Skip to main content
Log in

On-Line Location Prediction Exploiting Spatial and Velocity Context

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

We treat the problem of movement prediction as a classification task. We assume the existence of a (gradually populated and/or trained) knowledge base and try to compare the movement pattern of a certain object with stored information in order to predict its future location. We introduce a novel distance metric function based on weighted spatial and velocity context used for location prediction. The proposed distance metric is compared with other distance metrics in the literature on real traffic data and reveals its superiority.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K. R. Evensen, A. Petlund, H. Riiser, P. Vigmostad, D. Kaspar, C. Griwodz, and P. Halvorsen, Mobile Video Streaming Using Location Based Network Prediction and Transparent Handover. In Proc. 21th ACM Intl. Workshop NOSSDAV’11, pp. 21–26, 2011.

  2. J.-K. Lee, J. C. Hou. Modeling steady-state and transient behaviors of user mobility: formulation, analysis, and application. In Proc. 7th ACM Intl. MobiHoc’06, pp. 85–96, 2006.

  3. W. Su, S. J. Lee and M. Gerla, Mobility prediction and routing in ad hoc wireless networks, International Journal of Network Management, Vol. 11, No. 1, pp. 3–30, 2001.

    Article  Google Scholar 

  4. I. Priggouris, E. Zervas, and S. Hadjiefthymiades, Location Based Network Resource Management, Handbook of Research on Mobile Multimedia (ed. I. Khalil Ibrahim), Idea Group Inc., May 2006.

  5. S. Choi and K. G. Shin, Predictive and adaptive bandwidth reservation for hand-offs in QoS-sensitive cellular networks, ACM SIGCOMM Computer Communication Review, Vol. 28, No. 4, pp. 155–166, 1998.

    Article  Google Scholar 

  6. S. Hadjiefthymiades, L. Merakos, Proxies + path prediction: improving web service provision in wireless-mobile communications, ACM/Kluwer Mobile Networks and Applications, S.I. Mobile and Wireless Data Management, Vol. 8, No. 4, pp. 389–399, 2003.

  7. A. Karmouch and N. Samaan, A mobility prediction architecture based on contextual knowledge and spatial conceptual maps, IEEE Transactions on Mobile Computing, Vol. 4, No. 6, pp. 537–551, 2005.

    Article  Google Scholar 

  8. H. Jeung, Q. Liu, H. Tao Shen, X. Zhou, A Hybrid Prediction Model for Moving Objects. In Proc. 24th IEEE Intl. ICDE’08, pp. 70–79, 2008.

  9. K. Majumdar, N. Das, Mobile user tracking using a hybrid neural network, Wireless Networks, Vol. 11, No. 3, pp. 275–284, 2005.

  10. H. Jeung, M. L. Yiu, X. Zhou and C. S. Jensen, Path prediction and predictive range querying in road network databases, VLDB Journal, Vol. 19, No. 4, pp. 585–602, 2010.

    Article  Google Scholar 

  11. C. Hermes, C. Woehler, K. Schenk, F. Kummert, Long–Term Vehicle Motion Prediction. In Proc. IEEE IV’09, pp. 652–657, 2009.

  12. S. Akoush, A. Sameh, Mobile User Movement Prediction Using Bayesian Learning for Neural Networks. In Proc. ACM Intl. IWCMC’07, pp. 191–196, 2007.

  13. I. Burbey, T. L. Martin, Predicting Future Locations Using Prediction-by-Partial-Match. In Proc. 1st ACM MELT’08, pp. 1–6, 2008.

  14. D. Ashbrook and T.Starner, Learning Significant Locations and Predicting User Movement with GPS. In Proc. 6th Intl. ISWC’02, pp. 101–108, 2002.

  15. R. Viayan and J. Holtman, A model for analyzing handoff algorithms, IEEE Transactions on Vehicular Technology, Vol. 42, No. 3, pp. 351–356, 1993.

    Article  Google Scholar 

  16. T. Anagnostopoulos, C. Anagnostopoulos, S. Hadjiefthymiades, A. Kalousis, M. Kyriakakos, Path Prediction Through Data Mining. In Proc. IEEE Intl. ICPS’07, pp. 128–135, 2007.

  17. W. Wanalertlak, B. Lee, C. Yu, M. Kim, Seung-Min Park and Won-Tae Kim, Behavior-based mobility prediction for seamless handoffs in mobile wireless networks, Wireless Networks, Vol. 17, No. 3, pp. 645–658, 2011.

    Article  Google Scholar 

  18. T. Anagnostopoulos, C. Anagnostopoulos and S. Hadjiefthymiades, An adaptive machine learning algorithm for location prediction, International Journal of Wireless Information Networks, Vol. 18, No. 2, pp. 88–99, 2011.

    Article  Google Scholar 

  19. Sang-Jun Han, Sung-Bae Cho, Predicting User’s Movement with a Combination of Self-Organizing Map and Markov Model. In Proc. of 16th Intl. ICANN’06, LNCS 4132, pp. 884–893, 2006.

  20. M. Varsta, J. Heikkonen, and J. Del Ruiz Mill, Context Learning with the Self-Organizing Map. In Proc. WSOM’07, pp. 197–202, 1997.

  21. M. Vlachos, G. Kollios and D. Gunopulos, Discovering Similar Multidimensional Trajectories. In Proc. IEEE ICDE’02, pp. 673–684, 2002.

  22. G. Das, D. Gunopulos, and H. Mannila, Finding Similar Time Series. In Proc. 1st PKDD, LNCS 1263, pp. 88–100, 1997.

  23. S. Cohen, L. Guibas, Partial Matching of Planar Polylines Under Similarity Transformations. In Proc. ACM-SIAM SODA’97, pp. 777–786, 1997.

  24. A. Croitoru, P. Agouris, A. Stefanidis, 3D Trajectory Matching by Pose Normalization. In Proc. 13th ACM Intl. GIS’05, pp. 153–162, 2005.

  25. D. Berndt, J. Clifford, Using Dynamic Time Warping to Find Patterns in Time Series. In Proc. ACM SIGKDD’94, pp. 359–370, 1994.

  26. H. Cao, O. Wolfson, G. Trajcevski, ‘Spatio-temporal Data Reduction with Deterministic Error Bounds. In Proc. 2003 ACM Joint Workshop Found. Mob. Comput. (DIALM-POMC’03), 2003.

  27. M. Vlachos, G. Kollios and D. Gunopulos, Elastic translation invariant matching of trajectories, Machine Learning, Vol. 58, No. 2–3, pp. 301–334, 2005.

    Article  MATH  Google Scholar 

  28. M. Hahn, L. Krueger, C. Woehler, 3D Action Recognition and Longterm Prediction of Human Motion. In Proc. 6th Intl. ICVS’08, LNCS 5008, pp. 23–32, 2008.

  29. B. Bollobas, G. Das, D. Gunopulos, and H. Mannila, Time-Series Similarity Problems and Well-Separated Geometric Sets. In Proc. 13th ACM SCG’97, pp. 454–456, 1997.

  30. M. Piorkowski, N. Sarafijanovic-Djukic, M. Grossglauser, A Parsimonious Model of Mobile Partitioned Networks with Clustering. In Proc. of COMSNETS’09, pp. 1–10, 2009.

  31. CRAWDAD dataset epfl/mobility (v. 2009-02-24), http://crawdad.cs.dartmouth.edu/epfl/mobility, 2009. [Cited online: 2 April 2014].

  32. CRAWDAD dataset ncsu/mobilitymodels (v. 2009-07-23), http://crawdad.cs.dartmouth.edu/ncsu/mobilitymodels, 2009. [Cited online: 2 April 2014].

  33. I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim and S. Chong, On the levy-walk nature of human mobility, IEEE/ACM Transactions On Networking, Vol. 19, No. 3, pp. 630–643, 2011.

    Article  Google Scholar 

  34. G. A. Carpenter and S. Grossberg, Adaptive Resonance Theory. In Michael A. Arbib, editor. The Handbook of Brain Theory and Neural Networks, MIT PressCambridge, 2003.

    Google Scholar 

  35. E. Alpaydin, Introduction to Machine Learning, The MIT PressCambridge, 2004.

    Google Scholar 

Download references

Acknowledgments

The research was carried out with the financial support of the Ministry of Education and Science of the Russian Federation under grant agreement #14.575.21.0058.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Theodoros Anagnostopoulos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anagnostopoulos, T., Anagnostopoulos, C., Hadjiefthymiades, S. et al. On-Line Location Prediction Exploiting Spatial and Velocity Context. Int J Wireless Inf Networks 22, 29–40 (2015). https://doi.org/10.1007/s10776-014-0259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-014-0259-3

Keywords

Navigation