Skip to main content
Log in

Performance analysis of short length low density parity check codes

  • Published:
International Journal of Speech Technology Aims and scope Submit manuscript

Abstract

Outstanding bit error rate LDPC design in waterfall region and error floor region is one of the challenging tasks for the past decade. This chapter, focuses on the design of LDPC encoder with the low error floor and waterfall region of BER with minimum trapping set. Scheduled Progressive Edge-Growth (SPEG) LDPC encoder is used, and the simulation result of density evolution and exit chart are giving the better convergence of LDPC encoder. BER performance in error floor can controlled by minimum trapping set and waterfall region controlled by scheduled PEG LDPC encoder (1000, 500) with code length (n) is less than 600. The girth of the SPEG encoder is 8. SPEG with minimum trapping set will perform well for short length code also and it converges faster than the other PEG encoder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Anand, A., & Senthil Kumar, P. (2015). An efficient non-binary LDPC decoder with layer dynamic scheduling. Journal of Computational and Theoretical Nanoscience, 12(12), 5066–5070.

    Article  Google Scholar 

  • Anand, A., & Senthil Kumar, P. (2016). Scheduled progressive edge growth ldpc encoder with mimimal trapping set. Asian Journal of Information Technology, 15(13), 2162–2166.

    Google Scholar 

  • Benamirouche, N., Boudraa, B., López-Oller, D., et al. (2016). Low complexity forward error correction for CELP-type speech coding over erasure channel transmission. International Journal of Speech and Technology, 19, 717–730. https://doi.org/10.1007/s10772-016-9365-1.

    Article  Google Scholar 

  • Declercq, D., & Fossorier, M. (2016). Channel coding theory, algorithms and applications. New York: Academic Press.

    Google Scholar 

  • Gholami, M., & Esmaeili, M. (2012). Maximum-girth cylinder-type block-circulant LDPC codes. IEEE Transactions on Communications., 60(4), 952–962.

    Article  Google Scholar 

  • Healy, C., & Lamare, R. (2012). Decoder-optimized progressive edge growth algorithms for the design of LDPC codes with low error floors. IEEE Communication Letters, 16(6), 889–892.

    Article  Google Scholar 

  • Khazraie, S., Asvaldi, R., & Banihashemi, A. (2012). A PEG construction of finite-length LDPC codes with low error floor. IEEE Communications Letters, 16(8), 1288–1291.

    Article  Google Scholar 

  • Martines-Mateo, J., Elkouss, D., & Martin, V. (2011). Improved construction of irregular progressive edge growth tanner graph. arXiv:1007.3588v2[cs.IT].

  • Nguyen, D. V., & Vasic, B. (2014). Two-bit bit flipping algorithms for LDPC codes and collective error correction. IEEE Transactions on Communications., 62(4), 1153–1163.

    Article  Google Scholar 

  • Ramamoorthy, A., & Wesel, R. (2004) Construction of short block length irregularlow-density parity-check codes. In 2004 IEEE International Conference on Communications (Vol. 1). Paris, France.

  • Richardson, T. J., Shokrollahi, M. A., & Urbanke, R. L. (2001). Design of capacity-approaching irregular low-density parity-check codes. IEEE Transactions on Information Theory, 47(2), 619–637.

    Article  MathSciNet  Google Scholar 

  • Richter, G., & Hof, A. (2006). On a Construction Method of Irregular LDPC Codes Without Small Stopping Sets. 2006 IEEE International Conference on Communications, Istanbul, Turkey, 1119–1124. https://doi.org/10.1109/ICC.2006.254897.

  • Savin, V. (2007). Iterative LDPC decoding using neighborhood reliabilities. In IEEE International Symposium on Information Theory (ISIT) (pp. 221–225).

  • Schmalen, L., Adrat, M., Clevorn, T., & Vary, P. (2011). EXIT chart based system design for iterative source-channel decoding with fixed-length codes. IEEE Transactions on Communications, 59(9), 2406–2413.

    Article  Google Scholar 

  • Sharon, E., Ashikhmin, A., & Litsyn, S. (2006). EXIT functions for binary input memoryless symmetric channels. IEEE Transactions on Communications, 54(7), 1207–1214.

    Article  Google Scholar 

  • Sharon, E., & Litsyn, S. (2008). Constructing LDPC codes by error minimization progressive edge growth. IEEE Transactions on Communications, 56(3), 359–368.

    Article  Google Scholar 

  • Sy, L.P., Savin, V & Declercq, D. (2011). Extended non-binary Low-Density Parity-Check codes over erasure channels. 2011 8th International Symposium on Wireless Communication Systems, Aachen, Germany. 121–125. https://doi.org/10.1109/ISWCS.2011.6125322.

  • Tian, T., Jones, C., Villasenor, J., & Wesel, R. (2004). Selective avoidance of cycles in irregular LDPC code constructions. IEEE Transactions on Communications., 52(8), 1242–1247.

    Article  Google Scholar 

  • Tian, T., Jones, C., Villasenor, J. D., & Wesel, R. D. (2010). Constructing short-length irregular LDPC codes with low error floor. IEEE Transactions on Communications, 58(10), 2823–2831.

    Article  Google Scholar 

  • Vukobratovi, D., & Senk, V. (2009). Evaluation and design of irregular LDPC codes using ACE spectrum. IEEE Transactions on Communications, 57(8), 22272–22279.

    Google Scholar 

  • Wang, C., Chen, X., Li, Z., & Yang, S. (2013). A simplified min-sum decoding algorithm for non-binary LDPC codes. IEEE Transactions on Communications., 61(7), 24–32.

    Article  Google Scholar 

  • Xiao, H., & Banihashemi, A. (2004). Improved progressive-edge-growth (PEG) construction of irregular LDPC codes. IEEE Communications Letters, 8(12), 715–717.

    Article  Google Scholar 

  • Zheng, X., Lau, F., & Tse, C. (2010). Constructing short-length irregular LDPC codes with low error floor. IEEE Transactions on Communications., 58(10), 2823–2834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anand Anbalagan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anbalagan, A., Subramani, S., Kamalanathan, C. et al. Performance analysis of short length low density parity check codes. Int J Speech Technol 24, 615–624 (2021). https://doi.org/10.1007/s10772-021-09815-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10772-021-09815-1

Keywords

Navigation