Skip to main content

Advertisement

Log in

Non-coherent UWB Radio for Low-rate WPAN Applications: A Chaotic Approach

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

 

The requirements of low cost, low power and longer operation range for low-rate wireless personal area network (LR-WPAN) applications has driven the utilization of non linear communication approach. In this paper, a combined ultra-wideband (UWB) and chaotic communication technologies is proposed to meet these challenging demands. Among the candidates, the differential chaos shift keying (DCSK) modulation appears to be a very promising solution. The DCSK is a family of transmit reference (TR) system where a correlator based receiver is used to demodulate the received signal. However, this is not very well understood in the literature and therefore we will exemplify this issue in terms of noise performance. Furthermore, the feasibility study of the proposed DCSK is presented through the scalability and link budget analysis in two different operation modes. The system performance in both additive white Gaussian noise (AWGN) channel and standardized IEEE 802.15.4a UWB multipath channels are provided in order to further demonstrate the capability of the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

References

  1. FCC, First report and order, 14 February 2002, http://www.hraunfoss.fcc.gov/edocs_public/attachmatch/FCC-02-48A1.pdf

  2. Win M.Z., Scholtz R.A., (1998) Impulse radio: how it works. IEEE Communication Letters 2(2): 36–38

    Article  Google Scholar 

  3. Win M.Z., Scholtz R.A., (1998) On the robustness of ultra-wide bandwidth signals in dense multipath environments, IEEE Communication Letters 2(2): 51–53

    Article  Google Scholar 

  4. Win M.Z., Scholtz R.A., (1998) On the energy capture of ultra-wide bandwidth signals in dense multipath environments. IEEE Communication Letters 2(9): 245–247

    Article  Google Scholar 

  5. Win M.Z., Scholtz R.A., (2000) Ultra-wide bandwidth time-hopping spread-spectrum impulse radio for wireless multiple-access communications. IEEE Transactions on Communications 48(4): 679–691

    Article  Google Scholar 

  6. IEEE 802.15.3a Task Group, WPAN High Rate Alternative PHY, http://www.ieee802.org/15/pub/TG3a.html

  7. A. Batra et al., Multi-band OFDM physical layer proposal for IEEE 802.15 Task Group 3a, IEEE 802.15-03-0268-03-003a, Mar. 2004.

  8. R. Fisher et al., DS-UWB physical layer submission to 802.15 Task Group 3a, IEEE 802.15-04-137-03-003a, July 2004.

  9. IEEE 802.15.4a Task Group, WPAN Low Rate Alternative PHY, http://www.ieee802.org/15/pub/TG4a.html

  10. C.-C. Chong et al., Samsung Electronics (SAIT) CFP Presentation for IEEE 802.15.4a Alternative PHY, IEEE 802.15-05-0030-02-004a, Jan. 2005.

  11. N. Kim and I. Kim, Samsung DM R&D Center proposal, IEEE 802.15-05-0042-00-004a, Jan. 2005.

  12. H.S. Lee et al., Chaotic pulse based communication system proposal, IEEE 802.15-05-0010-04-004a, Jan. 2005.

  13. A. Abel and W. Schwarz, Chaos communications – principles, schemes, and systems analysis, Proceedings of the IEEE, Vol. 90, No. 5, pp. 691–710, 2002.

  14. Quek T.Q.S., Win M.Z., (2005) Analysis of UWB transmitted reference communication systems in dense multipath channels. IEEE Journal of Selected Areas in Communications 23(9): 1863–1874

    Article  Google Scholar 

  15. Kolumbán G. (2000). Theoretical noise performance of correlator based chaotic communications schemes. IEEE Transactions on Circuits and Systems I 47(12): 1692–1701

    Article  MATH  MathSciNet  Google Scholar 

  16. Kolumbán G., Kennedy M.P., (2000) The role of synchronization in digital communication using chaos—Part III: performance bounds. IEEE Transactions on Circuits and Systems I 47(12): 1673–1683

    Article  MATH  MathSciNet  Google Scholar 

  17. Chong C.-C., Yong S.K., Lee S.S., (2005) UWB direct chaotic communication technology. IEEE Antennas Wireless Propagation Letters 4:316–319

    Article  Google Scholar 

  18. C.-C. Chong and S.K. Yong, LR-WPAN system design based on UWB direct chaotic communication technology. Proceedings of IEEE Vehicular Technology Conference, Vol. 1, pp. 63–67, Dallas, TX, USA, September 2005.

  19. S.K. Yong, C.-C. Chong and S.S. Lee, UWB-DCSK communication systems for low rate WPAN applications, Proceedings of IEEE International Symposium Personal, Indoor and Mobile Radio Communications (PIMRC 2005), Vol. 2, pp. 911–915, Berlin, Germany, September 2005.

  20. G. Kolumbán, M.P. Kennedy, Z. Jako and G. Kis, Chaotic communications with correlator receivers: theory and performance limits, Proceedings of the IEEE, Vol. 90, No. 5, pp. 711–732, 2002.

  21. G. Kolumbán, B. Vizvari, W. Schwarz and G. Abel, Differential chaos shift keying: a robust coding for chaos communication, In Proc. Intl Workshop on Non-linear Dynamics of Electronic Systems (NDES 1996), Seville, Spain, pp. 87–92, 1996.

  22. P. Rouzet and J. Ellis, P802.15.4a Alt PHY selection criteria, IEEE 802.15-04-0232-16-004a, Nov. 2004.

  23. IEEE Standard 802.15.4, Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area networks (LR-WPANs), IEEE P802.15.4a-D3, June 2006.

  24. A.F. Molisch et al., IEEE 802.15.4a Channel model – Final report, IEEE 802.15-04-0662-02-004a, San Antonio, TX, USA, Nov. 2004.

  25. A.F. Molisch, D. Cassioli, C.-C. Chong, S. Emami, A. Fort, B. Kannan, J. Karedal, J. Kunisch, H. Schantz, K. Siwiak and M.Z. Win, A comprehensive standardized model for ultrawideband propagation channels, IEEE Transactions on Antennas and Propagation, Vol. 54, No. 11, Nov. 2006.

  26. Chong C.-C., Yong S.K., (2005) A generic statistical based UWB channel model for high-rise apartments. IEEE Transactions on Antennas and Propagation 53(8):2389–2399

    Article  Google Scholar 

  27. Chong C.-C., Kim Y., Yong S.K., Lee S.S., (2005) Statistical characterization of the UWB propagation channel in indoor residential environment. Wiley Journal on Wireless Communications and Mobile Computing 5(5):503–512

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chia-Chin Chong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yong, SK., Chong, CC. & Kolumbán, G. Non-coherent UWB Radio for Low-rate WPAN Applications: A Chaotic Approach. Int J Wireless Inf Networks 14, 121–131 (2007). https://doi.org/10.1007/s10776-006-0045-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-006-0045-y

Keywords

Navigation