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Abstract—In this paper, we present an efficient resource
allocation with user discrimination framework for 5G Wirel ess
Systems to allocate multiple carriers resources among users with
elastic and inelastic traffic. Each application running on the user
equipment (UE) is assigned an application utility function. In the
proposed model, different classes of user groups are considered
and users are partitioned into different groups based on the
carriers coverage area. Each user has a minimum required
application rate based on its class and the type of its application.
Our objective is to allocate multiple carriers resources optimally
among users, that belong to different classes, located within the
carriers’ coverage area. We use a utility proportional fairness
approach in the utility percentage of the application running on
the UE. Each user is guaranteed a minimum quality of service
(QoS) with a priority criterion that is based on user’s class
and the type of application running on the UE. In addition,
we prove the existence of optimal solutions for the proposed
resource allocation optimization problem and present a multi-
carrier resource allocation with user discrimination algorithm.
Finally, we present simulation results for the performanceof the
proposed algorithm.

Index Terms—Multi-Carrier Resource Allocation, User Dis-
crimination, Utility Proportional Fairness, Minimum Requ ired
Application Rate

I. I NTRODUCTION

Recently, there has been a massive growth in the number
of mobile users and their traffic. The data traffic volume
almost doubles every year. Mobile users are currently running
multiple applications that require higher bandwidth which
makes users so limited to the service providers’ resources.
Multiple services are now offered by network providers such
as mobile-TV and multimedia telephony [1]. According to the
Cisco Visual Networking Index (VNI) [2], the volume of data
traffic is expected to continue growing up and reaches 1000
times its value in 2010 by 2020 which is referred to as 1000x
data challenge. With the increasing volume of data traffic,
more spectrum is required [3]. However, due to spectrum
scarcity, it is difficult to provide the required resources with
a single frequency band. Therefore, aggregating frequency
bands, that belong to different carriers, is needed to utilize
the radio resources across multiple carriers and expand the
effective bandwidth delivered to user terminals, leading to
interband non-contiguous carrier aggregation [4].

As the fourth generation long term evolution (4G-LTE)
system is now reaching maturity and only small amounts of
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new spectrum is expected, researchers have started to establish
the foundation of 5G system that should be coming next.
The expected capabilities of 5G systems have started to take
shape. The 5G networks have promised to handle multiple
applications with various QoS requirements, address the 1000x
data challenge and provide as low as 1 millisecond latency.
Due to the new emerging applications that are beyond personal
communications, the number of wireless devices could reach
hundreds of billions by the time 5G comes to fruition [5],
[6]. Because of the urgently need for 5G, government and
industries agencies have initiated the research and development
process of 5G. The development of 5G requires efforts in
three areas: enhancement in spectrum efficiency, spectrum
expansion and dense deployment of small cells.

Carrier aggregation (CA) is one of the most distinct features
of 4G systems including Long Term Evolution Advanced
(LTE Advanced). As 5G systems’ expected capabilities have
started to take shape, CA is expected to be supported by
5G. Therefore, CA needs to be taken into consideration
when designing 5G systems. With CA being applied, wider
transmission bandwidths between the evolve node B (eNodeB)
and the UE can be achieved by aggregating multiple compo-
nent carriers (CCs) of the same or different bandwidths. An
overview of CA framework and cases is presented in [7], [8].
Beside CA capability, 5G wireless network promises to handle
diverse QoS requirements of multiple applications since dif-
ferent applications require different application’s performance.
Furthermore, certain types of users may require to be given
priority when allocating the network resources (i.e. such as
public safety users) which needs to be taken into consideration
when designing the resource allocation framework.

A multi-stage resource allocation (RA) with carrier aggre-
gation algorithms are presented in [9]–[11]. The RA with CA
algorithm in [9] uses utility proportional fairness approach to
allocate primary and secondary carriers resources optimally
among users in their coverage area. The primary carrier first
allocates its resources optimally among users in its coverage
area. The secondary carrier then starts allocating its resources
optimally to users in its coverage area based on the rates
allocated to the users by the primary carrier and the users
applications. A resource allocation with CA optimization
problem is presented in [10] to allocate the LTE Advanced
carrier and the MIMO radar carrier resources to each UE in
a LTE Advanced cell based on the UE’s applications. A price
selective centralized resource allocation with CA algorithm
is presented in [11] to allocate multiple carriers resources
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optimally among users while giving the user the ability to
select its primary and secondary carriers. The carrier selection
decision is based on the carrier price per unit bandwidth. A RA
with user discrimination optimization framework is presented
in [12] and [13] to allocate one carrier resources among users
under the carrier’s coverage area.

In this paper, we provide an efficient framework for the
resource allocation problem to allocate multi-carrier resources
optimally among users that belong to different classes of
user groups. In our model, we use utility functions to rep-
resent users’ applications. Sigmoidal-like utility functions and
logarithmic utility functions are used to represent real-time
and delay-tolerant applications, respectively, running on the
UEs [14]. The resource allocation with user discrimination
framework presented in [13] does not consider the case of
multi-carrier resources available at the eNodeB. It only solves
the problem of resource allocation with user discrimination
in the case of single carrier. In this paper, we consider the
case of multiple carriers’ resources available at the eNodeB
and multiple classes of users located under the coverage area
of these carriers. We use a priority criterion for the resource
allocation process that varies based on the user’s class and
the type of application running on the UE. We consider two
classes of users, VIP users (i.e. public safety users or users
who require emergency services) and regular users. VIP users
are assigned a minimum required application rate for each of
their applications whereas regular users’ applications are not
assigned any.

We formulate the resource allocation with user discrimina-
tion problem in a multi-stage resource allocation with carrier
aggregation optimization problem to allocate resources toeach
user from its all in range carriers based on a utility proportional
fairness policy. Each application running on the UE is assigned
an application minimum required rate by the network that
varies based on the type of user’s application and the user’s
class. Furthermore, if the user’s in range carriers have enough
available resources, the user is allocated at minimum its
applications’ minimum required rates. VIP users are given
priority over regular users by the network when allocating
each carrier’s resources, and real-time applications are given
priority over delay-tolerant applications.

A. Related Work

There has been several works in the area of optimizing
resource allocation to achieve an efficient utilization of the
scarce radio spectrum. In [15]–[18], the authors have used
utility functions to represent users traffic. They used a strictly
concave utility function to represent elastic traffic and pro-
posed distributed algorithms at the sources and the links to
interpret the congestion control of communication networks.
Their suggested approach only focussed on elastic traffic and
did not consider real-time applications as it have non-concave
utility functions as shown in [19]. In [20] and [21], the authors
have argued that the utility function is the one that needs to
be shared fairly, rather than the bandwidth, as it represents the
performance of the user’s application.

In [15], the authors have introduced a proportional fairness
resource allocation approach. However, their approach does

not guarantee a minimum QoS for each user application.
To overcome this issue, the authors in [14] introduced a
utility proportional fairness resource allocation algorithm.
Their approach respects the real-time applications inelastic
behavior and therefore we believe that it is more appropriate.
The utility proportional fairness resource allocation algorithm
presented in [14] guarantees that no user is allocated zero rate
and gives real-time applications priority over delay tolerant
applications when allocating resources. In [14], [22] and
[23], the authors have presented RA algorithms to allocate
single carrier resources optimally among mobile users who
are treated evenly. However, these algorithms do not support
resource allocation with user discrimination for multi-carrier
systems. To incorporate the carrier aggregation feature and
the case of different classes of users, we have introduced a
multi-stage resource allocation using carrier aggregation in
[9]. Furthermore, in [12] and [13], we presented resource
allocation with users discrimination algorithms to allocate a
single carrier resources optimally among mobile users running
elastic and inelastic traffic. In [24], the authors have presented
a radio resource block allocation optimization problem using
a utility proportional fairness approach. The authors in [25]
have presented an application-aware resource block scheduling
approach for elastic and inelastic traffic by assigning users to
resource blocks.

On the other hand, an extensive attention has been recently
given to the resource allocation for single cell multi-carrier
systems [26]–[28]. In [29]–[32], the authors have represented
this challenge in optimization problems frameworks. Theirob-
jective is to maximize the overall cell throughput while taking
into consideration some constraints such as transmission power
and fairness. However, rather than achieving better system-
centric throughput, better user satisfaction can be achieved by
transforming the problem into a utility maximization frame-
work. The authors in [33], [34] have focussed on reducing the
implementation complexity and suggested using a distributed
resource allocation rather than a centralized one. The authors
in [35] have proposed a collaborative scheme in a multiple
base stations (BSs) environment, where each user is served by
the BS with the best channel gain. The authors in [36] have
addressed the problem of spectrum resource allocation with
CA based LTE Advanced systems, by considering the UE’s
MIMO capability and the modulation and coding schemes
(MCSs) selection.

B. Our Contributions

Our contributions in this paper are summarized as:

• We present a multi-stage resource allocation with user
discrimination optimization problem to allocate multi-
carrier resources optimally among different classes of
users.

• We prove that the resource allocation optimization prob-
lem is convex and therefore the global optimal solution
is tractable.

• We present a resource allocation algorithm to solve the
optimization problem and allocate each user an aggre-
gated final rate from its in range carriers. The proposed



algorithm outperforms that presented in [13] as it consid-
ers allocating each user resources from multiple carriers
using a resource allocation with carrier aggregation ap-
proach.

• We present simulation results for the performance of the
proposed resource allocation algorithm.

The remainder of this paper is organized as follows. Sec-
tion II presents the problem formulation. In section III, we
present the resource allocation optimization problems forthree
cases and prove that the global optimal solution exists and
is tractable. Section IV presents our multi-carrier resource
allocation with user discrimination algorithm. In sectionV,
we discuss simulation setup and provide quantitative results
along with discussion. Section VI concludes the paper.

II. PROBLEM FORMULATION

In this paper, we consider a single cell mobile system with
one eNodeB,K carriers (frequency bands) that have resources
available at the eNodeB,M regular and VIP UEs. LetM be
the set of all regular and VIP UEs whereM = |M|. The
set of carriers is given byK = {1, 2, ...,K} with carriers
in order from the highest frequency to the lowest frequency.
Higher frequency carriers have smaller coverage area than
lower frequency carriers. The eNodeB allocates resources from
multiple carriers to each UE. Users located under the coverage
area of multiple carriers are allocated resources from all in
range carriers. The rate allocated by the eNodeB to UEi

from all in range carriers is given byri. Each application
running on the UE is mathematically represented by a utility
functionUi(ri) that corresponds to the application’s type and
represents the user satisfaction with its allocated rateri as
shown in section II-A. Our goal is to determine the optimal
rates that the eNodeB shall allocate from each carrier to each
UE in order to maximize the total system utility while ensuring
proportional fairness between utilities.

The rate allocated to theith user inM by the jth carrier
in K is given byrj,alli . The final allocated rate by the eNodeB
to the ith user is given by

ri =
∑

j∈K

r
j,all
i (1)

where ri is equivalent to the sum of rates allocated to the
ith user from all carriers in its range. Based on the coverage
area of each carrier and the users’ classes, a user grouping
method is introduced in II-B to partition users into groups.The
eNodeB performs resource allocation with user discrimination
based on carrier aggregation to allocate each carrier’s resources
to users located within the coverage area of that carrier.

A. Application Utility Functions

We express the user satisfaction with its rate using utility
functions that represent the degree of satisfaction of the user
function with the rate allocated by the cellular network [22],
[37]–[39]. We represent theith user application utility function
Ui(ri) by sigmoidal-like function or logarithmic function
where ri is the rate of theith user. These utility functions
have the following properties:

• Ui(0) = 0 andUi(ri) is an increasing function ofri.
• Ui(ri) is twice continuously differentiable inri and

bounded above.
In our model, we use the normalized sigmoidal-like utility

function, as in [22], that can be expressed as

Ui(ri) = ci

( 1

1 + e−ai(ri−bi)
− di

)

, (2)

whereci = 1+eaibi

eaibi
anddi =

1
1+eaibi

so it satisfiesUi(0) =
0 and Ui(∞) = 1. The normalized sigmoidal-like function
has an inflection point atrinf

i = bi. In addition, we use the
normalized logarithmic utility function, used in [14], that can
be expressed as

Ui(ri) =
log(1 + kiri)

log(1 + kir
max
i )

, (3)

wherermax
i gives100% utilization andki is the slope of the

curve that varies based on the user application. So, it satisfies
Ui(0) = 0 andUi(r

max
i ) = 1.

B. User Grouping Method

In this section we introduce a user grouping method to
create user groups for each carrierj ∈ K. The eNodeB creates
a user groupMj for each carrier whereMj is a set of users
located under the coverage area of thejth carrier. The number
of users inMj is given byMj = |Mj |. Furthermore, users
in Mj are partitioned into two groups of users. A VIP user
groupMVIP

j and a regular user groupMReg
j , whereMVIP

j

andMReg
j are the sets of all VIP users and regular users,

respectively, located under the coverage area of thejth carrier
with Mj = MVIP

j ∪ MReg
j . The number of users inMVIP

j

andMReg
j is given byMVIP

j = |MVIP
j | andM

Reg
j = |MReg

j |,
respectively. The eNodeB allocates thejth carrier resources
to users inMj with a priority given to VIP users (i.e.
users inMVIP

j ). Users located under the coverage area of
multiple carriers (i.e. common users in multiple user groups)
are allocated resources from these carriers and their final rates
are aggregated under a non adjacent inter band aggregation
scenario.

The ith user is considered part of user groupMj if it is
located within a distance ofDj from the eNodeB whereDj

represents the coverage radius of thejth carrier. Letdi denotes
the distance between the eNodeB and useri. The jth carrier
user groupMj is defined as

Mj = {i : di < Dj, 1 ≤ i ≤M}, 1 ≤ j ≤ K. (4)

On the other hand, the eNodeB creates a set of carriersKi,
for each user, that is defined as

Ki = {j : di < Dj , 1 ≤ j ≤ K}, 1 ≤ i ≤M. (5)

The number of carriers that theith user can be allocated
resources from is given byNi = |Ki|. Higher frequency
carriers have smaller coverage radius than lower frequency
carriers (i.e.D1 < D2 < ... < DK). Therefore, user group
M1 ⊆ M2 ⊆ ... ⊆ MK . Figure 1 shows one cellular
cell with one eNodeB under non adjacent inter band scenario
with K carriers inK andM users inM and how users are
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Fig. 1. User grouping for a LTE mobile system withM users inM and
K carriers inK. Mj represents the set of users located under the coverage
area of thejth carrier withMj = MV IP

j ∪MReg
j . Ki represents the set

of all in range carriers for theith user.

partitioned into user groups based on their location and their
class.

III. M ULTI -CARRIER RESOURCEALLOCATION WITH

USER DISCRIMINATION OPTIMIZATION PROBLEM

In this section, we present a multi-stage resource alloca-
tion (RA) with user discrimination optimization problem to
allocate multi-carrier resources optimally among users intheir
coverage area. Our objective is to find the final allocated rate
to each user from its all in range carriers based on a utility
proportional fairness policy. We use utility functions of users
rates to represent the type of application running on the UE.
Every user subscribing for a mobile service is guaranteed to
achieve a minimum QoS with priority criterion. VIP users
are given priority when allocating each carrier’s resources and
within each user class group, whether it is VIP or regular
user group, real time applications are given priority when
allocating each carrier’s resources. This is due to the nature
of sigmoidal-like utility functions that are used to represent
real-time applications.

The eNodeB performs the resource allocation process for
all carriers one at a time and one after another in ascending
order of their coverage radiusDj. Each carrierj ∈ K has
a limited amount of available resources that is given byRj

and each user’s application has a minimum required rate
r

req
i that is equivalent to zero in the case of regular users

and is equivalent to certain value (i.e. rate) in the case of
VIP users. The eNodeB starts the RA process by performing
a RA for carrier 1 in K as it has the smallest coverage
radius D1. After allocating its resources to users inM1,
the eNodeB then starts the RA process to allocate carrier2
resources to users inM2. In addition, sinceM1 ⊆ M2

the eNodeB allocates users inM1 resources from carrier2
and the rates are aggregated based on a non adjacent inter
band aggregation scenario. The eNodeB continues the resource
allocation process by allocating thejth carrier resources to
users inMj . Let rj,all

i represents the rate allocated by the

jth carrier to UEi and letCi represents the total aggregated
rate allocated to UEi by carriers {1, 2, ..., j − 1} where
Ci =

∑j−1
l=1 r

l,all
i . Furthermore, letCj

i be a constant that is
always equivalent to zero for regular users whereas for VIP
usersCj

i is equivalent to zero orrreq
i − Ci based on some

conditions that are discussed later in this section. The resource
allocation process is finalized by allocating theKth carrier
resources to users inMK , i.e. all users in the cellular cell as
they are all located within its coverage radius. We considera
utility proportional fairness objective function, based on carrier
aggregation, that the eNodeB seeks to maximize for each time
it allocates a carrier’s resources.

The proposed RA optimization problem for multi-carrier
cellular systems is divided into three cases. In order for the
eNodeB to guarantee that VIP users are given priority when
allocating each carrier’s resources, each time the eNodeB
performs a RA process for a carrier it checks the values of
1) the carrier’s available resourcesRj , 2) the current total
rate allocated to each VIP UEi ∈ MVIP

j from other carriers
(i.e. Ci =

∑j−1
l=1 r

l,all
i ) and 3) the value ofrreq

i − Ci for each
VIP UE i ∈ MVIP

j if Ci < r
req
i . Based on these values, the

eNodB performs the RA process that corresponds to the most
appropriate case among the three cases. The three cases and
their RA optimization framework are presented below.

Case 1. RA Optimization Problem when Ci ≥ r
req
i ∀i ∈Mj :

The eNodeB chooses the RA optimization problem of this
case in order to allocate thejth carrier resources if the total
aggregated rateCi that is allocated to each UEi ∈Mj from
carriers{1, 2, ..., j− 1} is greater than or equal the minimum
required application raterreq

i . In this case, since each UE
has already been allocated at least its application minimum
required rate from other carriers, the eNodeB performs the RA
process among all users under the coverage area of carrierj.
The RA optimization problem for thejth carrier in this case
is given by:

max
rj

Mj
∏

i=1

Ui(Ci + C
j
i + r

j
i )

subject to
Mj
∑

i=1

r
j,all
i ≤ Rj , r

j,all
i ≥ 0

r
j,all
i = r

j
i + C

j
i , C

j
i = 0

Ci =

j−1
∑

l=1

r
l,all
i , Ci ≥ r

req
i , i = 1, 2, ...,Mj,

(6)
whereCj

i is a constant that is equivalent to zero in this case,
Ui(Ci + C

j
i + r

j
i ) is the utility function of the summation

of the rateCi allocated to the application running on theith

user by carriers{1, 2, ..., j − 1} and the raterj,all
i allocated

to the same application by carrierj whererj,all
i = C

j
i + r

j
i ,

r j = {rj1, r
j
2, ..., r

j
Mj
} and Mj is the number of users

in Mj (i.e. both VIP and regular users) located under
the coverage area of thejth carrier. After the eNodeB
performs the RA process for thejth carrier by solving
optimization problem (6), the total rate allocated to each user



by the eNodeB is equivalent toCi + r
j,all
i . In optimization

problem (6), we consider a utility proportional fairness
objective function, based on carrier aggregation, that the
eNodeB seeks to maximize when it performs RA for carrierj.

Case 2. RA Optimization Problem when Ci < r
req
i for

any user i ∈ Mj and
∑MVIP

j

i=1 q
j
i ≥ Rj where q

j
i = 0 if

Ci ≥ r
req
i and q

j
i = r

req
i − Ci if Ci < r

req
i :

The eNodeB selects the optimization problem of this case
to allocate thejth carrier resources if the total aggregated rate
Ci for any useri is less than the user’s application minimum

required raterreq
i and

∑MVIP
j

i=1 q
j
i for VIP users inMVIP

j is
greater than or equal the carrier’s available resourcesRj . In
this case, the eNodeB allocates thejth carrier resources only
to VIP UEs inMVIP

j as they are considered more important
and regular users inMReg

j are not allocated any of thejth

carrier resources since the carrier’s resources are limited. The
RA optimization problem for thejth carrier in this case is
given by:

max
rj

MVIP
j

∏

i=1

Ui(Ci + C
j
i + r

j
i )

subject to

MVIP
j

∑

i=1

r
j,all
i ≤ Rj , r

j,all
i ≥ 0

Ci =

j−1
∑

l=1

r
l,all
i , r

j,all
i = r

j
i + C

j
i

C
j
i = 0

q
j
i =

{

0 if Ci ≥ r
req
i

r
req
i − Ci if Ci < r

req
i

MVIP
j

∑

i=1

q
j
i ≥ Rj , i = 1, 2, ...,MVIP

j ,

(7)

where r j = {rj1, r
j
2, ..., r

j

MVIP
j

}, C
j
i = 0 and MVIP

j is the

number of users inMVIP
j . After the eNodeB performs the

RA process for thejth carrier by solving optimization
problem (7), each VIP user inMVIP

j is allocated a rate that
is equivalent torj,all

i by carrier j whereas users inMReg
j

are not allocated any of thejth carrier resources. The total
rate allocated by the eNodeB to each user is equivalent to
Ci + r

j,all
i . In optimization problem (7), we consider a utility

proportional fairness objective function, based on carrier
aggregation, that the eNodeB seeks to maximize when it
performs RA for carrierj.

Case 3. RA Optimization Problem when Ci < r
req
i for

any user i ∈ MVIP
j and

∑MVIP
j

i=1 q
j
i < Rj where q

j
i = 0 if

Ci ≥ r
req
i and q

j
i = r

req
i − Ci if Ci < r

req
i :

The eNodeB selects the optimization problem of this case
to allocate thejth carrier resources if the total aggregated rate
Ci for any useri is less than the user’s application minimum

required raterreq
i and the summation

∑MVIP
j

i=1 q
j
i for VIP users

in MVIP
j is less than the carrier’s available resourcesRj . In

this case, the eNodeB allocates thejth carrier resources to all
UEs inMj. The RA optimization problem for thejth carrier
in this case is given by:

max
rj

Mj
∏

i=1

Ui(Ci + C
j
i + r

j
i )

subject to
Mj
∑

i=1

r
j,all
i ≤ Rj , r

j,all
i ≥ 0

Ci =

j−1
∑

l=1

r
l,all
i , r

j,all
i = r

j
i + C

j
i

C
j
i =

{

0 if Ci ≥ r
req
i

r
req
i − Ci if Ci < r

req
i

q
j
i =

{

0 if Ci ≥ r
req
i

r
req
i − Ci if Ci < r

req
i

MVIP
j

∑

i=1

q
j
i < Rj , i = 1, 2, ...,Mj,

(8)

wherer j = {rj1, r
j
2, ..., r

j
Mj
} andMj is the number of users in

Mj. After the eNodeB performs the RA process for thejth

carrier by solving optimization problem (8), each user inMj

is allocated a rate that is equivalent torj,all
i by carrierj and the

total rate allocated by the eNodeB to each user is equivalent
to Ci + r

j,all
i . In optimization problem (8), we consider a

utility proportional fairness objective function, based on carrier
aggregation, that the eNodeB seeks to maximize when it
performs RA for carrierj.

Each of the three RA optimization problems (6), (7) and
(8) of the jth carrier can be expressed by the following
generalized optimization problem:

max
rj

|αj |
∏

i=1

Ui(Ci + C
j
i + r

j
i )

subject to
|αj |
∑

i=1

r
j,all
i ≤ Rj , r

j,all
i ≥ 0

Ci =

j−1
∑

l=1

r
l,all
i , r

j,all
i = r

j
i + C

j
i

q
j
i =

{

0 if Ci ≥ r
req
i

r
req
i − Ci if Ci < r

req
i

i = 1, 2, ..., |αj|,

(9)

whereCj
i andαj in (9) are given by

C
j
i =















0 if Ci ≥ r
req
i

r
req
i − Ci if Ci < r

req
i and

∑|MVIP
j |

i=1 q
j
i < Rj

0 if Ci < r
req
i and

∑|MVIP
j |

i=1 q
j
i ≥ Rj



αj =



































Mj if Ci ≥ r
req
i ∀i ∈Mj

MVIP
j if Ci < r

req
i for any useri ∈Mj

and
∑MVIP

j

i=1 q
j
i ≥ Rj

Mj if Ci < r
req
i for any useri ∈MVIP

j

and
∑MVIP

j

i=1 q
j
i < Rj

(10)

where r j = {rj1, r
j
2, ..., r

j

|αj |
}, αj is a set of users located

under the coverage area of carrierj that is equivalent toMj

or MVIP
j based on certain conditions as shown in (10) and

|αj | is the number of users inαj .

The objective function in optimization problem (9) is equiv-
alent to

∑|αj |
i=1 logUi(Ci + C

j
i + r

j
i ). Later in this section we

prove that optimization problem (9) is a convex optimization
problem and there exists a unique tractable global optimal
solution. Once the eNodeB is done performing the RA process,
for the jth carrier, by solving optimization problem (9),
each user inαj is allocated a rate that is equivalent to
r
j,all
i = r

j
i+C

j
i and the user’s total aggregated rate allocated by

the eNodeB from carriers{1, 2, ..., j} is given by
∑j

l=1 r
l,all
i .

Lemma III.1. The utility functions logUi(Ci + C
j
i + r

j
i ) in

optimization problem (9) are strictly concave functions.

Proof: The utility functions are assumed to be logarithmic
or sigmoidal-like functions as discussed in Section II-A.
Therefore,Ui(Ci+C

j
i+r

j
i ) is a strictly concave (i.e. in the case

of logarithmic utility functions) or a sigmoidal-like function
of the total aggregated rateCi + C

j
i + r

j
i allocated to useri

application from carriers{1, 2, ..., j} after performing the RA
process of thejth carrier by the eNodeB.

In the case of logarithmic utility function, recall the
utility function properties in Section II-A, the utility
function of the application rate is positive, increasing and
twice differentiable with respect to the application rate.

It follows that U ′
i(Ci + C

j
i + r

j
i ) =

dUi(Ci+C
j
i
+r

j
i
)

dr
j
i

> 0

and U ′′
i (Ci + C

j
i + r

j
i ) =

d2Ui(Ci+C
j
i
+r

j
i
)

dr
j
i

2 < 0, i.e.

since Ci + C
j
i is greater or equal zero. Then the

function logUi(Ci + C
j
i + r

j
i ) has d log(Ui(Ci+C

j
i
+r

j
i
))

dr
j
i

=

U ′

i(Ci+C
j
i
+r

j
i
)

Ui(Ci+C
j
i
+r

j
i
)

> 0 and d2 log(Ui(Ci+C
j
i
+r

j
i
))

dr
j
i

2 =

U ′′

i (Ci+C
j
i
+r

j
i
)Ui(Ci+C

j
i
+r

j
i
)−U ′2

i (Ci+C
j
i
+r

j
i
)

U2
i
(Ci+C

j
i
+r

j
i
)

< 0. Therefore,
the natural logarithm of the logarithmic utility function
log(Ui(Ci + C

j
i + r

j
i )) is strictly concave.

On the other hand, in the case of sigmoidal-like utility
function, the normalized sigmoidal-like function is givenby
Ui(Ci + C

j
i + r

j
i ) = ci

(

1

1+e
−ai(Ci+C

j
i
+r

j
i
−bi)

− di

)

. For

0 < r
j
i < (Rj − C

j
i ), we have

0 < ci

( 1

1 + e−ai(Ci+C
j
i
+r

j
i
−bi)
− di

)

< 1

di <
1

1 + e−ai(Ci+C
j
i
+r

j
i
−bi)

<
1 + cidi

ci
1

di
> 1 + e−ai(Ci+C

j
i
+r

j
i
−bi) >

ci

1 + cidi

0 < 1− di(1 + e−ai(Ci+C
j
i
+r

j
i
−bi)) <

1

1 + cidi

It follows that for 0 < r
j
i < (Rj − C

j
i ), we have the first

and second derivatives as

d

dr
j
i

logUi(Ci+C
j
i + r

j
i ) =

aidie
−ai(Ci+C

j
i
+r

j
i
−bi)

1− di(1 + e−ai(Ci+C
j
i
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j
i
−bi))

+
aie
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j
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2 logUi(Ci+C
j
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j
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−a2i die
−ai(Ci+C

j
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+r

j
i
−bi)
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(

1− di(1 + e−a(Ci+C
j
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−a2i e
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j
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j
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j
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j
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Therefore, the natural logarithm of the sigmoidal-like utility
function log(Ui(Ci + C

j
i + r

j
i ) is strictly concave function.

Therefore, the utility functions natural logarithms have strictly
concave natural logarithms in both cases of logarithmic utility
functions and sigmoidal-like utility functions.

Theorem III.2 proves the convexity of optimization problem
(9).

Theorem III.2. Optimization problem (9) is a convex opti-
mization problem and there exists a unique tractable global
optimal solution.

Proof: It follows from Lemma III.1 that all UEs utility
functions of applications rates are strictly concave. Therefore,
optimization problem (9) is a convex optimization problem.
For a convex optimization problem there exists a unique
tractable global optimal solution [40].

IV. RA OPTIMIZATION ALGORITHM

In this section, we present our multi-carrier resource al-
location with user discrimination algorithm. The proposed
algorithm consists of UE and eNodeB parts shown in Al-
gorithm 1 and Algorithm 2, respectively. The execution of
the algorithm starts by UEs, subscribing for mobile services,
transmitting their application utility parameters to the eNodeB,
which allocates available carriers’ resources to UEs based
on a proportional fairness policy. First, the eNodeB performs
the user grouping method described in Section II-B for each



carrier by creating three user group setsMVIP
j , MReg

j and
Mj for UEs located within the coverage area of thejth

carrier. It then starts performing the RA process to allocate
the carriers resources starting with carrier1 in K (i.e. the
carrier with the smallest coverage radius) in ascending order
1 → K. In order to allocate certain carrier’s resources, the
eNodeB performs the RA process that corresponds to the most
appropriate case among the three cases presented in Section
III. From optimization problem (9), we have the following
Lagrangian

L(r j , pj) =
|αj |
∑

i=1

logUi(Ci + C
j
i + r

j
i )

− pj(

|αj |
∑

i=1

(Cj
i + r

j
i ) +

|αj |
∑

i=1

zi −Rj),

(11)

wherezi ≥ 0 is the slack variable andpj is Lagrange multi-
plier that represents the shadow price (price per unit bandwidth
for all the |αj | channels). The rates, solutions to equation (9),

are the valuesrji which solve equation∂ logUi(Ci+C
j
i
+r

j
i
)

∂r
j

i

= pj

and are the intersection of the time varying shadow price,

horizontal liney = pj , with the curvey =
∂ logUi(Ci+C

j
i
+r

j
i
)

∂r
j
i

geometrically. The rate allocated by carrierj to the ith UE
is equivalent torj,all

i = r
j
i + C

j
i . When the eNodeB is done

allocating theKth carrier resources, each user is then allocated
its final aggregated rateri =

∑K

j=1 r
j,all
i .

Algorithm 1 The ith UE Algorithm
loop

Send application utility parameterski, ai, bi, rmax
i and

r
req
i to eNodeB.

Receive the final allocated rateri from the eNodeB.
end loop

V. SIMULATION RESULTS

Algorithm 1 and 2 were applied in C++ to multiple utility
functions with different parameters. Simulation results showed
convergence to the global optimal rates. In this section, we
consider a mobile cell with one eNodeB, two carriers with
available resources and8 active UEs located under the cov-
erage area of the eNodeB as shown in Figure 2. The UEs
are divided into two groups. The1st group of UEs (index
i = {1, 2, 3, 4}) represents user groupM1 located within the
coverage radiusD1 of carrier1. Each user inM1 belongs to
one of the two classes of user groups, i.e. VIP user group and
Regular user group, whereMVIP

1 = {2, 4}, MReg
1 = {1, 3}

andM1 =MVIP
1 ∪MReg

1 . On the other hand, the2nd group
of UEs (indexi = {1, 2, 3, 4, 5, 6, 7, 8}) represents user group
M2 located within the coverage radiusD2 of carrier2. Each
user inM2 belongs to a VIP user group or a regular user
group whereMVIP

2 = {2, 4, 6, 8}, MReg
2 = {1, 3, 5, 7} and

M2 =MVIP
2 ∪MReg

2 .
We use sigmoidal-like utility functions and logarithmic

utility functions with different parameters to represent each

Algorithm 2 The eNodeB Algorithm
loop

Initialize Ci = 0; Cj
i = 0; rj,all

i = 0.
Receive application utility parameterski, ai, bi, rmax

i and
r

req
i from all UEs inM.

for j ← 1 to K do
Create user groupsMVIP

j , MReg
j andMj for UEs

located within the coverage area of thejth carrier.
end for
for i← 1 to |Mj | do

Create carrier groupKi for the ith UE’s all in range
carriers.

end for
for j ← 1 to K do

if Ci < r
req
i then

q
j
i = r

req
i − Ci

else
q
j
i = 0

end if
if Ci ≥ r

req
i ∀i ∈ Mj then

C
j
i = 0

Solve r j = argmax
rj

∑|Mj |
i=1 logUi(Ci +C

j
i + r

j
i )−

pj(
∑|Mj|

i=1 (rji + C
j
i )−Rj).

Allocate raterj,all
i = r

j
i + C

j
i by the jth carrier to

each user inMj .
Calculate newCi = Ci + r

j,all
i ∀i ∈Mj

else ifCi < r
req
i for any useri ∈ Mj &&

∑MVIP
j

i=1 q
j
i ≥

Rj then
C

j
i = 0

Solver j = argmax
rj

∑|MVIP
j |

i=1 logUi(Ci+C
j
i +r

j
i )−

pj(
∑|MVIP

j |

i=1 (rji + C
j
i )−Rj).

Allocate raterj,all
i = r

j
i + C

j
i by the jth carrier to

each user inMVIP
j .

Calculate newCi = Ci + r
j,all
i ∀i ∈MVIP

j

else if Ci < r
req
i for any user i ∈ MVIP

j and
∑|MVIP

j |

i=1 q
j
i < Rj then

if Ci < r
req
i then

C
j
i = r

req
i − Ci

else
C

j
i = 0

end if
Solve r j = argmax

rj

∑|Mj |
i=1 logUi(Ci +C

j
i + r

j
i )−

pj(
∑|Mj|

i=1 (rji + C
j
i )−Rj).

Allocate raterj,all
i = r

j
i + C

j
i by the jth carrier to

each user inMj .
Calculate newCi = Ci + r

j,all
i ∀i ∈Mj

end if
end for
Allocate total aggregated rateri =

∑K
j=1 r

j,all
i by the

eNodeB to each UEi in M
end loop
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UE7eNodeB
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3 (Reg) 4 (VIP)
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Fig. 2. System model for a mobile system withM = 8 users andK = 2
carriers available at the eNodeB. Carrier1 coverage radius isD1 and carrier
2 coverage radius isD2 with D1 < D2. M1 = {1, 2, 3, 4} and M2 =
{1, 2, ...,8} represent the sets of user groups located under the coveragearea
of carrier1 and carrier2, respectively.

TABLE I
USERS AND THEIR APPLICATIONS UTILITIES

Applications Utilities Parameters Users Indexes

Sig1 Sig ai = 5, bi = 10 i = {5}

Sig2 Sig ai = 3, bi = 20 i = {1}

Sig3 Sig ai = 1, bi = 30 i = {2, 6}

Log1 Log ki = 15, rmax
i = 100 i = {7}

Log2 Log ki = 3, rmax
i = 100 i = {3}

Log3 Log ki = 0.5, rmax
i = 100 i = {4, 8}

of the users’ applications. We use three normalized sigmoidal-
like functions that are expressed by equation (2) with different
parameters. The used parameters areai = 5, bi = 10 that
correspond to a sigmoidal-like function with inflection point
ri = 10 which represents the utility of UE with indexi = {5},
ai = 3, bi = 20 that correspond to a sigmoidal-like function
with inflection pointri = 20 which represents the utility of
UE with indexi = {1}, andai = 1, bi = 30 that correspond to
a sigmoidal-like function with inflection pointri = 30 which
represents the utility of UEs with indexesi = {2, 6}, as shown
in Figure 3. We use three logarithmic functions expressed by
equation (3) withrmax

i = 100 and differentki parameters to
represent delay-tolerant applications. We useki = 15 for UE
with index i = {7}, ki = 3 for UE with index i = {3},
and ki = 0.5 for UEs with indexesi = {4, 8}, as shown in
Figure 3. A summary is shown in table I. We use an application
minimum required rate that is equivalent to the inflection point
of the sigmoidal-like function, i.e.rreq

i = bi, for each VIP user
running a real-time application, we userreq

i = 15 for each
VIP user running a delay-tolerant application andr

req
i = 0 for

each regular user whether it is running real-time application
or delay-tolerant application.
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Fig. 3. The users utility functionsUi(ri) used in the simulation (three
sigmoidal-like functions and three logarithmic functions).
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Fig. 4. The ratesr1,all
i allocated from carrier1 to M1 user group with

carrier1 available resources60 < R1 < 150.

A. Carrier 1 Allocated Rates for 60 ≤ R1 ≤ 150

In the following simulations, we setδ = 10−3, carrier 1
rateR1 takes values between60 and150 with step of10. In
Figure 4, we show the allocated ratesr1,all

i of different users
with different values of carrier1 total rateR1 and observe how
the proposed rate allocation algorithm converges for different
values ofR1. In Figure 4, we show that both VIP and regular
users in user groupM1 are allocated resources by carrier
1 when 60 ≤ R1 ≤ 150 since carrier1 available resources
R1 is greater than the total applications minimum required
rates for users inM1. Figure 4 also shows that by using the
proposed RA with user discrimination algorithm, no user is
allocated zero rate (i.e. no user is dropped). However, carrier
1 resources are first allocated to the VIP users until each of
their applications reaches the application minimum required
raterreq

i . Then the majority of carrier1 resources are allocated
to the UEs running adaptive real-time applications until they
reach their inflection rates, the eNodeB then allocates moreof
carrier1 resources to UEs with delay-tolerant applications.

B. Carrier 2 Allocated Rates and the Total Aggregated Rates
for 10 ≤ R2 ≤ 150

In the following simulations, we setδ = 10−3, carrier 2
rate R2 takes values between10 and 150 with step of 10



and carrier1 rate is fixed atR1 = 60. In Figure 5, we show
the allocated ratesr2,all

i and the final aggregated ratesri of
different users with different values of carrier2 total rate
R2 and observe how the proposed rate allocation algorithm
converges for different values ofR2. In Figure 5(a), we show
that when10 ≤ R2 ≤ 45 only VIP users inM2 (i.e. UEs in
MVIP

2 ) that were not allocated resources by carrier1 or did not
reach their applications minimum required rates are allocated
resources by carrier2. Whereas when45 < R2 ≤ 150, both
VIP and regular users inM2 are allocated resources by carrier

2 as carrier2 total rateR2 is greater than
∑MVIP

2

i=1 q2i (i.e. the
total required rates for UEs to reach theirr

req
i ). Figure 5(a) also

shows that by using the proposed RA with user discrimination
algorithm that is based on carrier aggregation, the eNodeB
takes into consideration the rates allocated to users inM2

by carrier 1 when allocating carrier2 resources. Carrier2
resources are first allocated to VIP users until each of their
applications reaches the application minimum required rate
r

req
i . Then the majority of carrier2 resources are allocated

to the UEs running adaptive real-time applications until they
reach their inflection rates, the eNodeB then allocates moreof
carrier2 resources to UEs with delay-tolerant applications.

Figure 5(b) shows the total aggregated ratesri =
∑2

j=1 r
j,all
i

for the 8 users.

C. Pricing Analysis for Carrier 1 and Carrier 2

In the following simulations, we setδ = 10−3. In Figure
6, we show carrier1 shadow price with60 ≤ R1 ≤ 150.
We observe that carrier1 price p1 is traffic-dependant as it
decreases for higher values ofR1. In Figure 7, we show the
offered price of carrier2 with 10 ≤ R2 ≤ 150 andR1 = 60.
We observe thatp2 decreases whenR2 increases for10 ≤
R2 ≤ 45, only VIP users are allocated rates by carrier2 when
10 ≤ R2 ≤ 45. However, we observe a jump in the price when
R2 = 50 as more users are considered in the rate allocation
process (i.e VIP users and regular users inM2). Figure 7 also
shows that carrier2 pricep2 decreases whenR2 increases for
50 ≤ R2 ≤ 150.

VI. CONCLUSION

In this paper, we proposed an efficient resource allocation
with user discrimination approach for 5G systems to allocate
multiple carriers resources optimally among UEs that belong
to different user groups classes. We used utility functionsto
represent the applications running on the UEs. Each user is
assigned a minimum required application rate based on its
class and the type of its application. Users are partitioned
into different user groups based on their class and the carriers
coverage area. We presented resource allocation optimization
problems based on carrier aggregation for different cases.We
proved the existence of a tractable global optimal solution.
We presented a RA algorithm for allocating resources from
different carriers optimally among different classes of mobile
users. The proposed algorithm ensures fairness in the utility
percentage, gives priority to VIP users and within a VIP or
a regular user group it gives priority to adaptive real-time
applications while providing a minimum QoS for all users.
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(a) The ratesr2,all
i allocated from carrier2 to M2 user group.
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Fig. 5. The ratesr2,all
i allocated from carrier2 to users inM2 and the total

aggregated rates allocated to the8 users with carrier2 available resources
10 < R2 < 150 and carrier1 resources fixed atR1 = 60.
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Fig. 6. Carrier1 shadow pricep1 with carrier1 resources60 < R1 < 150.

We showed through simulations that the proposed resource
allocation algorithm converges to the optimal rates. We also
showed that the pricing provided by our algorithm depends on
the traffic load.
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