Skip to main content
Log in

Scaled Selection Combining for Adaptive Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

This paper enhances the conventional scaled selection combiner (SSC) for decode-and-forward (DF) relay networks using adaptive M-ary quadrature amplitude modulation (M-QAM) to improve the spectral efficiency. Compared with the conventional SSC designed for the combining of identically distributed diversity branches using the same modulation level, the improved SSC allows all diversity branches to choose different modulation levels according to the dissimilar channel conditions. Different scale factors are used for all diversity branches to reflect not only the performance degradation caused by possible erroneous relaying but also different error-resistance abilities of different levels QAM. We derive the bit-error-rate (BER) expressions for DF relay networks using SSC in a recursive way, with all channels conforming to independently and non-identically distributed (i.ni.d.) Rayleigh fading. Newton’s method is employed to obtain the numerical solutions of the optimal scale factors minimizing the BER, and the approximations of the optimal scale factors are derived in closed form for high SNRs. Theoretical analysis and simulation results show that the improved SSC can effectively combine diversity branches with different modulation levels, and for a DF cooperative network with N relay nodes, SSC achieves the full diversity gain of N+1 if for each branch its source-to-relay SNR is proportional to the (N+1)th power of its relay-to-destination SNR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Sendonaris, E. Erkip and B. Aazhang, User cooperation diversity–Part I: System description, IEEE Transactions on Communications, Vol. 51, No. 11, pp. 1927–1938, 2003.

    Article  Google Scholar 

  2. A. Sendonaris, E. Erkip and B. Aazhang, User cooperation diversity—Part II: Implementation aspects and performance analysis, IEEE Transactions on Communications, Vol. 51, No. 11, pp. 1939–1948, 2003.

    Article  Google Scholar 

  3. J. N. Laneman, D. N. C. Tse and G. W. Wornell, Cooperative diversity in wireless networks: Efficient protocols and outage behavior, IEEE Transactions on Information Theory, Vol. 50, No. 12, pp. 3062–3080, 2004.

    Article  MathSciNet  Google Scholar 

  4. P. Kalansuriya, M. Soysa and C. Tellambura, Performance of a cooperative network using rate adaptation and cooperative combining, 2010 IEEE Wireless Communications and Networking Conference (WCNC), Quintana Roo, Mexico, 2010.

  5. S. S. Ikki, O. Amin and M. Uysal, Performance analysis of adaptive L-QAM for opportunistic decode-and-forward relaying, Vehicular Technology Conference (VTC 2010-Spring), Taipei, Taiwan, 2010.

  6. E. S. Altubaishi and X. Shen, Performance analysis of decode-and-forward relaying schemes with adaptive quadrature amplitude modulation (QAM), IET Communications, Vol. 6, No. 6, pp. 649–658, 2012.

    Article  MATH  MathSciNet  Google Scholar 

  7. H. S. Lichte, S. Valentin, H. V. Malm, H. Karl, A. B. Sediq, and I. Aad, Rate-per-link adaptation in cooperative wireless networks with multi-rate combining, IEEE International Conference on Communications (ICC), Dresden, Germany, 2009.

  8. Y. Zhang, Y. Ma, and R. Tafazolli, Modulation-adaptive cooperation schemes for wireless networks, Vehicular Technology Conference (VTC 2008-Spring), Singapore, 2008.

  9. D. G. Brennan, Linear diversity combining techniques, Proceedings of the IEEE, Vol. 91, No. 2, pp. 331–356, 2003.

    Article  MathSciNet  Google Scholar 

  10. T. Wang, A. Cano, G. B. Giannakis and J. N. Laneman, High-performance cooperative demodulation with decode-and-forward relays, IEEE Transactions on Communications, Vol. 55, No. 7, pp. 1427–1438, 2007.

    Article  Google Scholar 

  11. M. D. Selvaraj and R. K. Mallik, Scaled selection combining based cooperative diversity system with decode and forward relaying, IEEE Transactions on Vehicular Technology, Vol. 59, No. 9, pp. 4388–4399, 2010.

    Article  Google Scholar 

  12. A. B. Sediq and H. Yanikomeroglu, Performance analysis of selection combining of signals with different modulation levels in cooperative communications, IEEE Transactions on Vehicular Technology, Vol. 60, No. 4, pp. 1880–1887, 2011.

    Article  Google Scholar 

  13. A. J. Goldsmith and S. G. Chua, Variable-rate variable-power MQAM for fading channels, IEEE Transactions on Communications, Vol. 45, No. 10, pp. 1218–1230, 1997.

    Article  Google Scholar 

  14. A. Conti, M. Z. Win and M. Chiani, Slow adaptive M-QAM with diversity in fast fading and shadowing, IEEE Transactions on Communications, Vol. 55, No. 5, pp. 895–905, 2007.

    Article  Google Scholar 

  15. L. Toni and A. Conti, Does fast adaptive modulation always outperform slow adaptive Modulation, IEEE Transactions on Wireless Communications, Vol. 10, No. 5, pp. 1504–1513, 2011.

    Article  Google Scholar 

  16. S. Haghani and N. C. Beaulieu, M-ary NCFSK with S+N selection combining in Rician fading, IEEE Transactions on Communications, Vol. 54, No. 3, pp. 491–498, 2006.

    Article  Google Scholar 

  17. K. Cho and D. Yoon, On the general BER expression of one- and two-dimensional amplitude modulations, IEEE Transactions on Communications, Vol. 50, No. 7, pp. 1074–1080, 2002.

    Article  Google Scholar 

  18. R. L. Burden and J. D. Faires, Numerical Analysis, 9th ed, pp. 638–644. Brooks Cole, Boston, 2010.

  19. J. G. Proakis and M. Salehi, Digital Communications, 5th ed, pp. 846–847. McGraw Hill, New York, 2008.

Download references

Acknowledgments

This work was supported by the National Natural Science Foundations of China (Grant No. 61201143), the Fundamental Research Funds for the Central Universities (Grant No. HIT.IBRSEM.201309) and Innovation Foundations of CAST (ITS) (Grant No.F-W-YY-2013-016). The authors would like to thank Prof. Kaveh Pahlavan and the anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Zhao.

Appendices

Appendix 1: Proof of Proposition 1

First, we give the Nth order Taylor series expansion of \(g(x)\) at the point \(x=0\) as

$$\begin{aligned} g(x) = \frac{1}{{Z + x}} \mathop {\approx }\limits ^{x \rightarrow 0} \frac{1}{Z}\sum \limits _{n = 0}^N \left( \frac{{ - x}}{Z}\right) ^{n} = \frac{1}{Z} - \frac{x}{Z^{2}} + \frac{x^{2}}{Z^{3}} - \frac{x^{3}}{Z^{4}} + \cdots \end{aligned}$$
(38)

where \(Z\) denotes a constant. And we give the Nth order Taylor series expansion of \(h(x)\) at the point \(x=0\) as

$$\begin{aligned} h(x)= 1 - \sqrt{\frac{1}{{1 + x}}} \mathop {\approx }\limits ^{x \rightarrow 0}\sum \limits _{n = 0}^N \frac{{h^{(n)}}(0)}{{n!}}x^{n} = \frac{1}{2}x - \frac{3}{8}x^{2} + \frac{5}{16}x^{3} - \frac{35}{128}x^{4} + \cdots \end{aligned}$$
(39)

Then when \(\Gamma _{\mathrm{SD}} \rightarrow \infty\) and thus \(\alpha _{0,1} = \beta _{1}/\Gamma _{\mathrm{SD}}\) approach zeros, by using the second-order Taylor series expansion of \(g(x), \varPhi _{\mathrm{SR}1\mathrm{D}}(2)\) given by (7) can be approximated as

$$\begin{aligned}&{\varPhi _{{\mathrm{SR}}1{\mathrm{D}}}}(2) = \frac{1}{{{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}\left( {\frac{1}{{{\alpha _{1,1}}}} - \frac{1}{{{\alpha _{1,1}} + {\alpha _{0,1}}}}} \right) \nonumber \\&\quad \mathop {\approx }\limits ^{{\alpha _{0,1}} \rightarrow 0} \frac{1}{{{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}\left( {\frac{1}{{{\alpha _{1,1}}}} - \frac{1}{{{\alpha _{1,1}}}} + \frac{{{\alpha _{0,1}}}}{{{{\left( {{\alpha _{1,1}}} \right) }^2}}}} \right) = \frac{1}{{{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}\frac{{{\alpha _{0,1}}}}{{{{\left( {{\alpha _{1,1}}} \right) }^2}}} \end{aligned}$$
(40)

And when \(X \rightarrow 0\) in (10), by using the second-order Taylor series expansion of \(h(x)\), \({P_{Ray}}(M,\Gamma ,X)\) given by (10) can be approximated by

$$\begin{aligned} {P_{Ray}}(M,\Gamma ,X) = \frac{{{c_M}}}{{2\Gamma X}}\left( {1 - \sqrt{\frac{{d_M^2}}{{d_M^2 + X}}} } \right) \mathop {\approx }\limits ^{X \rightarrow 0} \frac{{{c_M}}}{{4\Gamma d_M^2}} - \frac{{3{c_M}X}}{{16\Gamma d_M^4}} \end{aligned}$$
(41)

Therefore, when \({\Gamma _{{\mathrm{SD}}}},\;{\Gamma _{{\mathrm{R1D}}}} \rightarrow \infty\) and thus \({\alpha _{n,i}} \rightarrow 0\) (\(n=0, 1\), and \(i=0, 1\)), by substituting (40) and (41), \({P_{Ray(2)}}\) given by (12) can be written as

$$\begin{aligned} {P_{Ray(2)}}&\approx \frac{{3{c_{M{\mathrm{S}}}}}}{{16d_{M{\mathrm{S}}}^4}}{\alpha _{0,0}}{\alpha _{1,0}} + P_{Ray}^{{\mathrm{SR}}1}\frac{1}{{{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}\frac{{{\alpha _{0,1}}}}{{{{\left( {{\alpha _{1,1}}} \right) }^2}}}\nonumber \\& \quad + \left( {1 - 2P_{Ray}^{{\mathrm{SR}}1}} \right) \frac{{3{c_{M{\mathrm{S}}}}}}{{16d_{M{\mathrm{S}}}^4}}{\alpha _{0,1}}{\alpha _{1,1}}. \end{aligned}$$
(42)

When \(P_{Ray}^{{\mathrm{SR}}1} \ll 1\), \(P_{Ray}^{{\mathrm{SR}}1}\) in the third term of (42) can be ignored. Then by substituting (3), (42) turns into

$$\begin{aligned} {P_{Ray(2)}}&\approx {\left( {{\Gamma _{{\mathrm{SD}}}}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) ^{ - 1}}\frac{3}{{16}}\left( {\frac{{{c_{M{\mathrm{S}}}}}}{{d_{M{\mathrm{S}}}^4{\beta _1}}} + \frac{{{c_{M{\mathrm{R}}i}}{\beta _1}}}{{d_{M{\mathrm{R}}i}^4}}} \right) + P_{Ray}^{{\mathrm{SR}}1}\frac{{{\beta _1}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}{{{\Gamma _{{\mathrm{SD}}}}}}\nonumber \\&= {\left( {{\Gamma _{{\mathrm{SD}}}}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) ^{ - 1}}{k_1} + P_{Ray}^{{\mathrm{SR}}1}\frac{{{\beta _1}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}}}{{{\Gamma _{{\mathrm{SD}}}}}}, \end{aligned}$$
(43)

where \(k_1\) is a positive constant.

When \({\Gamma _{{\mathrm{SR}}i}} \rightarrow \infty , i=1,\ldots ,N\), by using the first-order Taylor series expansion of \(h(x)\), \(P_{Ray}^{{\mathrm{SR}}i}\) can be approximated as

$$\begin{aligned} P_{Ray}^{{\mathrm{SR}}i} = {P_{Ray}}\left( {{M_{\mathrm{S}}},{\Gamma _{{\mathrm{SR}}i}},\frac{1}{{{\Gamma _{{\mathrm{SR}}i}}}}} \right) \approx \frac{{{c_{M{\mathrm{S}}}}}}{{4d_{M{\mathrm{S}}}^2{\Gamma _{{\mathrm{SR}}i}}}}, \end{aligned}$$
(44)

\(i = 1,\ldots ,N\). By substituting (44), (43) turns into

$$\begin{aligned} {P_{Ray(2)}} \approx {\left( {{\Gamma _{{\mathrm{SD}}}}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) ^{- 1}}\left( {{k_1} + \frac{{{{\left( {{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) }^2}}}{{{\Gamma _{{\mathrm{SR}}1}}}}\frac{{{c_{M{\mathrm{S}}}}}}{{4d_{M{\mathrm{S}}}^2}}} \right) = {\left( {{\Gamma _{{\mathrm{SD}}}}{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) ^{ - 1}}\left( {{k_1} + \frac{{{{\left( {{\Gamma _{{\mathrm{R}}1{\mathrm{D}}}}} \right) }^2}}}{{{\Gamma _{{\mathrm{SR}}1}}}}{k_2}} \right) , \end{aligned}$$
(45)

with \(k_2\) denoting a positive constant.

Appendix 2: Proof of Proposition 2

When \({\Gamma _{{\mathrm{SD}}}},\;{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}} \rightarrow \infty \;(n = 1,\ldots ,N)\) and thus \({\alpha _{n,i}} \rightarrow 0\;(n = 0,\ldots ,N\) and \(i = 0,\ldots ,N)\), by using the (N+1)th order Taylor series expansion of \(h(x)\), \({P_{Ray(N + 1)}}\) given by (21) can be approximated by

$$\begin{aligned} {P_{Ray(N + 1)}}&\approx \frac{{\left| {{h^{(N + 1)}}(0)} \right| }}{{2(N + 1)}}\frac{{{c_{M{\mathrm{S}}}}}}{{d_{M{\mathrm{S}}}^{2(N + 1)}}}\prod \limits _{n = 0}^N {{\alpha _{n,0}}} + \sum \limits _{i = 1}^N {(P_{Ray}^{{\mathrm{SR}}i}{\varPhi _{{\mathrm{SR}}i{\mathrm{D}}}}(N + 1)}\nonumber \\& \quad + \left( {1 - 2P_{Ray}^{{\mathrm{SR}}i}} \right) \frac{{\left| {{h^{(N + 1)}}(0)} \right| }}{{2(N + 1)}}\frac{{{c_{M{\mathrm{R}}i}}}}{{d_{M{\mathrm{R}}i}^{2(N + 1)}}}\prod \limits _{n = 0}^N {{\alpha _{n,i}}}). \end{aligned}$$
(46)

When \(P_{Ray}^{{\mathrm{SR}}i} \ll 1,\;i=1,\ldots ,N\), \(P_{Ray}^{{\mathrm{SR}}i}\) in the third term of (46) can be ignored. Then by substituting (3), (46) turns into

$$\begin{aligned} {P_{Ray(N + 1)}}&\approx {\left( {{\Gamma _{{\mathrm{SD}}}}}\right) ^{-1}} \prod \limits _{n = 1}^N {{{\left( {{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}}} \right) }^{-1}}}\frac{{\left| {{h^{(N+1)}}(0)}\right| }}{{2(N+1)}}\nonumber \\&\cdot \left[ {\frac{{{c_{M{\mathrm{S}}}}}}{{d_{M{\mathrm{S}}}^{2(N + 1)}}}\prod \limits _{n = 0}^N {\frac{1}{{{\beta _n}}}} + \sum \limits _{i = 1}^N {\left( {\frac{{{c_{M{\mathrm{R}}i}}}}{{d_{M{\mathrm{R}}i}^{2(N + 1)}}}\prod \limits _{n = 0}^N{\frac{{{\beta _i}}}{{{\beta _n}}}}}\right) }}\right] \nonumber \\&\quad + \sum \limits _{i = 1}^N {P_{Ray}^{{\mathrm{SR}}i}{\varPhi _{{\mathrm{SR}}i{\mathrm{D}}}}(N + 1)}\nonumber \\&= {\left( {{\Gamma _{{\mathrm{SD}}}}} \right) ^{-1}}\prod \limits _{n = 1}^N {{{\left( {{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}}} \right) }^{ - 1}}} {m_0} + \sum \limits _{i = 1}^N {P_{Ray}^{{\mathrm{SR}}i}{\varPhi _{{\mathrm{SR}}i{\mathrm{D}}}}(N + 1)} \end{aligned}$$
(47)

where \(m_{0}\) is a positive constant.

By using the (N+1)th-order Taylor series expansion of \(g(x)\), \({\varPhi _{{\mathrm{SR}}i{\mathrm{D}}}}(N + 1)\) given by (7) can be approximated by

$$\begin{aligned} {\varPhi _{{\mathrm{SR}}i{\mathrm{D}}}}(N + 1)&\approx \frac{1}{{ {\Gamma _{{\mathrm{R}}i{\mathrm{D}}}}}}\frac{{N!}}{{{{ \left( {{\alpha _{i,i}}} \right) }^{N +1}}}}\prod \limits _{n = 0,n \ne i}^N {{\alpha _{n,i}}}\nonumber \\&= {\left( {{\Gamma _{{\mathrm{SD}}}}}\right) ^{-1}}\prod \limits _{n = 1}^N {{{\left( {{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}}} \right) }^{-1}}} \left( {N!{{\left( {{\Gamma _{{\mathrm{R}}i{\mathrm{D}}}}} \right) }^{N + 1}}\prod \limits _{n = 0}^N {\frac{{{\beta _i}}}{{{\beta _n}}}}}\right) . \end{aligned}$$
(48)

By substituting (44) and (48), \({P_{Ray(N + 1)}}\) can be written as

$$\begin{aligned} {P_{Ray(N + 1)}}&= {\left( {{\Gamma _{{\mathrm{SD}}}}} \right) ^{ - 1}}\prod \limits _{n = 1}^N {{{\left( {{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}}} \right) }^{-1}}}\nonumber \\&\quad \cdot \left( {{m_{0}} + \sum \limits _{i = 1}^{N} {\left( {\frac{{{{\left( {{\Gamma _{{\mathrm{R}}i{\mathrm{D}}}}}\right) }^{N + 1}}}}{{{\Gamma _{{\mathrm{SR}}i}}}}\frac{{{c_{M{\mathrm{S}}}}}}{{4d_{M{\mathrm{S}}}^2}}N!\prod \limits _{n = 0}^N {\frac{{{\beta _i}}}{{{\beta _n}}}}}\right) }}\right) \nonumber \\&= {\left( {{\Gamma _{{\mathrm{SD}}}}} \right) ^{-1}}\prod \limits _{n = 1}^N {{{\left( {{\Gamma _{{\mathrm{R}}n{\mathrm{D}}}}} \right) }^{-1}}} \left( {{m_0} + \sum \limits _{i = 1}^N {\frac{{{{\left( {{\Gamma _{{\mathrm{R}}i{\mathrm{D}}}}} \right) }^{N + 1}}}}{{{\Gamma _{{\mathrm{SR}}i}}}}{m_i}}}\right) , \end{aligned}$$
(49)

with \(m_i,\,i=1,\ldots ,N\), denoting positive constants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, D., Zhao, H. & Jia, M. Scaled Selection Combining for Adaptive Decode-and-Forward Relaying in Dissimilar Rayleigh Fading Channels. Int J Wireless Inf Networks 21, 238–247 (2014). https://doi.org/10.1007/s10776-014-0245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-014-0245-9

Keywords

Navigation