Skip to main content
Log in

Fundamental Limits of TOA/DOA and Inertial Measurement Unit-Based Wireless Capsule Endoscopy Hybrid Localization

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

In this paper, performance analysis of hybrid localization based on radio-frequency (RF) and inertial measurement unit (IMU) measurements for a single wireless capsule endoscopy (WCE) traveling the gastrointestinal tract is studied. Specifically, the multiple body-mounted sensors are considered which are located on the front and back of a patient’s medical jacket and form the uniform rectangular arrays (URAs). With the aim of locating the WCE, two types of RF measurements, namely time-of-arrival (TOA) and direction-of-arrival (DOA), are estimated from the received signals at the URAs transmitted by the WCE, which are integrated with the IMU acceleration measurements via the standard extended Kalman filter. Here, a posterior Cramér–Rao Bound (PCRB) of the proposed TOA/DOA and IMU-based hybrid localization is derived as fundamental limits on squared position error, where the accuracies of TOA and DOA measurements are entailed by means of CRB to account for their dependency on the environmental parameters, while the accuracies of the IMU measurements are addressed with the acceleration measurement error standard deviation. Numerical results are provided, sustained by simulations which verify the millimeter accuracy of the TOA/DOA and IMU-based hybrid localization within the regulation of medical implant communication services and the exactness of the PCRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. K. Hara, J. A. Leighton, V. K. Sharma, R. I. Heigh and D. E. Fleischer, Small bowel: Preliminary comparison of capsule endoscopy with barium study and CT, Radiology, Vol. 230, No. 1, pp. 260–265, 2004.

    Article  Google Scholar 

  2. G. Costamagna, S. Shah, M. Riccioni, F. Foschia, M. Mutignani, V. Perri, A. Vecchioli, M. Brizi, A. Picciocchi and P. Marano, A prospective trial comparing small bowel radiographs and video capsule endoscopy for suspected small bowel disease, Gastroenterology, Vol. 123, No. 4, pp. 999–1005, 2002.

    Article  Google Scholar 

  3. G. Iddan, G. Meron and A. Glukhovsky, Wireless capsule endoscopy, Nature, Vol. 405, pp. 21–26, 2000.

    Article  Google Scholar 

  4. X. Chen, S. Tamura, D. Lin and Y. Du, A 3D localization and navigation method for endoscope by magnetic field, J. Comput. Res. Develop., Vol. 39, No. 2, pp. 242–246, 2002.

    Google Scholar 

  5. X. Guo, G. Yan, W. He and P. Jiang, Improved modeling of electromagnetic localization for implantable wireless capsules, Biomed. Instrum. Technol., Vol. 44, No. 4, pp. 354–359, 2010.

    Article  Google Scholar 

  6. L. Liu, C. Hu, W. Cai, M.Q.H. Meng, Capsule endoscope localization based on computer vision technique, In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp. 3711–3714, 2009.

  7. J. Bulat, K. Duda, M. Duplaga, R. Fraczek, A. Skalski, M. Socha, P. Turcza, T. Zielinski, Data processing tasks in wireless GI endoscopy: Image-based capsule localization & navigation and video compression, In: Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), pp. 2815–2818, 2007.

  8. Y. Geng and K. Pahlavan, Design, implementation and fundamental limits of image and RF based wireless capsule endoscopy hybrid localization, IEEE Transactions on Mobile Computing, Vol. 15, No. 8, pp. 1951–1964, 2016.

    Article  Google Scholar 

  9. A. Nafchi, S. Goh, R. Zekavat and A. Seyed, Circular arrays and inertial measurement unit for DOA/TOA/TDOA-based endoscopy capsule localization: Performance and complexity investigation, IEEE Sensors Journal, Vol. 14, No. 11, pp. 3791–3799, 2014.

    Article  Google Scholar 

  10. S. Goh, R. Zekavat, A. Seyed and K. Pahlavan, DOA-based endoscopy capsule localization and orientation estimation via unscented kalman filter, IEEE Sensors Journal, Vol. 14, No. 11, pp. 3819–3829, 2014.

    Article  Google Scholar 

  11. S. Jeong, O. Simeone, A. Haimovich and J. Kang, Beamforming design for joint localization and data transmission in distributed antenna system, IEEE Trans. Veh. Technol., Vol. 64, No. 1, pp. 62–76, 2015.

    Article  Google Scholar 

  12. S. Jeong, O. Simeone, A. Haimovich and J. Kang, Optimal fronthaul quantization for cloud radio positioning, IEEE Trans. Veh. Technol., Vol. 65, No. 4, pp. 2763–2768, 2016.

    Article  Google Scholar 

  13. S. Jeong, O. Simeone, A. Haimovich and J. Kang, Positioning via Direct Localization in C-RANs Systems, IET Communications, Vol. 10, No. 16, pp. 2238–2244, 2016.

    Article  Google Scholar 

  14. S. Jeong, T. Sung, K. Lee, J. Kang, Joint TOA/AOA-based localization in wireless sensor networks, In: Proc. Int. Conf. IEEE Signal Processing and Communication Systems (ICSPCS), 2014.

  15. IEEE 802.15 Tg6, Draft of channel model for body area network, 2010.

  16. K. Yazdandoost, K. Sayrafian-Pour, Channel model for body area network (BAN), IEEE 802.15 Working Group Document, IEEE P802, 2009.

  17. R. A. Barnett, M. R. Ziegler, K. E. Byleen and D. Sobecki, Analytic trigonometry with applications, vol. 11th, Wiley, New York, 2011.

    Google Scholar 

  18. S. M. Kay, Fundamentals of signal processing-estimation theory, Prentice Hall, Englewood Cliffs, 1993.

    MATH  Google Scholar 

  19. J. L. Crassidis and J. L. Junkins, Optimal estimation of dynamic systems, vol. 2nd, CRC Press, London, 2011.

    MATH  Google Scholar 

  20. H. L. V. Trees, Detection, estimation and modulation theory, Wiley, New York, 1968.

    MATH  Google Scholar 

  21. P. Tichavský, C. Muravchik and A. Nehorai, Posterior Cramér–Rao bounds for discrete-time nonlinear filtering, IEEE Trans. Sig. Proc., Vol. 46, No. 5, pp. 1386–1396, 1998.

    Article  Google Scholar 

  22. F. Zhang, The Schur complement and its applications4 ed., Springer, Berlin, 2005.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seongah Jeong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeong, S., Kang, J., Pahlavan, K. et al. Fundamental Limits of TOA/DOA and Inertial Measurement Unit-Based Wireless Capsule Endoscopy Hybrid Localization. Int J Wireless Inf Networks 24, 169–179 (2017). https://doi.org/10.1007/s10776-017-0342-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-017-0342-7

Keywords

Navigation