Skip to main content
Log in

Resource Allocations for Ultra-Reliable Low-Latency Communications

  • Published:
International Journal of Wireless Information Networks Aims and scope Submit manuscript

Abstract

Ultra-reliable low-latency communications (URLLC) is a new feature to be considered for the fifth generation (5G) cellular systems. This feature is essential for the support of envisioned mission-critical applications, particularly in the realm of machine-type communications. These applications require that the messages, which are generally short-length packets, to be exchanged between a source and a destination with the high level of reliability and within a short period of time. The characteristics of URLLC do not fit directly in the conventional communication models. For instance, most of the existing communication models are developed considering moderate levels of reliability, neglecting the small effects of the feedback errors. However, even such small errors cannot be ignored for URLLC. This paper proposes a communication model for URLLC considering the reliabilities of both data and control channels. Then, the optimal and sub-optimal resource allocations are derived. We show that the proposed sub-optimal resource allocations have lower computational complexities with a negligible performance degradations compared to that of the optimal solutions. The results reveal that the possibility of performing only one retransmission can significantly reduce the required radio resources needed for data delivery compared to the case of performing a single transmission round.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. It is a measure of the stochastic variability of the channel relative to a deterministic channel with the same capacity [15].

  2. In the rest of the paper, \(f_x\) represents the function f from the positive real domain, while \(f_n\) represents the function f from the integer domain.

  3. The proof is given in “Appendix”.

  4. The proof is given in [5].

References

  1. H. Shariatmadari, R. Ratasuk, S. Iraji, A. Laya, T. Taleb, R. Jäntti, and A. Ghosh, Machine-type communications: current status and future perspectives toward 5G systems, IEEE Communications Magazine, Vol. 53, pp. 10–17, 2015.

    Article  Google Scholar 

  2. P. Popovski, Ultra-reliable communication in 5G wireless systems. In Proceedings of IEEE International Conference on 5G for Ubiquitous Connectivity (5GU), pp. 146–151, 2014.

  3. G. Durisi, T. Koch, and P. Popovski, Toward massive, ultrareliable, and low-latency wireless communication with short packets. In Proceedings of the IEEE, pp. 1711–1726, 2016.

  4. 3GPP TR 38.913, “Study on scenarios and requirements for next generation access technologies”, V14.2.0, 2017.

  5. H. Shariatmadari, R. Duan, Z. Li, S. Iraji, M. A. Uusitalo, and R. Jäntti, Analysis of transmission modes for ultra-reliable communications. In Proceedings of IEEE PIMRC, pp. 1–6, 2016.

  6. H. Shariatmadari, S. Iraji, A. Laya, O. Anjum, R. Jäntti, Z. Li, and C. Wijting, Delay analysis of network architectures for machine-to-machine communications in LTE system. In Proceedings of IEEE ICT Workshop, pp. 492–496, 2014.

  7. T. Taleb, A. Ksentini, and A. Kobbane, Lightweight mobile core networks for machine type communications, IEEE Access, Vol. 2, pp. 1128–1137, 2014.

    Article  Google Scholar 

  8. H. Shariatmadari, S. Iraji, and R. Jäntti, Analysis of transmission methods for ultra-reliable communications. In Proceedings of IEEE PIMRC, pp. 2303–2308, 2015.

  9. H. Shariatmadari, Z. Li, M. A. Uusitalo, S. Iraji, and R. Jäntti, Link adaptation design for ultra-reliable communications. In Proceedings of IEEE ICC, pp. 1–5, 2016.

  10. R. Devassy, G. Durisi, P. Popovski, and E. G. Strm, Finite-blocklength analysis of the ARQ-protocol throughput over the Gaussian collision channel. In Proceedings of ISCCSP, pp. 173–177, 2014.

  11. S. H. Kim, D. K. Sung, and T. Le-Ngoc, Performance analysis of incremental redundancy type hybrid ARQ for finite-length packets in AWGN channel. In Proceedings of IEEE GLOBECOM, pp. 2063–2068, 2013.

  12. B. Makki, T. Svensson, and M. Zorzi, Finite block-length analysis of the incremental redundancy HARQ, IEEE Wireless Communications Letters, Vol. 3, No. 5, pp. 529–532, 2014.

    Article  Google Scholar 

  13. B. Makki, T. Svensson, and M. Zorzi, Green communication via Type-I ARQ: Finite block-length analysis. In Proceedings of IEEE Globecom, pp. 2673–2677, 2014.

  14. M. Centenaro, G. Ministeri, and L. Vangelista, A comparison of energy-efficient HARQ protocols for M2M communication in the finite block-length regime. In Proceedings of IEEE ICUWB, pp. 1–6, 2015.

  15. Y. Polyanskiy, H. V. Poor, and S. Verdu, Channel coding rate in the finite blocklength regime, IEEE Transactions on Information Theory, Vol. 56, No. 5, pp. 2307–2359, 2010.

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Shariatmadari, S. Iraji, Z. Li, M. A. Uusitalo, and R. Jäntti, Optimized transmission and resource allocation strategies for ultra-reliable communications. In Proceeidings of IEEE PIMRC, pp. 1–6, 2016.

  17. W. Yang, G. Durisi, T. Koch, and Y. Polyanskiy, Quasi-static MIMO fading channels at finite blocklength, IEEE Transactions on Information Theory, Vol. 60, No. 7, pp. 4232–4265, 2014.

    Article  MathSciNet  MATH  Google Scholar 

  18. G. Ku, and J. M. Walsh, Resource allocation and link adaptation in LTE and LTE Advanced: a tutorial, IEEE Communications Surveys and Tutorials, Vol. 17, No. 3, pp. 1605–1633, 2015.

    Article  Google Scholar 

  19. S. Boyd, and L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, 2004.

    Book  MATH  Google Scholar 

  20. A. Fuente, Mathematical Methods and Models for Economists, Cambridge University Press, Cambridge, 2000.

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamidreza Shariatmadari.

Appendix

Appendix

We prove the convexity of the average number of channel uses for non-adaptive scenario given in (5) provided \(\tilde{n}\) and \(\hat{n}\) ( \(\tilde{n}\le n \le \hat{n}\)). Since it has been shown in (4) that \(E_{x}\) given in (2) is a convex and decreasing function of x, we have \(E_{\lambda a+(1-\lambda )b}\le \lambda E_{a} + (1-\lambda ) E_{b}, \forall \lambda \in [0,1]\).

Let \(\overline{N}_n\) denote \(\overline{N}(n,k,\gamma )\). In the following we prove the convexity when \(\varDelta _{\epsilon } \triangleq 1-\epsilon _{\text {N}} -\epsilon _{\text {A}}\ge 0\). We first rewrite (5) as

$$\begin{aligned} \overline{N}_{\lambda \tilde{n} + (1-\lambda )\hat{n}}= \left( \lambda \tilde{n} + (1-\lambda )\hat{n}\right) \left[ 1+ \epsilon _{\text {A}} + \varDelta _{\epsilon } E_{\lambda \tilde{n} + (1-\lambda )\hat{n}} \right] . \end{aligned}$$

In addition,

$$\begin{aligned} \lambda \overline{N}_{\tilde{n}} + (1-\lambda )\overline{N}_{\hat{n}}&= \lambda \tilde{n} \left[ 1+ \epsilon _{\text {A}} +\varDelta _{\epsilon } E_{\tilde{n}}\right] + (1-\lambda )\hat{n} \left[ 1+ \epsilon _{\text {A}} +\varDelta _{\epsilon } E_{\hat{n}}\right] \\&= (1+ \epsilon _{\text {A}}) \left[ \lambda \tilde{n} + (1-\lambda )\hat{n}\right] + \varDelta _{\epsilon } \left[ \underbrace{\tilde{n}\lambda E_{\tilde{n}} + \hat{n}(1-\lambda ) E_{\hat{n}}}_{\mathcal {A}} \right], \end{aligned}$$

and

$$\begin{aligned} \overline{N}_{\lambda \tilde{n} + (1-\lambda )\hat{n}} = (1+ \epsilon _{\text {A}}) \left[ \lambda \tilde{n} + (1-\lambda )\hat{n}\right] + \varDelta _{\epsilon } \left[ \underbrace{\left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] E_{\lambda \tilde{n} + (1-\lambda )\hat{n}}}_{\mathcal {B}} \right] . \end{aligned}$$

In the following, we prove that \(\mathcal {A}\ge \mathcal {B}\). Let \(\alpha \triangleq \frac{\tilde{n}\lambda }{\left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] }\in [0,1]\) given \(\lambda \in [0,1]\).

$$\begin{aligned} \mathcal {A}&= \left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] \left[ \frac{\tilde{n}\lambda }{\left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] } E_{\tilde{n}} + \frac{\hat{n}(1-\lambda )}{\left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] } E_{\hat{n}}\right] \\&= \left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] \left[ \alpha E_{\tilde{n}} + (1-\alpha ) E_{\hat{n}}\right] \\&\ge \left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] E_{\alpha \tilde{n} + (1-\alpha )\hat{n}}, \quad \forall \alpha \in [0,1]. \end{aligned}$$

Hence, substituting \(\alpha\) by \(\lambda\) we obtain,

$$\begin{aligned} \mathcal {A} \ge \left[ \tilde{n}\lambda + \hat{n}(1-\lambda )\right] E_{\lambda \tilde{n} + (1-\lambda )\hat{n}}\ge \mathcal {B}. \end{aligned}$$

Consequently,

$$\begin{aligned} \lambda \overline{N}_{\tilde{n}} + (1-\lambda )\overline{N}_{\hat{n}} \ge \overline{N}_{\lambda \tilde{n} + (1-\lambda )\hat{n}}, \end{aligned}$$

which leads that \(\overline{N}_n, \; \tilde{n}\le n \le \hat{n}\) is convex. Therefore, we could use bisection searching method in Sect. 3.1 for the non-adaptive retransmission scenario.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shariatmadari, H., Duan, R., Iraji, S. et al. Resource Allocations for Ultra-Reliable Low-Latency Communications. Int J Wireless Inf Networks 24, 317–327 (2017). https://doi.org/10.1007/s10776-017-0360-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10776-017-0360-5

Keywords

Navigation