Skip to main content
Log in

Modeling and Analysis of Link Duration in Vehicular Ad Hoc Networks Under Different Fading Channel Conditions

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Modeling and analysis of communication link duration in vehicular ad hoc networks (VANETs) is crucial as it directly affects many performance metrics such as packet delivery ratio, throughput and end-to-end delay. In this paper, we investigate the properties of communication link duration in one-dimensional VANETs for different fading channel conditions. We employ a stochastic microscopic mobility model that takes into account time dependence of the inter-vehicle distance. A discrete-time finite-state Markov chain with state dependent transition probabilities is used to model the inter-vehicle distance. The presence of fading channel conditions will introduce fluctuations in the received signal power. Even when the inter-vehicle distance between a given pair of vehicles is less than their transmission range, poor channel conditions may result in link failure. A modified distance transition probability matrix is derived to describe the combined effects of relative velocity among a pair of vehicles, link failure due to outage, and inter-vehicle distance. The probability distribution of the communication link duration is derived from the modified distance transition probability matrix. The analytical results obtained from the model are validated by extensive simulation results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J. J. Blum, A. Eskandarian, and L. Hoffman, Challenges of intervehicle ad hoc networks, IEEE Transactions on Intelligent Transportation Systems, vol. 5, no. 4, pp. 347–351, 2004.

    Article  Google Scholar 

  2. S. Zeadally, R. Hunt, Y.-S. Chen, A. Irwin, and A. Hassan, Vehicular ad hoc networks (vanets): status, results, and challenges, Telecommunication Systems, vol. 50, no. 4, pp. 217–241, 2012.

    Article  Google Scholar 

  3. G. Karagiannis, O. Altintas, E. Ekici, G. Heijenk, B. Jarupan, K. Lin, and T. Weil, Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions, IEEE Communications Surveys and Tutorials, vol. 13, no. 4, pp. 584–616, 2011.

    Article  Google Scholar 

  4. ASTM-E2213, standard specification for telecommunications and information exchange between roadside and vehicle systems 5GHz band dedicated short range communications (DSRC) medium access control (MAC) and physical layer (PHY) specifications, american society for testing and materials (ASTM) std. 2002.

  5. IEEE 802.11p, amendment to standard for information technology- telecommunications and information exchange between systems-local and metropolitan area networks-specific requirements part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications-amendment 7: Wireless access in vehicular environment, IEEE std. IEEE 802.11p, 2010.

  6. M. Boban, G. Misek, and O. K. Tonguz, What is the best achievable qos for unicast routing in vanets? 3rd IEEE Workshop on Automotive Networking and Applications, New Orleans, LA, USA, pp. 1–10, 2008.

  7. A. Klar, R. D. Kuhne, and R. Wegener, Mathematical models for vehicular traffic, Surveys on Mathematics for Industry, vol. 6, pp. 215–239, 1996.

    MATH  MathSciNet  Google Scholar 

  8. M. Zhao, L. Yujin, and W. Wenye, Modeling and analytical study of link properties in multihop wireless networks, IEEE Transactions on Communications,, vol. 60, no. 2, pp. 445–455, 2012.

    Article  Google Scholar 

  9. F. Bai, N. Sadagopan, B. Krishnamachari, and A. Helmy, Modeling path duration distributions in manets and their impact on reactive routing protocols, IEEE Journal on Selected Areas in Communications, vol. 22, no. 7, pp. 1357–1373, 2004.

    Article  Google Scholar 

  10. M. Pascoe-Chalke, J. Gomez, V. Rangel, and M. Lopez-Guerrero, Route duration modeling for mobile ad-hoc networks, Wireless Networks, vol. 16, no. 3, pp. 743–757, 2010.

    Article  Google Scholar 

  11. Y.-T. Wu, W. Liao, C. Tsao, and T.-N. Lin, Impact of node mobility on link duration in multihop mobile networks, IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2435–2442, 2009.

    Article  Google Scholar 

  12. X. Wu, H. R. Sadjadpour, and J. Garcia-Luna-Aceves, Link dynamics in manets restricted node mobility: Modeling and applications, IEEE Transactions on Wireless Communications, vol. 8, no. 9, pp. 4508–4517, 2009.

    Article  Google Scholar 

  13. M. Zhao and W. Wang, Analyzing topology dynamics in ad hoc networks using a smooth mobility model, IEEE Wireless Communications and Networking Conference WCNC, pp. 3279–3284, 2007.

  14. S. Xu, K. L. Blackmore, and H. M. Jones, An analysis framework for mobility metrics in mobile ad hoc networks, EURASIP Journal on Wireless Communications and Networking, vol. 2007, no. 1, pp. 26–26, 2007.

    Google Scholar 

  15. H. Jun and Yuebin, A novel approach of link availability estimation for mobile ad hoc networks, IEEE Vehicular Technology Conference, pp. 26–30, 2008.

  16. W. Sun, Y. Hirozumi, Y. Koji, and K. Shinji, Gvgrid: A qos routing protocol for vehicular ad hoc networks, 14th IEEE International Workshop on Quality of Service IWQoS, pp. 130–139, 2006.

  17. G. Yan and O. Stephan, A probabilistic analysis of link duration in vehicular ad hoc networks, IEEE Transactions on Intelligent Transportation Systems, vol. 12, no. 4, pp. 1227–1236, 2011.

    Article  Google Scholar 

  18. N. Sofra and K. K. Leung, Link classification and residual time estimation through adaptive modeling for vanets, IEEE 69th Vehicular Technology Conference Barcelona, Spain, pp. 1–5, 2009.

  19. N. Sofra, A. Gkelias, and K. K. Leung, Route construction for long lifetime in vanets, IEEE Transactions on Vehicular Technology, vol. 60, no. 7, pp. 3450–3461, 2011.

    Article  Google Scholar 

  20. M. Rudack, M. Michael, J. Klaus, and L. M, On traffic dynamical aspects of inter vehicle communications (ivc), IEEE 58th Vehicular Technology Conference, vol. 5, pp. 3368–3372, 2003.

  21. S.–Y. Wang, The effects of wireless transmission range on path lifetime in vehicle-formed mobile ad hoc networks on highways, IEEE International Conference on Communications ICC 2005, vol. 5, pp. 3177–3181, 2005.

  22. A. Khadige and Z. Weihua, Stochastic analysis of a single-hop communication link in vehicular ad hoc networks, IEEE Transactions on Intelligent Transportation Systems, vol. 15, no. 5, pp. 2297–2307, 2014.

    Article  Google Scholar 

  23. M. H. Eiza and Q. Ni, An evolving graph-based reliable routing scheme for vanets, IEEE Transactions on Vehicular Technology, vol. 62, no. 4, pp. 1493–1504, 2013.

    Article  Google Scholar 

  24. M. H. Eiza, Q. Ni, T. Owens, and G. Min, Investigation of routing reliability of vehicular ad hoc networks, EURASIP journal on wireless communications and networking, no. 1, pp. 1–15, 2013.

    Google Scholar 

  25. S. Shelly and A. Babu, Analysis of link life time in vehicular ad hoc networks for free-flow traffic state, Wireless Personal Communications Springer, vol. 75, no. 1, pp. 81–102, 2014.

    Article  Google Scholar 

  26. W. McShane and R. Roess, Traffic Engineering, third edition. Pearson Prentice Hall, 2004.

    Google Scholar 

  27. D. L. Gerlough and M. J. Huber, Traffic flow theory, Tech. Rep., 1976.

  28. T. D. Little and A. Agarwal, An information propagation scheme for vanets, IEEE Intelligent Transportation Systems, pp. 155–160, 2005.

  29. A. Goldsmith, Wireless communications. Cambridge university press, NY, 2005.

    Book  Google Scholar 

  30. I. Sen and D. W. Matolak, Vehiclevehicle channel models for the 5-ghz band, IEEE Transactions on Intelligent Transportation Systems,, vol. 9, no. 2, pp. 235–245, 2008.

    Article  Google Scholar 

  31. D. W. Matolak, Channel modeling for vehicle-to-vehicle communications, IEEE Communications Magazine,, vol. 46, no. 5, pp. 76–83, 2008.

    Article  Google Scholar 

  32. I. Gradshteyn and I. Ryzhik, Table of integrals, series and products, New York: Academic Press, c1994, 5th ed. completely reset, edited by Jeffrey, Alan, vol. 1, 1994.

  33. F. K. Karnadi, Z. H. Mo, and K.-c. Lan, Rapid generation of realistic mobility models for vanet, IEEE Wireless Communications and Networking Conference, pp. 2506–2511, 2007.

  34. D. Krajzewicz, J. Erdmann, M. Behrisch, and L. Bieker, Recent development and applications of sumosimulation of urban mobility, International Journal On Advances in Systems and Measurements, vol. 5, no. 3 and 4, pp. 128–138, 2012.

  35. A. Papoulis and S. U. Pillai, Probability, random variables, and stochastic processes. Tata McGraw-Hill Education, NY, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddharth Shelly.

Appendix 1

Appendix 1

Derivation of  (2):

Since \(V_r = V_A - V_B\), the dynamic range of \(V_r\) is limited to (\(-v_m,v_m\)) where \(v_m=v_{max}-v_{min}\). The CDF \(F_{V_r}{(v_r)}\) can be determined as follows:

$$\begin{aligned} F_{V_r}{(v_r)}=P(V_r\le v_r) =P(V_A - V_B\le v_r) \end{aligned}$$
(35)

Using the principle of random variable transformation [35], \(F_{V_r}{(v_r)}\) can be determined as follows:

$$\begin{aligned} F_{V_r}{(v_r)}=\left\{ \begin{array}{ll} \int _{v_A = v_{min}}^{v_r + v_{max}} \! \int _{v_B = v_A - v_r}^{v_{max}} \! f_{V_A,V_B}(v_A, v_B) \,\,\mathrm {d} v_B \,\,\mathrm {d} v_A ;&{}\quad -v_m\le v_r\le 0\\ 1- \int _{v_A = v_r + v_{min}}^{v_{max}} \! \int _{v_B = v_{min}}^{v_A - v_r} \! f_{V_A,V_B}(v_A, v_B) \,\,\mathrm {d} v_B \,\,\mathrm {d} v_A ;&{} \quad 0\le v_r\le v_m \end{array}\right. \end{aligned}$$
(36)

The PDF of \(V_r, f_{V_r}(v_r)\) is obtained by differentiating (36) with respect to \(v_r\) and is given by:

$$\begin{aligned} f_{V_r}{(v_r)}=\left\{ \begin{array}{ll} \frac{d}{dv_r}\int _{v_A = v_{min}}^{v_r + v_{max}} \! \int _{v_B = v_A - v_r}^{v_{max}} \! f_{V_A,V_B}(v_A, v_B) \,\,\mathrm {d} v_B \,\,\mathrm {d} v_A ;&{} \quad -v_m\le v_r\le 0\\ 0-\frac{d}{dv_r} \int _{v_A = v_r + v_{min}}^{v_{max}} \! \int _{v_B = v_{min}}^{v_A - v_r} \! f_{V_A,V_B}(v_A, v_B) \,\,\mathrm {d} v_B \,\,\mathrm {d} v_A ;&{} \quad 0\le v_r\le v_m \end{array}\right. \end{aligned}$$
(37)

In the free flow traffic state, each vehicle moves independently of others. Hence \(f_{V_A,V_B}(v_A, v_B)=f_{V_A}(v_A)\times f_{V_B}(v_B)\). Further \(V_A\) and \(V_B\) are Uniform over (\(v_{min},v_{max}\)). Hence the above integral can be simplified to get the following expression for \(f_{V_r}(v_r)\):

$$\begin{aligned} f_{V_r}(v_r)=\left\{ \begin{array}{ll} \frac{v_r +v_{max}-v_{min}}{(v_{max}-v_{min})^2};&{}\,-v_m\le v_r \le 0 \\ \frac{v_{max}-v_{min}-v_r }{(v_{max}-v_{min})^2};&{}\,\,0 \le v_r \le v_m \\ \end{array}\right. \end{aligned}$$
(38)

1.1 Appendix 2

Derivation of (23):

The integral in the (23) can be written as:

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon }P_{out}(P_{min},x)\,dx&= \quad\frac{1}{2\varepsilon }\int \limits _{(i-1)\varepsilon }^{i\varepsilon } \left[ 1+erf\left( \frac{P_{min}-(P_t+10log_{10}k-10\alpha log_{10}\left( \frac{x}{d_0}\right) }{\sqrt{2}\sigma _{\psi _{dB}}}\right) \right] \,dx\\ \end{aligned} \end{aligned}$$
(39)

Let \(a=P_{min}-P_t-10logk, b=\sqrt{2}\sigma _{\psi _{dB}}\) and \(c=d_0\) and performing integration by parts

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon }P_{out}(P_{min},x)\,dx\,=\,&\frac{1}{2\varepsilon } \left[ x+x\,erf\left( \frac{a+10\alpha log_{10}(\frac{x}{c})}{b}\right) \right. \\&\left. + \int \limits _{(i-1)\varepsilon }^{i\varepsilon } \frac{20\alpha e^{(-\frac{a+10\alpha log_{10}\left( \frac{x}{c}\right) }{b})}}{b\sqrt{\pi }}\,dx \right] _{((i-1)\varepsilon )}^{(i\varepsilon )} \end{aligned} \end{aligned}$$
(40)

Integrating and substituting the limits, the following result is obtained:

$$\begin{aligned} \begin{aligned} E [P_{out}(i)] =&\frac{1}{2\varepsilon }\left[ \varepsilon -i\varepsilon \left( erf\left( \frac{a+10\alpha log\frac{(i-1)\varepsilon }{c}}{b}\right) -erf\left( \left( \frac{a+10\alpha log\frac{i\varepsilon }{c}}{b}\right) \right) \right) \right. \\&+ \varepsilon \,erf\left( \left( \frac{a+10\alpha log\frac{i\varepsilon }{c}}{b}\right) \right) + c\,e^{\frac{1}{400}\left( \frac{b^2}{\alpha ^2}-\frac{40a}{\alpha } \right) }\left( erf \left( \frac{a}{b}\right. \right. \\&\left. \left. \left. -\frac{10\alpha log \frac{(i-1)\varepsilon }{c}}{b}-\frac{b}{20\alpha }\right) - erf\left( \frac{a}{b}-\frac{10\alpha log \frac{i\varepsilon }{c}}{b}-\frac{b}{20\alpha }\right) \right) \right] \end{aligned} \end{aligned}$$
(41)

1.2 Appendix 3

Derivation of  (28):

The integral in (28) can be written as

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon }P(\gamma _b(x)\succeq \psi ) dx = \frac{1}{\varepsilon } \left[ \int \limits _{0}^{i\varepsilon }e^{\frac{-\psi x^\alpha P_{noise}}{kP_t}} dx - \int \limits _{0}^{(i-1)\varepsilon }e^{\frac{-\psi x^\alpha P_{noise}}{kP_t}} dx \right] \\ \end{aligned} \end{aligned}$$
(42)

Substituting \(\frac{\psi x^\alpha P_{noise}}{kP_T}=t\) the above integral can be written as

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon }P(\gamma _b(x)\succeq \psi ) dx =&\frac{1}{\varepsilon \alpha } \left( \frac{\psi P_{noise}}{kP_t}\right) ^{(-1/\alpha )} \left[ \int \limits _{0}^{\frac{\psi (i \varepsilon )^\alpha P_{noise}}{kP_t}}e^{-t}\,t^{(1/\alpha -1)} dt\right. \\&\left. - \int \limits _{0}^{\frac{\psi ((i-1) \varepsilon )^\alpha P_{noise}}{kP_t}}e^{-t}\,t^{(1/\alpha -1)} dt \right] \\ \end{aligned} \end{aligned}$$
(43)

The above integral can be simplified to get the following expression for \(E[P(\gamma _b(i)\succeq \psi )]\)

$$\begin{aligned} \begin{aligned} E[P(\gamma _b(i)\succeq \psi )]&= \frac{1}{\varepsilon \alpha } \left( \frac{\psi P_{noise}}{kP_t}\right) ^\frac{-1}{\alpha } \left[ \gamma \left( \frac{1}{\alpha },\frac{\psi P_{noise}(i\epsilon )^\alpha }{kP_t}\right) - \gamma \left( \frac{1}{\alpha },\frac{\psi P_{noise}((i-1)\epsilon )^\alpha }{kP_t}\right) \right] \end{aligned} \end{aligned}$$
(44)

where \(\gamma (s,t)\) is the lower incomplete gamma function [32].

1.3 Appendix 4

Derivation of (33):

Consider the integral expression in (33).

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon } P(\gamma _b(x) \succeq \psi ) dx&= \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon } e^{\frac{-(K+1)\psi d^\alpha P_{noise}}{k P_t}} e^{-K} \sum \limits _{t=0}^{\infty } \frac{K^t}{t!} \sum \limits _{l=0}^{t}\left( \frac{(K+1)\psi d^\alpha P_{noise}}{k P_t}\right) ^l \frac{1}{l!} \\ \end{aligned} \end{aligned}$$
(45)

substituting \(c=\frac{(K+1)\psi P_{noise}}{kP_t}\) and by using the definite integral rules (45) can be written as

$$\begin{aligned} \begin{aligned} \frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon } P(\gamma _b(x) \succeq \psi ) dx&\,=\, \frac{1}{\varepsilon } e^{-K} \sum \limits _{t=0}^{\infty } \frac{K^t}{t!} \sum \limits _{l=0}^{t} \frac{c^l}{l!} \left[ \int \limits _{0}^{i\varepsilon } x^{\alpha l}e^{-cx^\alpha } dx - \int \limits _{0}^{(i-1)\varepsilon } x^{\alpha l}e^{-cx^\alpha } dx \right] \\ \end{aligned} \end{aligned}$$
(46)

The above integral can be simplified to get the following expression for \(E[P(\gamma _b(i)\succeq \psi )]\) [32]

$$\begin{aligned} \begin{aligned} E[P(\gamma _b(i) \succeq \psi )] =\, &\frac{1}{\varepsilon } \int \limits _{(i-1)\varepsilon }^{i\varepsilon } P(\gamma _b(x) \succeq \psi ) dx \\ =\,&\frac{1}{\varepsilon } \left( \frac{(K+1)\psi P_{noise}}{k P_t}\right) ^{-1/\alpha } e^{-K} \sum \limits _{t=0}^{\infty } \frac{K^t}{t!} \\&\times \sum \limits _{l=0}^{t}\frac{1}{l!} \left[ \gamma \left( l+\frac{1}{\alpha }, \frac{(K+1)\psi P_{noise}}{k P_t}\right) (i\varepsilon )^\alpha \right. \\&\left. - \,\gamma \left( l+\frac{1}{\alpha }, \frac{(K+1)\psi P_{noise}}{k P_t}\right) ((i-1)\varepsilon )^\alpha )\right] \end{aligned} \end{aligned}$$
(47)

where \(\gamma (s,t)\) is the lower incomplete gamma function [32].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shelly, S., Babu, A.V. Modeling and Analysis of Link Duration in Vehicular Ad Hoc Networks Under Different Fading Channel Conditions. Int J Wireless Inf Networks 22, 157–170 (2015). https://doi.org/10.1007/s10776-015-0273-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-015-0273-0

Keywords

Navigation