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Shout analysis and characterisation

February 7, 2019

Abstract

The goal of this paper is to analyse and to characterise the shout

of a people to develop an automatic detector. We de�ne a shout as a

voiced part of an audio signal maintained over time. We show that a set

of formants parameters can be de�ned to discriminate a typical "shout"

from a "neutral" part of a speech. Moreover, it appears clearly that the

duration of the window used to estimate these parameters is critical to

yield better results. We conclude by presenting a performance analysis in

the noisy context of a transport surveillance application.

Index Terms: Shout/Speech discrimination, formants analysis

1 Introduction

The systems of detection and classi�cation of sound events are considered as
innovative applications in intelligent system domain [1], in man-machine inter-
action [2], in transport [3],..etc. The sound event studied in this paper concerns
the shout of a people. In this case, the objective of such device is often the
release of automatic alarms to give a help to persons in di�culty.

This topic has interested many researchers: we can cite [4], the author was
interested to the shout detection among other sound events by using cepstral
parameters. In [5], the authors mention the importance to di�erentiate between
a shout and a shouted speech. Several works as [6], [7], [8] has developed systems
of shout detection based on MFCC parameters and F0 using HMM and SVM
models.

The approach proposed by [9] can be used in preliminary phase to reinforce
the detection of speech or shout. So, the Line Spectral Frequency (LSF) pa-
rameters are strong to be used in voice activity detection, mainly when we are
constrained to noise. In second phase, a shout/speech detection system can be
applied. In [8], the authors has described the shout by the parameter of con-
tinuity of energy. In papers [10] and [11], the shouted speech is characterised
in particular by open and close glottal proprieties. The authors has noted that
a shouted speech can be di�erentiated by their low variance of energy in low
frequencies.

Several studies such that [12], [10] and [11] de�ned the speech into �ve levels:
whishpered, soft, neutral, loud and shouted. By considering the last level, [5]
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recall that is important to di�erentiate between a shouted speech and a shout
taking into account the existence of a linguistic context or not. Finally, the
shout which can be realized in various contexts ( physical su�ering, aggression,
calling for help, sadness, surprise, enjoyment, signs of presence, ..etc.), it is often
associated with an emotion. The work of [13] is an illustration of the automatic
classi�cation of real-life emotions.

In this paper we are interested to analyse and characterise the shout with-
out considering the linguistic context nor the associated emotion. A shout is
de�ned as a voiced part of a signal with a few articulation and a strong energy
maintained in time. In �rst step, we aim to describe the shout in a space of
parameters allowing to di�erenciate between a shout and a speech. The discrim-
ination to others sound events are not considered in this paper. However, the
noise is taken into account to test the reliability of our parameters in realistic
noised situations. This paper is organized as follows. The section 2 presents the
parameters of discrimination between a shout and a speech, then the analysis
steps which follow. The section 3 describes the corpus and the con�guration of
studied parameters. The results are presented in section 4. Finally, the section
5 is dedicated to a conclusion and some perspectives.

2 Analysis and characterisation of shout

Figure 1: Presentation of the shout signal (top) and the speech signal (down)
and theirs spectrograms including the di�erent formants.

We de�ne a shout as a voiced part of a speech signal and doesn't contain
a linguistic information. We perform a comparative formant analysis between
shout and speech which allows to characterize the principal parameters of the
spectral envelope of the voiced sounds. The �gure 1 shows the spectrogram
and the �rst four formants of the shout and speech signals. We can observe
that the �rst three formants of the shout are stable in frequency and energy
relative to the speech. The variability of speech formants is justi�ed by the
articulation of vowels and consonants and the sequence of voiced parts. In
context of the shout as we have de�ned, these co-articulations are relatively
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weak nonexistent. Studying the variance (or standard deviation) in frequency or
in energy for each extracted formant seems a pertinent solution to discriminate
the segments of shout and speech. The variances must be de�ned on a duration
su�cient to take into account the di�erent kind of shout. For that purpose,
we suggest analyzing the variance (standard deviation more exactly) of the
formant frequencies and that of the energy carried by each of them according
to the duration of observation. In this way, for a formant Fi and a duration
of observation N (expressed in number of observation frames), the standard
deviation σfFi

is de�ned by the following equation:

σfFi
=

√√√√ 1

N

N∑
n=0

[fFi(n)− µfFi
]2 and µfFi

=
1

N

N∑
n=0

fFi(n) (1)

and the fFi(n) is the Fi formant frequency for the nth frame. The standard
deviation σPFi

of the power spectral density PFi for the Fi formant is de�ned
as following:

σPFi
=

√√√√ 1

N

N∑
n=0

[PFi(n)− µPFi
]2 and µPFi

=
1

N

N∑
n=0

PFi(n) (2)

3 Corpus and methodology

The aim of this study is to analyze the �rst, the second and the third formant,
respectively F1, F2 and F3. Our objective is to make a decision function in
order to distinguish between a shout event and a speech event. For this pur-
pose a database containing audio recordings of shout and speech are necessary.
For mention, our database was built in our laboratory. So, it was di�cult to
acquire a corpus containing di�erent variants of shout signal and not altered
by noise. For this purpose, we have collected a database containing di�erents
audio recordings of shout and speech. First part, we collected from di�erent
web sources 91 examples of shout recordings. These shout examples can take
di�erent forms : screaming, panic, baby cry, pain, etc. Each example have a
duration between 0.11 seconds and 5 seconds. The mean duration of examples
is 0.7 seconds. After veri�cation, we have retained only the samples that respect
a good quality. In second part, the speech examples are extracted from the the
CMU Arctic database [14], we have selected 27 examples of male and female
voices. The duration of each speech example varies between 1.09 seconds and
6.42 seconds. The speech examples contain voices of male and female equitably.
The texts are pronounced in English. The mean duration of examples is 3.5
seconds.

After collecting the data , we proceed to formant extraction. So the formant
frequencies (F1,F2,F3) are estimated with the Wavesurfer [15]. First we have
perform a pre-emphasis operation, then the algorithm estimates the LPC pa-
rameters each 10 ms using a Hamming window of 50 ms. We mention that the
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(a) fF1 (centred) (b) PF1 (centred)

(c) fF2 (centred) (d) PF2 (centred)

(e) fF3
(centred) (f) PF3

(centred)

Figure 2: Histograms centered and normalized of the formants frequencies (F1

F2 F3) (1
stcolumn) and their powers (2ndcolumn) corresponding to the shout

and the speech

dynamic programming allows to estimate the formant frequencies based on the
LPC coe�cients. After this operation, a manual correction of boundaries was
performed to correct errors of estimation. The powers of formants were calcu-
lated with a power spectral analysis based on the LPC parameters. Finally, we
obtained all the F1,F2 and F3 formant frames for shout and speech.

4 Results and discussions

4.1 Standard deviation of formants in frequency and in

energy

Figures 2 presents respectively centered and normalized histograms of frequen-
cies and powers taken for the �rst three formants of the corpus (shout and
speech). The centered character was obtained by removing the mean of each
of parameters fFi and PFi, estimated on the whole corpus. The observation
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# frames N 10 (0.1s) 30 (0.3s) 50 (0.5s) 70 (0.7s) 100 (1s)
# shout frames 100% 80% 46% 30% 21%
≥ N.10ms

Table 1: Percentage of shout signals with duration ≥ to the duration of obser-
vation N.10ms

made on all the spectrograms of the �gure 1 is generalized on all examples of
the corpus. For each cases (frequency or power), the histograms associated
in shouts present standard deviations more lower than those associated to the
speech data. The next section present the impact of durations of the observation
on standard deviations of frequencies and powers of the �rst three formants.

4.2 Duration of the observation

The di�erent variances were estimated on the whole corpus (shout/speech) on
durations of observation of N = 10, 30, 50, 70 and 100 consecutive frames. For-
mants being estimated each 10 ms, these durations of observations correspond
respectively to times of observations of 100, 300, 500, 700 ms and 1 second.
Some shouts being sometimes shorter than the duration of observations and to
avoid the bias of the estimation, these shouts were discarded. The impact is a
reduction of the number of shout signals used in the estimation.

The table 1 indicates the percentage of retained shouts signals according to
the duration of observation.

Figure 3 presents the distribution of the standard deviation of frequencies
according to the duration of observation, for respectively the shout and the
speech. We are interested �rst to the standard deviation relative to speech. We
can observe that the standard deviations of F1 are much lower than those of the
other formants. This is coherent because in a general way the F1 formant has
a dynamic frequency lower than F2 and F3. The most low standard deviations
correspond to the small observation window (100 ms); this is can be explained
by the fact that the observation window has a duration lower than the average
duration of a vowel or a syllable CV/VC. From 300 ms the mean of standard
deviations increase until 500 ms where it stabilizes; the duration of observation
corresponds to the duration of several consecutive syllables. As regards the
shout, the evolution of histograms with respect to N is slightly di�erent. At
100 ms, whatever the formant, the di�erence between speech and shout is cer-
tainly due to a very low representation of the syllables CV/VC, limiting itself
in great majority to the vowels (histograms are more compact than those of
the speech at 100 ms). Then, the syllabic content remaining close to a vowel
and histograms of standard deviations remain compact with averages stabiliz-
ing from 500 ms. Generally speaking, for the same formant, the distribution
of standard deviations of the shout and the speech recover slightly for 300 ms.
This recovery disappears from 500 ms, allowing to discriminate better between
the shout and speech whatever the considered formant.

These observations are the same on the distribution of standard deviations
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Figure 3: Distributions of standard deviation of formant frequencies (F1 F2 F3)
corresponding to the shout (1stcolumn) and the speech (2ndcolumn)

of powers for each of the 3 formants for the shout (�gure 4 1stcolumn) and for
the speech (�gure 4 2ndcolumn)).

4.3 Detection in neutral and noised mode

The analysis presented previously shows that it is possible to di�erenciate be-
tween a shout and a speech by analyzing the distribution of the standard devi-
ation in frequency and in power for the �rst three formants extracted from the
signal. It seems that is possible to conceive a detector which allows to segment
a sound signal in two classes �shout� (sh) and �speech� (sp). A class is assigned
for each frame of the signal after comparing the standard deviation of the fre-
quency f and the energy P with a given threshold θ. A frame n is considered
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Figure 4: Distributions of standard deviation of powers of formant frequencies
(F1 F2 F3) corresponding to the shout (1

stcolumn) and the speech (2ndcolumn)

as a shout ( H1 hypothesis) if

σxFi

H1
≶
H0

θxFi
(3)

Where σxFi
is the standard deviation of the analysed frame n, θ is the standard

deviation threshold, x ∈ f, P and i ∈ [1, 2, 3].
In this case, formants is extracted automatically without a manual correc-

tion. For each kind of parameters (standard deviation in frequency f and in
energy P ) and for each formant, we have varied the σxFi

value in object to
establish the ROC curves representing the rate of good detection according to
the rate of false detection. The rate of false detection is de�ned as the ratio of
the number of speech frames detected as shout to the total number of speech
frames. The rate of good detection is de�ned as the ratio of the number of
shout frames detected as shout to the total number of shout frames. The ROC
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curve is established on several durations of observation N . It is necessary to
note that the total number of frames to be detected evolves according to the N
value because some shout examples have a duration inferior than the duration
of observation. For each duration the maximal number of detectable shouts of
the corpus is precised in the table 1.

The results are presented in �gure 5 for the parameters σfFi
(in �rst col-

umn) and σPFi
(in second column). By considering the �gure 5 on the �rst

column, the results are encouraging for F1 and F2. In spite of some estimation
errors added naturally to variations of σfFi

, we obtain suitable rates of good
and bad detection of F1 and F2 from duration of 0.5s (N = 50). These rates
increase/decrease with the increase of N . Concerning the σfF3

parameter the
performances decrease because the estimation of F3 is strongly noised. With
regard to �gure 5 (second column), we observe the same behaviour of the detec-
tor. The errors of estimation generated on F1, F2 and F3 a�ect an unimportant
part of detector performances. At 500ms we obtain scores of BD/FA around
0.9/0.07 for F1 and 0.85/0.1 for F2. For F3, although the standard deviation
increases in frequency (see �gure 5), the impact on the associated power values
is low and the performances are equivalent to the �rst two formants.

Finally, the best performances are obtained for a duration of 1s. Unfortu-
nately, this choice of duration obliges us to reject 79% of shout examples. At
500ms, we hope detecting a score around 46% of total shouts. This seems low
but the evaluation is done frame by frame. The challenge in the implementa-
tion of the detector is to choose a formant Fi, a parameter (σfFi

or σPFi
) and a

threshold θxFi
(x ∈ f, P ), giving as result a score of 0.8/0.01 (e.g. σfF2

) with
a duration allowing to detect more possible shouts (e.g. N = 30). Thus, we
can interpret generally that we are able to detect correctly 80% of shout frames
representing 80% of total shout examples.

5 Conclusions and future work

We have showed that is possible to characterise the signals of shout and speech
by analyzing the temporal evolution of parameters at low level such the for-
mants. The results are encouraging and can be improved in term of detection
shout/speech. This can be realized by merging di�erent temporal evolutions, in
a new model or at the decision step. It remains to study the performances of
such detector in presence of other sound events di�erent to speech and shout.
In future work, if needed, other parameters of high level can be diverted from
this study and it is possible to inject apriori knowledges for a complex mod-
elling (e.g. HMM "Hidden Markov Model", SVM "Support Vector Machine"
and GMM "Gaussian Mixture Model"). In perspective to improve the actual
results, a logistic function can be used as a binary decision function. On the
other hand, in order to evaluate the e�ciency of our detection model, the tech-
nique of neural networks can be applied and eventually compare the di�erent
results.
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Figure 5: ROC curves based on frequency and power for the detection of shout
vs speech in neutral mode.
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Figure 6: ROC curves based on frequency and power for the detection of shout
vs speech in noised mode
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