposed to
make speaker verification systems more noise robust. First, the whole range of
SNR that a verification system is expected to operate is divided into several
narrow ranges. Then, a set of SNR-dependent PLDA models, one for each
narrow SNR range, are trained. During verification, the SNR of the test utter-
ance is used to determine which of the SNR-dependent PLDA models is used
for scoring. To further enhance performance, the SNR-dependent and SNR-
independent models are fused using linear and logistic regression fusion. The
performance of the fusion system and the SNR-dependent system is evaluated
on the NIST 2012 SRE for both noisy and clean conditions. Results show that
a mixture of SNR-dependent PLDA models perform better in both clean and
noisy conditions. It was also found that the fusion system is more robust than
the conventional i-vector/PLDA systems under noisy conditions.

Keywords Speaker verification · i-vectors · probabilistic LDA · NIST 2012
SRE · noise robustness · fusion

1 Introduction

In practical situations, performance of speaker verification systems is always
degraded by the variation in the acoustic environments. There has been a lot
of research in compensating for the effect of these variations, which results in
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a number of methods that work in either the front-end [30, 38] or the backend
[26, 37, 39, 19, 21] of the verification process. It has been found that the
backend techniques is more promising, especially when joint factor analysis
(JFA) [13] and i-vector/PLDA frameworks [4, 12] are employed.

The i-vector is a low-dimensional vector that represents both speaker and
channel characteristics of an utterance. The low-dimensionality of i-vectors
facilitates the usage of classical statistical techniques such as linear discrimi-
nant analysis (LDA) [1], within-class covariance normalization (WCCN) [11]
and probabilistic linear discriminant analysis (PLDA) [31] to suppress the
channel-variability [4, 34, 24]. PLDA performs factor analysis on the i-vector
space by grouping the i-vectors derived from the same speaker in order to
find a subspace with minimal channel variability. PLDA is one of the most
promising techniques in speaker verification.

Based on the i-vector/PLDA framework, more advanced approaches have
been proposed for noise-robust i-vector extraction. For example, Yu et al.
[40] propagated the uncertainty of noisy acoustic features into the i-vector
extraction process in an attempt to marginalizing out the effect of noise. This
is achieved by expressing the posterior density of an i-vector in terms of the
joint density of the clean and noisy acoustic features where the uncertainties
of the noisy features are represented through the variances of the joint density.
To account for all possible clean features, the joint density is marginalized over
all possible clean acoustic features. The marginalized density is then plugged
back into the posterior density of i-vectors, where the noise-robust i-vector
is its posterior mean. This modified i-vector extraction method has shown
potential for improving the robustness of speaker recognition especially in low
SNR conditions.

Hasan and Hansen [8] proposed an acoustic factor analysis (AFA) scheme,
which is essentially a mixture-dependent feature transformation that integrates
dimensionality reduction, de-correlation, normalization and enhancement to-
gether. It was demonstrated that this transformation method can remove the
need for hard feature clustering and avoid retraining of the universal back-
ground model (UBM) from the new features. In [9], the AFA concept was
further enhanced by replacing the UBM with a mixture of factor analyzers
and a new i-vector extractor was proposed.

Lei et al. [17] proposed a noise robust i-vector extractor using vector Taylor
series (VTS). The method adapts the UBM to speech signals contaminated
with additive and convolutive noises and then extracts the noise-compensated
i-vector based on the sufficient statistics collected from the adapted UBM. To
release the computational burden of the VTS approach, [18] further proposed
an efficient approximation, called simplified-VTS (sVTS), which collects suf-
ficient statistics and whitens them using the VTS-synthesized UBM. As an
alternative approach to VTS, an unscented transform was presented in [23] to
approximate the nonlinearities between clean and noisy speech models in the
cepstral domain. It is expected that the unscented transform is more accurate
than VTS when the distortions are far from locally linear.
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Noting that the convolution and max-pooling operations in convolution
neural networks (CNN) can reduce distortion caused by noise, McLaren et al.
[25] proposed using a CNN to estimate the posterior probability of senones and
used the posterior probabilities to replace the zero-order statistics extracted
from the UBM. The resulting sufficient statistics are then used for estimating
the i-vectors. It was found that the performance of this CNN/i-vector frame-
work is comparable to that of UBM/i-vector framework and that fusion of
these two framework is very promising.

There are also a lot of research concentrating on the backend PLDA stage.
For example, McLaren et al. [25] developed a multiple system fusion approach
that uses multiple streams of noise-robust features for i-vector fusion and score
fusion. I-vector fusion consists of concatenating the stream-dependent i-vectors
to a single vector and score fusion fuses scores obtained from the i-vector
fusion system and the single-feature i-vector systems. Many systems use LDA
and within-class covariance normalization (WCCN) to pre-process the length-
normalized i-vectors before presenting them to the PLDA model for scoring.
Noting that the actual distortion of i-vectors may not be Gaussian, Sadjiadi
et al. [36] replaced LDA by non-parametric discriminant analysis (NDA) that
uses nearest-neighbor rule to estimate the between- and within-speaker scatter
matrices. They found that NDA is more effective than the conventional LDA
under noisy and channel degraded conditions.

In [15, 16, 10, 32, 33], multi-condition training, in which a PLDA model is
trained by pooling clean and noisy utterances together, was employed to en-
hance noise robustness. Garcia-Romero et al. [7] trained a collection of PLDA
models, each for a specific condition, and found that the pooled-PLDA is more
appealing due to its good performance as well as the small number of param-
eters.

Unlike [7] where the verification score is a convex mixture of the individual
PLDA models weighted by the posterior probability of the test condition (Eq.
4 of [7]), the SNR-dependent PLDA models proposed in this paper compute
the verification scores based on the SNR of test utterances. Specifically, hard-
decision SNR-dependent PLDA chooses one of the SNR-dependent PLDA
models based on the SNR of test utterances; soft-decision SNR-dependent
PLDA calculates weights of the individual PLDA by incorporating posterior
of the SNR of test utterances. Observing the performance improvement in
multi-condition training, a fusion system combing a mixture of SNR-dependent
PLDA models and a multi-condition PLDA model was developed in this work.

One of the challenges in speaker verification is to maintain performance un-
der adverse acoustic condition. For the i-vector/PLDA framework, approaches
such as advanced transformation [8], noise robust i-vector extraction [17], and
multi-condition PLDA [15, 16, 10, 32, 33] have shown promise in improving
the robustness of speaker verification systems. However, none of these methods
explore the noise robustness of the SNR-dependent PLDA models. This paper
aims to fill this gap by extending our earlier work on SNR dependent models
[29] by the following three fronts:
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1. investigating both hard- and soft-decision strategies for the SNR-dependent
PLDA.

2. conducting additional experiments on clean phone call speech (Common
Condition 2) and interview speech (Common Conditions 1 and 3) for both
male and female speakers in NIST 2012 SRE.

3. performing more analysis on fusion systems with respect to decision thresh-
olds, decision strategies, fusion methods, and fusion weights.

The paper is organized as follows. Section 2 outlines the i-vector/PLDA
framework for speaker verification. Sections 3 and 4 describe hard- and soft-
decision SNR-dependent PLDA models and fusion systems respectively. In
Sections 5 and 6, we report evaluations based on NIST 2012 SRE [28]. Sec-
tions 7 concludes the findings.

2 The I-Vector/PLDA Framework

2.1 I-Vector Extraction

The i-vector approach [4] defines a low-dimensional total variability space that
encompasses both speaker and channel variabilities. In this space, each utter-
ance is represented by the latent factor in a factor analysis model:

mx = m + Tx (1)

where m is the speaker- and channel-independent GMM-supervector formed
by stacking the mean vectors of the universal background model (UBM) [35],
mx is the speaker-dependent supervector, T is a low-rank total variability
matrix, and x is the low-dimensional latent factor. Given an utterance, the
posterior mean of the latent factor is the utterance’s i-vector. The training of
the total variability matrix T is similar to the training of the eigenvoice matrix
in JFA [14], except that the speaker labels are ignored.

2.2 PLDA Model

Probabilistic linear discriminant analysis (PLDA) [6, 12, 31] considers the i-
vectors of utterances as observations generated by a generative model. Specif-
ically, assuming there are R utterances from a speaker s and denoting xsr

(r = 1, . . . , R) as the collection of the corresponding i-vectors, the PLDA
model decomposes i-vector xsr into:

xsr = µ + Vzs + εsr, (2)

where µ is the global offset, V defines the bases of the speaker subspace, zs
is the speaker factors, and εsr is the residual noise assumed to follow a Gaus-
sian distribution with zero mean and diagonal covariance Σ. An expectation-
maximization (EM) algorithm [31] is applied to estimate the parameters of
the factor analyzer (Eq. 2).
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Given a test i-vector xt and target-speaker’s i-vector xs, a verification score
can be computed as a log-likelihood ratio of two Gaussian distributions [6]:

score = log

[
p(xs,xt|H1)

p(xs|H0)p(xt|H0)

]
(3)

where the hypotheses H1 and H0 denote that the two i-vectors come from the
same- and different-speakers, respectively. By assuming that the i-vectors (af-
ter length normalization) and the latent factor z follow Gaussian distributions,
the verification score is [6]:

score = log

[ ∫
p(xs,xt, z|H1)dz∫

p(xs, zs|H0)dzs
∫

p(xt, zt|H0)dzt

]
=

1

2

[
xT
s Qxs + 2xT

s Pxt + xT
t Qxt

]
+ const

(4)

where

Q = Σ−1
tot − (Σtot −ΣacΣ

−1
totΣac)

−1 and P = Σ−1
totΣac(Σtot −ΣacΣ

−1
totΣac)

−1,

(5)

where

Σtot = VVT + Σ and Σac = VVT. (6)

3 SNR-Dependent PLDA

Classical Gaussian PLDA assumes that i-vectors follows a Gaussian distribu-
tion. However, the assumption of single Gaussian is rather limited, especially
under noisy environments with a wide range of signal-to-noise ratio (SNR). In
this situation, a group of SNR-dependent PLDA models, in which each model
is responsible for a small range of SNR, are more suitable. Specifically, the
parameters of each SNR-dependent PLDA model are estimated independently
by an EM algorithm [31] using training data contaminated with different level
of background noise.

3.1 Hard-Decision SNR-Dependent PLDA

For the hard-decision SNR-dependent systems, one SNR-dependent PLDA
model is chosen for each test i-vector. During verification, the SNR of the test
utterance determines which of the SNR-dependent PLDA models and which
category (6dB, 15dB or clean) of target-speaker’s i-vectors should be used for
scoring:

If

 `t ≤ η1, use 6dB PLDA and 6dB target’s i-vectors
η1 < `t ≤ η2, use 15dB PLDA and 15dB target’s i-vectors
`t > η2, use clean PLDA and clean target’s i-vectors

(7)
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Fig. 1: The data-flow of hard-decision SNR-dependent PLDA scoring.

where `t is the SNR of the test utterance, and η1 and η2 are decision thresh-
olds. A disadvantage of this hard-decision approach is that it is necessary to
determine η1 and η2 and that their optimal values depend on the SNR of test
utterances. Instead of finding their optimal values using a held-out set, in this
work, we varied their values and investigated how they affect performance.

Fig. 1 illustrates the data-flow of hard-decision SNR-dependent PLDA scor-
ing. A test i-vector is fed to one of the SNR-dependent PLDA models and
is scored against the corresponding i-vectors of the target speaker. Because
the three PLDA models produce scores at different ranges, the scores should
be normalized before computing the equal error rate (EER) and minimum
decision-cost function (minDCF). We applied SNR-dependent Z-norm to the
PLDA scores, with the three sets of Z-norm parameters found independently
using the training files contaminated with different level of background noise.
In theory, Z-norm is not necessary if the PLDA scores are well calibrated [3].
However, we found that it is not easy to achieve perfect calibration without
having a set of held-out set that has the same characteristics as the test data.
Therefore, we opted for using the more conventional Z-norm in this step.

3.2 Soft-Decision SNR-Dependent PLDA

In the soft-decision SNR-dependent systems, given a test utterance, the pos-
terior probability of SNR of the test utterance is used to combine the scores
of different PLDA models. Specifically, denote the SNR of a test utterance as
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Fig. 2: The data-flow of soft-decision SNR-dependent PLDA scoring.

`t, the posterior probability of SNR is

P (ωj |`t) =
P (ωj)p(`t|µj , σj)∑3
i=1 P (ωi)p(`t|µi, σi)

j = 1, 2, or 3 (8)

where ωj ’s are class labels corresponding to clean, 15dB or 6dB PLDA models,
P (ωj) is the prior probability of ωj , p(`t|µj , σj) is the probability density
function of `t with mean µj and standard deviation σj . To implement Eq. 8,
we trained a 1-dimensional Gaussian mixture model (GMM) with 3 mixtures
using the SNR of training utterances. See Section. 5.4 for details.

In the hard-decision SNR-dependent systems, the SNR of the test utterance
directly determines which SNR-dependent PLDA model is used and only one
SNR-dependent PLDA model is chosen for scoring with the test i-vector, as
Eq. 7 describes. However, in the soft-decision SNR-dependent systems, three
SNR-dependent PLDA models and SNR-dependent i-vectors of the target
speakers are all used for scoring. The posterior probability obtained in Eq. 8
determines how much the three scores derived from the three SNR-dependent
PLDA models contribute to the overall score. Specifically, the overall score is:

sd = P1scln + P2s15dB + P3s6dB (9)

where scln, s15dB and s6dB are the normalized score from the clean, 15dB
and 6dB SNR-dependent PLDA respectively, P1, P2 and P3 are P (clean|`t),
P (15dB|`t) and P (6dB|`t) in Eq. 8, respectively, and sd is the soft-decision
SNR-dependent systems score. Fig. 2 illustrates the data-flow of soft-decision
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SNR-dependent PLDA scoring. In the figure, a test i-vector is fed to three SNR-
dependent PLDA models simultaneously and scored against the corresponding
i-vectors of the target speaker. The three normalized scores are then linear
combined to obtain the overall score sd, as Eq. 9 describes.

4 Fusion of SNR-Dependent PLDA

The fusion system combines the SNR-dependent system and the SNR-independent
system. We investigated linear fusion and logistic regression fusion in this work.
Fig. 3 illustrates the fusion system. In the figure, the upper part is the SNR-
independent system whose PLDA model is trained by pooling the training
data with variable noise levels. The lower part is the SNR-dependent system.
It can be hard- or soft-decision SNR-dependent PLDA. The fusion block can
be either linear fusion or logistic regression fusion. For linear fusion, the test
scores are used to determine the best fusion weight while in logistic regres-
sion fusion, training scores are used to compute the fusion parameters. The
following two subsections describe these two fusion methods.

4.1 Linear Fusion

Fig. 4 shows the test scores of imposters and true speakers obtained by SNR-
dependent PLDA and SNR-independent PLDA models. Evidently, the scores
from the two systems can be separated by a straight line. Therefore, a simple
way to fuse the two systems is to linearly combine their scores:

s = wsi + (1− w)sd (10)

where si is the normalized score from the SNR-independent system, sd is the
normalized score from the SNR-dependent system, and w is the combination
weight.

As described earlier, the Z-norm parameters represented by µ and σ in
Fig. 1 and Fig. 2 were derived independently from the i-vectors used for train-
ing the PLDA models. The scores obtained from the SNR-independent system
are also normalized to make sure that they are consistent with those obtained
from the SNR-dependent system. The Z-norm equation is as follows:

si =
score− µmulti

σmulti
(11)

where si is the score after normalization, µmulti and σmulti are the normaliza-
tion parameters shown in Fig. 3.
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were set to 3 and 20, respectively.

4.2 Logistic Regression Fusion

In logistic regression fusion [1, 2], the fused scores are also a linear combination
of N sub-systems’ scores:

s = α0 + α1s1 + α2s2 + · · ·+ αNsN (12)
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where {α1, α2, . . . , αN} are the fusion weights for the corresponding subsys-
tems and α0 is a bias term used for calibrating the fused scores. The fusion
weights {α0, α1, α2, . . . , αN} can be obtained by the learning algorithm of lo-
gistic regression [2]. In this work, we used the data that have been used for
training the PLDA models for estimating the fusion weights in Eq. 12. Given
the i-vectors of a set of training speakers, we computed the intra- and inter-
speaker PLDA scores from the SNR-independent and SNR-dependent PLDA
models (both soft- and hard-decisions). These scores represent the speaker and
impostor scores of s1, s2, and s3 in Eq. 12. Then, [s1 s2 s3]T’s are considered
as 3-dimensional training vectors of a logistic regression classifier [2].

5 Experiments

5.1 Speech Data and Acoustic Features

Both the phonecall speech and the interview speech in the core set of NIST
2012 Speaker Recognition Evaluation (SRE) [28] were used for performance
evaluation. Table 1 [28] summarizes the conditions of the test segments in
the evaluation. In this paper, we use the term “segment” and “utterance”
interchangeably. Fig. 6 shows the SNR distributions of test utterances for male
speakers in the evaluation (the distributions for female speakers are similar).
It shows that the noisy test utterances cover a wide range of SNR, especially
for CC4. To make the SNR distribution of training segments comparable with
that of the test segments, we added babble noise from the PRISM dataset to
the training files at 6dB and 15dB to create 3 SNR-dependent PLDA models:
6dB, 15dB, and clean (using the original sound files). Fig. 5 shows the SNR
distribution of telephone (tel) and microphone (mic) speech files after adding
noise.

The training segments comprise phonecall speech and interview speech with
variable length. We removed the 10-second segments and the summed-channel
segments from the training segments but ensured that all target speakers have
at least one utterance for enrollment. The speech files in NIST 2005–2010
SREs were used as development data for training gender-dependent UBMs,
total variability matrices, LDA-WCCN projection matrices, PLDA models and
Z-norm parameters.

Speech regions in the speech files were extracted by using a two-channel
voice activity detector (VAD) [20]. For each frame, 19 MFCCs together with
energy plus their 1st- and 2nd-derivatives were extracted from the speech
regions, followed by cepstral mean normalization and feature warping [30]
with a window size of 3 seconds. A 60-dim acoustic vector was extracted every
10ms, using a Hamming window of 25ms.
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Fig. 5: SNR distributions of clean, 15dB and 6dB training utterances (male
speakers). Left panels: interview speech; right panels: telephone speech.

Common Condition Test Segment Condition

CC1 Interview speech

CC2 Phonecall speech

CC3 Interview speech with added noise

CC4 Phonecall speech with added noise

CC5 Phonecall speech intentionally collected in noisy environments

Table 1: Test segment conditions for CC1–CC5 of NIST 2012 SRE.

5.2 Creating Noise Contaminated Utterances

For each clean training file, we randomly selected one out of the 30 noise files
from the PRISM dataset [5] and added the noise waveform to the file at an
SNR of 6dB and 15dB using the FaNT tool.1

To measure the “actual” SNR of speech files (including the original and
noise contaminated ones), we used the voltmeter function of FaNT and the
speech/non-speech decisions of our VAD [20, 41] as follows. Given a speech file,
we passed the waveform to the G.712 frequency weighting filter in FaNT and
then estimated the speech energy using the voltmeter function (sv-p56.c from
the ITU-T Software Tool Library [27]). Then, we extracted the non-speech

1 http://dnt.kr.hsnr.de/download.html
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Fig. 6: SNR distributions of test utterances in CC1–5 of NIST 2012 SRE (male
speakers).

segments based on the VAD’s decisions and passed the non-speech segments
to the voltmeter function to estimate the noise energy. The difference between
the signal and noise energies in the log domain gives the measured SNR of
the file. While the measured SNR is close to the target SNR, they will not be
exactly the same. This explains why we have a continuous SNR distribution
in Fig. 5. Because we used our VAD (which is more robust than the VAD in
sv-p56.c) to determine the background segments, we are able to measure the
SNR even for very noisy files.

5.3 I-Vector Extraction and PLDA-Model Training

The i-vector systems are based on gender-dependent UBMs with 1024 mixtures
and total variability matrices with 500 total factors. Microphone and telephone
utterances (without adding noise) from NIST 2005–2008 SREs were used for
training the UBMs and total variability matrices. Following [24], WCCN [11]
and i-vector length normalization [6] were applied to the 500-dimensional i-
vectors. Then, linear discriminant analysis (LDA) [1] and WCCN were applied
to reduce the dimension to 200 before training the PLDA models with 150
latent variables.

Considering that CC1 and CC3 contain interview speech and that CC2,
CC4 and CC5 contain phonecall speech, their PLDA models were trained sep-
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Fig. 7: Training procedure for (a) SNR-independent models for phonecall
speech, (b) SNR-independent models for interview speech, (c) SNR-dependent
clean models for phonecall speech (same for 15dB and 6dB models except using
noisy speech), and (d) SNR-dependent models for interview speech.

arably. Specifically, for CC2, CC4 and CC5, both SNR-independent and SNR-
dependent PLDA models were trained. For the former (Fig. 7a), we pooled the
6dB (mic+tel), 15dB (mic+tel), and original (mic+tel) speech files — exclud-
ing speakers with less than two utterances — into a single training set. Two
SNR-independent PLDA models with 150 factors were then trained, one for
each gender. For SNR-dependent PLDA, the 6dB (mic+tel), 15dB (mic+tel),
and original (mic+tel) speech files were independently used to train three
PLDA models, each with 150 factors (Fig. 7c).

According to the left panels in Fig. 5, SNR distribution of clean mic, 15dB
mic and 6dB mic overlap each other. Therefore, for CC1 and CC3, we only
used clean mic and 15dB mic to train the SNR-independent PLDA (Fig. 7b)
and SNR-dependent PLDA (Fig. 7d).

5.4 PLDA scoring

The scoring procedures for SNR-independent and SNR-dependent models are
different. For SNR-independent PLDA models, each of the test i-vectors was
scored against the target-speakers’ i-vectors derived from the telephone/mircophone
sessions of original (clean) speech files using the conventional PLDA scoring
function (Eq. 4).

For hard-decision SNR-dependent PLDA, as Eq. 7 describes, one of the
SNR-dependent PLDA models was chosen to score against the corresponding
target’s i-vectors based on the SNR of the test utterance. Fig. 6 shows the SNR
distributions of male test utterances in CC1–CC5 in 2012 SRE. Based on the
distributions, the decision thresholds (Eq. 7) for hard-decision SNR-dependent
PLDA were set.
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Fig. 8: Probability density function (pdf) and posterior probability of SNR
derived from the training sessions (tel) of NIST 2012 SRE (male speakers).

For the soft-decision SNR-dependent system, for each test i-vector, three
scores were computed using three SNR-dependent PLDA models and the cor-
responding target’s i-vectors independently. Then, the posterior probability of
SNR of the test utterance was used to determine the weights for combining
the scores produced by the SNR-dependent PLDA models, as Eq. 9 describes.
The posterior probability (Eq. 8) is based on a 1-dimensional Gaussian mixture
model (GMM) that models the SNR of training utterances.

For CC2, CC4 and CC5 whose test segments were from phonecall speech,
the SNR of the original (tel), 15dB (tel) and 6dB (tel) utterances were used
to train a 3-mixture GMM. For CC1 and CC3 whose test segments were from
interview speech, the SNR of the original (mic) and 15dB (mic) training ut-
terances were used to train a 2-mixture GMM.

The upper panels of Fig. 8 and Fig. 9 show the histogram and probability
density function of SNR for male speakers of the telephone and microphone
training sessions, respectively. Fig. 8 shows that the three mixtures derived
from three telephone training files are well separated and they have equal
mixture coefficients since the 15dB and 6dB noisy training files were derived
from the original training files by adding noise at different SNR. On the other
hand, Fig. 9 shows that the SNR of the original and 15dB mic training files are
not well separated. The lower panels of Fig. 8 and Fig. 9 show the posterior
probability of SNR obtained from Eq. 8 for male speakers, and the posterior
probability of female speakers is similar with that of male speakers. During
verification, test utterance’s SNR determines P1, P2 and P3 in Eq. 9 based on
the posterior probability in Fig. 8 and Fig. 9.
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Fig. 9: Probability density function (pdf) and posterior probability of SNR
derived from the training sessions (mic) of NIST 2012 SRE (male speakers).

5.5 Fusion of SNR-Dependent PLDA models

In linear fusion, the fusion scores are a linear combination of SNR-independent
scores and SNR-dependent scores (Eq. 10). Either hard-decision or soft-decision
SNR-dependent system can be fused with the SNR-independent system. In lo-
gistic regression fusion, according to in Eq. 12, N subsystems can be combined.
In particular, the SNR-independent system can be combined with both hard-
decision and soft-decision SNR-dependent systems and these three systems
can also be combined. The fusion parameters {α0, α1, α2, . . . , αN} in the lo-
gistic regression fusion were derived from the training scores obtained from
the original, 15dB and 6dB i-vectors used for training the PLDA models.

As described in Sections 3 and 4, score normalization is necessary for both
SNR-independent and SNR-dependent systems. The Z-norm parameters rep-
resented by µ and σ in Fig. 1, Fig. 2 and Fig. 3 were derived independently
from the i-vectors used for training the PLDA models. Specifically, µcln and
σcln were derived from the original i-vectors, µ15dB and σ15dB were derived
from both the original and 15dB i-vectors, and µ6dB and σ6dB were derived
from the original, 15dB and 6dB i-vectors. The reason for this arrangement
is to make sure that the scores produced by the three PLDA models in the
SNR-dependent system have the same ranges. Besides, µmulti and σmulti were
derived by pooling the original, 15dB and 6dB i-vectors together.
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6 Results and Discussions

6.1 Performance Analysis of SNR-Dependent Systems

Table 2 shows the EER and minimum DCF (minCPrimary in NIST 2012 SRE
[28]) achieved by SNR-independent (pooled) PLDA, and the hard- and soft-
decision SNR-dependent PLDA in CC2, CC4 and CC5 for both male and
female in NIST 2012 SRE. We consider the SNR-independent PLDA as the
baseline. Table 3 shows the performance of the same systems in CC1 and
CC3. The term “mix” in the tables denotes that the PLDA model was trained
by both telephone and microphone data, and the terms “mic” denote that the
PLDA models were trained by microphone data only. In the following, we refer
the PLDA model trained by microphone data only to as mic PLDA. Likewise,
we refer the model trained by both microphone and telephone data to as mix
PLDA.

Model
I-Vectors for

Training PLDA

CC2 CC4 CC5

EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA(baseline) 6dB(mix)+15dB(mix)+cln(mix) 2.72 0.283 3.64 0.321 3.51 0.317

Clean PLDA cln(mix) 2.40 0.325 3.93 0.370 2.80 0.303

Hard-decision

SNR-dependent

PLDA

6dB(mix)+15dB(mix)+cln(mix)

η1 = 3, η2 = 20
2.40 0.326 3.60 0.381 2.78 0.303

Soft-decision

SNR-dependent

PLDA

6dB(mix)+15dB(mix)+cln(mix) 2.40 0.325 3.95 0.372 2.79 0.303

(a) Male

Model
I-Vectors for

Training PLDA

CC2 CC4 CC5

EER(%) minDCF EER(%) minDCF EER(%) minDCF

PLDA(baseline) 6dB(mix)+15dB(mix)+cln(mix) 2.12 0.331 3.01 0.357 2.55 0.350

Clean PLDA cln(mix) 2.10 0.326 3.76 0.424 2.63 0.351

Hard-decision

SNR-dependent

PLDA

6dB(mix)+15dB(mix)+cln(mix)

η1 = 3, η2 = 15
2.10 0.326 2.86 0.362 2.63 0.351

Soft-decision

SNR-dependent

PLDA

6dB(mix)+15dB(mix)+cln(mix) 2.10 0.326 3.34 0.378 2.63 0.351

(b) Female

Table 2: Performance of SNR-independent, clean PLDA, and SNR-dependent PLDA (hard-
decision and soft-decision) for (a) male and (b) female speakers in CC2, CC4 and CC5 of
NIST 2012 SRE (core set). η1 and η2 are the decision thresholds in Eq. 7. “Mix” denotes that
the PLDA model was trained by both telephone and microphone data. Boldface indicates
the best performance for each common condition.
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Model
I-Vectors for

Training PLDA

CC1 CC3

EER(%) minDCF EER(%) minDCF

PLDA(baseline) 15dB(mic)+cln(mic) 5.54 0.404 5.10 0.276

Clean PLDA cln(mic) 5.42 0.371 5.62 0.276

Hard-decision

SNR-dependent PLDA

15dB(mic)+cln(mic)

η1 = −∞, η2 = 0
5.13 0.370 5.83 0.311

Soft-decision

SNR-dependent PLDA
15dB(mic)+cln(mic) 5.56 0.388 5.52 0.249

(a) Male

Model
I-Vectors for

Training PLDA

CC1 CC3

EER(%) minDCF EER(%) minDCF

PLDA(baseline) 15dB(mic)+cln(mic) 7.99 0.539 6.19 0.496

Clean PLDA cln(mic) 7.98 0.491 6.71 0.449

Hard-decision

SNR-dependent PLDA

15dB(mic)+cln(mic)

η1 = −∞, η2 = 0
7.56 0.542 6.15 0.572

Soft-decision

SNR-dependent PLDA
15dB(mic)+cln(mic) 7.53 0.530 6.02 0.543

(b) Female

Table 3: Performance of SNR-independent PLDA, clean PLDA and hard- and soft-decision
SNR-dependent PLDA for (a) male and (b) female speakers in CC1 and CC3 of NIST 2012
SRE (core set). η1 and η2 are the decision thresholds in Eq. 7. “Mic” denotes that the PLDA
model was trained by microphone data only. Boldface indicates the best performance for
each common condition.

6.1.1 Hard-Decision SNR-Dependent Systems

Different values of thresholds (η1 and η2 in Eq. 7) have been tried in the
experiments and the best combination is reported in Table 2. It shows that
hard-decision SNR-dependent PLDA with appropriate thresholds generally
outperforms SNR-independent PLDA (baseline) especially in terms of EER.

Table 3 shows the performance of SNR-dependent PLDA in CC1 and CC3.
As mentioned in Section 5, the SNR distribution of clean mic, 15dB mic and
6dB mic training data overlap with each other (see Fig. 5, left panels), so only
clean mic and 15dB mic were used for training model in the SNR-dependent
PLDA for CC1 and CC3. Therefore, we we set η1 to −∞. Similar to CC2, CC4
and CC5, hard-decision SNR-dependent PLDA performs better than SNR-
independent PLDA (baseline).

6.1.2 Soft-Decision SNR-Dependent System

Fig. 8 and Fig. 9 show the distribution and posterior probability of SNR of tel
and mic training utterances for male speakers. Based on the posterior prob-
ability distribution of SNR of training utterances, the posterior probabilities
of SNR of test utterances can be derived (Eq. 8). In particular, the posterior
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probabilities obtained in Fig. 8 were used for CC2, CC4 and CC5, and those
obtained from Fig. 9 were used for CC1 and CC3. Then, based on Eq. 9, the
scores of soft-decision SNR-dependent PLDA can be determined.

According to Table 2, the performance of soft-decision SNR-dependent
PLDA, hard-decision SNR-dependent PLDA, and clean PLDA (trained by
clean mic and tel) under CC2 and CC5 are comparable. This is mainly be-
cause both soft- and hard-decision SNR-dependent PLDA under CC2 and CC5
heavily dependent on the clean PLDA model (Fig. 6, Eq. 8, Eq. 9 and Fig. 8,
lower panel).

On the other hand, in CC4, the performance of soft-decision SNR-dependent
PLDA is poorer than that of the hard-decision counterpart. This is mainly
because the soft-decision PLDA relies on the SNR posterior distributions to
determine the weights for combining the scores from the three PLDA models.
According to Fig. 8 (lower panel), the posterior probabilities (i.e., combination
weights) for the 6dB model and 15dB model crossover at around 7dB. More-
over, according to Fig. 6, a fairly large number of utterances in CC4 have SNR
below this crossover point, which means that the scores from the 6dB model
are heavily weighted for some of the noisy utterances. While the whole idea
of SNR-dependent PLDA is to maximize the match between test utterances’
SNR and training utterances’ SNR, we conjecture that if a test utterance is
not too noisy, it is more appropriate to use the 15dB PLDA model rather than
the 6dB one. Unfortunately, for the soft-decision PLDA, we have no control on
the crossover point, and thus the posterior probabilities. However, for hard-
decision PLDA, we have full control on the decision threshold η1, which allows
us to find a better threshold such that only very noisy utterances will use the
6dB model.

From Table 3, similar performance of soft- and hard-decision SNR-dependent
PLDA are observed in CC1 and CC3 for female speakers. However, in CC1 and
CC3 for male speakers, soft-decision SNR-dependent PLDA performs poorer
than the hard-decision counterpart.

6.2 Performance Analysis of Fusion Systems

Fig. 10 shows the performance of linear fusion and logistic regression fusion.
For the former, as described in Eq. 10, only two systems can be fused and the
fusion weight w requies adjustment based on the test scores. For the logistic
regression fusion, as descried in Section 4.2 and Eq. 12, multiple systems can
be combined and the fusion parameters {α0, α1, α2, . . . , αN} were derived from
the training scores. The linear fusion weight w in Eq. 7 was set to 0.5. For
CC2, CC4 and CC5, the decision thresholds used in the hard-decision SNR-
dependent system were set to η1 = 3 and η2 = 20. For CC3 (male), η1 = −∞
and η2 = 10. For CC1 (both gender) and CC3 (female), η1 = −∞ and η2 = 0.
The decision thresholds were empirically chosen according to the histogram of
SNR distribution shown in Fig. 9.
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Fig. 10: Performance of (1) SNR-independent (pooled) PLDA, (2) hard-decision SNR-
dependent PLDA, (3) soft-decision SNR-dependent PLDA and fusion systems in NIST 2012
SRE (core set) for male speakers (results for female speakers have similar patterns). Linear
and LR denote linear fusion and logistic regression fusion described in Section 4, respec-
tively. Sys1: Fusion of SNR-independent and hard-decision SNR-dependent systems. Sys
2: Fusion of SNR-independent and soft-decision SNR-dependent systems. Sys 3: Fusion of
SNR-independent, hard- and soft-decision SNR-dependent systems.
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Fig. 11: DET performance of fusing SNR-independent PLDA and hard-decision SNR-

dependent PLDA. The decision thresholds η1 and η2 in Eq. 7 were set to 3 and 20, respec-

tively. The linear fusion weight w in Eq. 7 was set to 0.5.

Fig. 10 shows that the fusion systems perform significantly better than both
the SNR-independent PLDA and the SNR-dependent PLDA. The following
five subsections analyze the performance of the fusion systems with respect
to fusion methods, fusion weights, decision strategies, decision thresholds and
Z-norm parameters.

6.2.1 Performance with Respect to Fusion Methods

Fig. 11 shows the detection error tradeoff (DET) curves [22] for male speakers
in CC4 using both linear and logistic regression fusions. The SNR-dependent
PLDA subsystems in these two fusion systems are based on hard-decision.
Fig. 10 and Fig. 11 suggest that the performance of logistic regression fusion
is similar to that of linear fusion. However, instead of using the test data
to determine the optimal fusion weights, fusion weight for logistic regression
fusion were determined from development data. Therefore, logistic regression
fusion is more practical.

6.2.2 Performance with Respect to Fusion Weights

Table 4 lists the performance of the fusion systems with different fusion weights
under CC4. It can be observed that a large fusion weight tends to achieve
better performance. On the other hand, logistic regression fusion can achieve
a comparable performance without using this kind exhausted search for the
fusion weight.
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Fusion Method w

Male (CC4)

EER(%) minDCF

Sys 1 Sys 2 Sys 3 Sys 1 Sys 2 Sys 3

Linear

0.3 3.27 3.42 – 0.321 0.313 –

0.4 3.15 3.32 – 0.309 0.303 –

0.5 3.06 3.20 – 0.300 0.299 –

0.6 2.95 3.05 – 0.299 0.296 –

0.7 2.91 2.99 – 0.295 0.294 –

Logistic Regression – 2.94 3.20 3.28 0.299 0.299 0.297

Table 4: Performance of the fusion systems with different fusion weights w under CC4 in
NIST 2012 SRE (core set, male). w is the weight in Eq. 10. The decision thresholds η1 and
η2 in Eq. 7 were set to 3 and 20, respectively. Boldface indicates the best performance.

6.2.3 Performance with Respect to Decision Strategies

Fig. 12 shows the DET curves for male speakers in CC4 using both hard-
and soft-decision. The thresholds were set to η1 = 3 and η2 = 20 for hard-
decision SNR-dependent PLDA, and the fusion weight was set to w = 0.7.
The results in this figure are consistent with those in Table 2(a). Evidently,
fusion systems outperform both two subsystems. In spite of the performance
difference between the hard- and soft-decision SNR-dependent PLDA, Sys1
and Sys2 have similar performance.

6.2.4 Performance with Respect to Decision Thresholds

As shown in Tables 3 and 2, the performance of hard-decision SNR-dependent
PLDA is affected by the selection of the thresholds (η1 and η2). This subsec-
tion is to investigate the effect of different thresholds on the fusion of SNR-
independent PLDA and hard-decision SNR-dependent PLDA. The results on
CC4 are shown in Table 5. It can be observed that the performance is com-
parable across different values of η1 and η2. In Table 2, when η1 = 5 and
η2 = 25, the hard-decision SNR-dependent PLDA in CC4 performs poorly.
However, as shown in Table 5, the fusion system using η1 = 5 and η2 = 25 has
similar performance as compared to the fusion systems using other thresholds.
This suggests that the fusion operation makes the hard-decision PLDA system
less sensitive to η1 and η2.

6.3 Sensitivity Analysis of Z-norm Parameters

One important factor that affects the performance of the SNR-dependent sys-
tems and the fusion systems is the Z-norm parameters. An experiment was
performed to investigate the sensitivity of system performance with respect
to the Z-norm parameters. In the experiment, the Z-norm parameters (µcln,
σcln) and (µ15dB, σ15dB) in Fig. 1 were first obtained from the scores of test
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Fig. 12: DET performance of SNR-independent PLDA, hard- and soft-decision SNR-

dependent PLDA, fusing SNR-independent PLDA and hard- or soft-decision SNR-dependent

PLDA. The decision thresholds η1 and η2 in Eq. 7 were set to 3 and 20, respectively. The

linear fusion weight w in Eq. 7 was set to 0.7.

η1 η2
Male Female

EER(%) minDCF EER(%) minDCF

SNR-independent PLDA

+

Hard-decision SNR-dependent PLDA

3 15 2.92 0.293 2.75 0.306

3 20 2.91 0.295 2.75 0.306

3 25 2.92 0.287 2.75 0.306

5 25 2.85 0.291 2.54 0.296

Table 5: Performance of fusing SNR-independent PLDA and SNR-dependent PLDA with
different decision thresholds (η1 and η2 in Eq. 7) in CC4 of NIST 2012 SRE (core set). The
fusion weight w in Eq. 10 was set to 0.7.

utterance. Then, the values of µcln and µ15dB were perturbed by ±0.1σcln and
±0.1σ15dB, respectively. Fig. 13 shows that the performance of SNR-dependent
PLDA is still better than that of SNR-independent PLDA even if the Z-norm
parameters µcln is perturbed 0.1σcln. This suggests that the fusion systems are
fairly robust with respect to the deviation of the Z-norm parameters. Similar
results were also obtained by perturbing µ15dB.
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Fig. 13: DET curves of hard-decision SNR-dependent systems for male speakers with Z-

norm parameters (mean) deviated from the mean obtained from test data. ( µcln = −86.5,

σcln = 64.8 )

7 Conclusions

In this paper, fusion of SNR-dependent PLDA models was presented. Both
SNR-dependent and fusion of SNR-dependent models were evaluated on the
core set of NIST 2012 SRE. Performance of the SNR-dependent PLDA model
depends on the decision strategies, the decision thresholds, Z-norm param-
eters and the degree of mismatch between the SNR of test utterances and
the SNR-dependent PLDA models. The SNR-dependent PLDA outperforms
the baseline in 9 out of 10 conditions (CC1–CC5 for both male and female)
especially in terms of EER.

Fusion of SNR-dependent and SNR-independent PLDA models can bring
benefit regardless of the decision strategies, decision thresholds and Z-norm
parameters. The fusion operation makes the hard-decision PLDA system less
sensitive to η1 and η2 and fusion systems are fairly robust with respect to the
deviation of the Z-norm parameters. Besides, while logistic regression fusion
achieves a comparable performance with linear fusion, it does not require using
the brute-force search for the fusion weight. Fusion of SNR-independent PLDA
and soft-decision SNR-dependent PLDA with logistic regression, which is the
most favoured since it does not need any prior information about the test
utterances, brings benefits in 8 out of 10 conditions.
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