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Cluster-Based RF Fingerprint Positioning Using LTE and WLAN Signal Strengths 

 
Riaz Uddin Mondal, Tapani Ristaniemi, Jussi Turkka 

 
Abstract Wireless Local Area Network (WLAN) positioning has become a popular localization system due to 

its low-cost installation and widespread availability of WLAN access points (AP). Traditional grid-based radio 

frequency (RF) fingerprinting (GRFF) suffers from two drawbacks. First it requires costly and non-efficient data 

collection and updating procedure; secondly the method goes through time-consuming data pre-processing 

before it outputs user position. This paper proposes Cluster-based RF Fingerprinting (CRFF) to overcome these 

limitations by using modified Minimization of Drive Tests (MDT) data which can be autonomously collected by 

cellular operators from their subscribers. The effect of environmental changes and device variation on 

positioning accuracy has been carried out. Experimental results show that even under these variations CRFF can 

improve positioning accuracy by 15.46% and 22.30% in 95 percentile of positioning error (PE) as compared to 

that of GRFF and K-nearest neighbour methods respectively. 

 

Keywords RF Fingerprint Positioning, K-Nearest Neighbors, K-means Clustering,  Hierarchical Clustering, 

Fuzzy C-Means Clustering 

 

 

1  Introduction  

 

Location systems have long been identified as an important component of a wide set of applications such as for 

E-911 emergency positioning, personal navigation and Location-Based Services in outdoor environments. The 

role of a positioning system is to estimate and report geographical location information pertaining to the user for 

the purposes of management, enhancement, and personalization of services. At present Global Navigation 

Satellite System (GNSS) is the most popular positioning system for mobile devices in outdoor environments. 

However, GNSS geolocation performs poorly in dense urban areas and inside buildings, where satellites are not 

visible by mobile user equipment (UE) [1]. With the rapid increase in Wireless Local Area Network (WLAN) 

access points (AP) in metropolitan areas and due to their ubiquitous coverage in large environments, outdoor 

location systems based on WLAN have gained recent attention in research and commercial applications [2], [3], 

[4]. WLAN positioning works better than GNSS in dense metropolitan areas, both outdoors and indoors owing 

to its greater received signal strength and lower attenuation [3]. WLAN received signal strength (RSS) 

measurements can be obtained relatively effortlessly and inexpensively without the need for additional hardware 

[5]. Moreover, RSS-based positioning is non-invasive, as all sensing tasks can be carried out on the mobile UE, 

eliminating the necessity for central processing [6]. Skyhook [7] has used Wi-Fi signals emitted from residential 

homes and offices to build a cost-effective location system on a global scale. Several existing WLAN methods 

have aimed to use theoretical path loss (PL) models whose parameters are estimated based on training data [8]. 

Given an RSS measurement and PL model, the distances from the UE to at least three APs are determined, and 

trilateration is used to obtain the UE position. The limitations of such an approach are the dependence on prior 

topological information and assumption of isotropic RSS contours [9]. Alternatively, the RSS-position 

relationship has been characterized implicitly using a training-based method known as location fingerprinting. 

Positioning results from urban and sub-urban areas with WCDMA and GSM networks in [10] shows that radio-

frequency (RF) fingerprinting is a better method than PL model based localization. An RF fingerprint-based 

positioning system has two phases. First, offline training phase: RSS and corresponding location data are 

collected to create a ‘radio map’ with sufficient representation of spatiotemporal RSS properties of the area. 

Second, online location determination phase: the system uses the signal strength samples received from a test 

UE to ’search’ the radio map to estimate the user location.  

    In order to enhance WLAN RSS based indoor positioning pedestrian dead reckoning (PDR) is often used. 

PDR uses an inertial measurement unit (IMU) which has three-axis accelerometers and gyroscopes to detect a 

user direction changes between footsteps. The user heading change is computed by projecting the gyroscope 

measurements to the horizontal plane. Authors [42] have proposed a novel linear model for PDR and compared 

it to conventional nonlinear models. For this purpose they have used Kalman filter (KF), the extended Kalman 

filter (EKF), and the unscented Kalman filter (UKF). The evaluation shows that despite being simpler than the 

traditional methods, it performs especially well in situations where the initial heading and position are not 

known.  

    In this work, cluster-based RF fingerprinting (CRFF) method is used with data similar to Minimization of 

Drive Tests (MDT) data [11]. CRFF method divides a group of a MDT data-set into a certain number of subsets 

or clusters, so that the members in the same cluster are similar in terms of their RSS values. The proposed CRFF 

confronts the following main challenges of RF fingerprint based UE positioning: 
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1.1 RF Fingerprint Collection and Updating  

 

The conventional way of creating fingerprint training data-base is to periodically conduct extensive drive test 

campaigns which are time-consuming and unpractical for building a metropolitan-scale radio map of the 

locating system [41], [12]. A major drawback of this method is to update the training radio map when new APs 

are deployed and existing APs are decommissioned.  The accuracy of any location estimation system is highly 

dependent on the density of the set of collected fingerprints which is difficult to achieve through conventional 

drive test methods [13]. To solve this issue we have used generalized MDT (GMDT) data that allows UEs to 

collect location-aware radio measurements from LTE BSs as well as WLAN access networks [14]. GMDT 

allows cellular operators to collect and update big RF fingerprint data-base autonomously using subscribers UE 

without any additional hardware instalment. This is the most cost effective solution to build and maintain fine-

grained radio map to increase the accuracy of UE localization. 

 

1.2 Pre-processing of Training Data  

 

In most cellular-communication systems the basic positioning method is based upon cell-identity (cell-ID) 

which reports the identity of the cell to which the terminal is connected to [15]. It has sort response time but the 

accuracy is low [16]. Author in [17] has proposed an adaptive enhanced cell-ID localization method which uses 

an offline cluster based fingerprinting to enhance the positioning performance. To reduce computational 

complexity and search space in WLAN positioning authors in [18] and [19] have conducted offline clustering of 

locations based on the training data. However the operation of these systems are hampered over time since 

WLAN infrastructures are highly dynamic and APs can be easily moved or discarded, in contrast to the BS 

counterparts in cellular systems, which generally remain intact for long periods of time. Our proposed CRFF 

method utilizes GMDT data to output result in sort time and does not go through time consuming training data 

processing phase.  

 

1.3 AP Selection for UE Positioning  
 
In a typical urban environment, the number of detected WLAN APs is greater than usually necessary for UE 

position estimation. RSS is dependent on the relative distance of the UE and each AP. It is affected by the 

topology of the surrounding environment in terms of obstacles causing non line-of-sight RF signal propagation; 

thus subsets of available APs may report correlated readings. Hence considering all available APs for position 

estimation increases the computational complexity of the positioning algorithm [6]. To simplify the training data 

collection process we have adopted the ‘Maximum RSS’ (MRSS) based selection methodology where APs are 

sorted in descending order based on their maximum RSS value and a certain part is chosen to create the training 

database [20].               

 

1.4 Position Estimation using New RSS Observation and Radio Map  

 

This essentially involves a distance calculation between the RSS observation of a test UE and the training 

records; Euclidean distance has been used in this study [21]. UE location estimation using RSS measurements is 

a difficult task due to the noisy characteristics of signal propagation and absorption by surrounding structures 

and human bodies. Even changes in the environmental conditions, such as temperature or humidity, affect the 

signals to a large extent. As a consequence, the signal strength recorded from an AP at a fixed location varies 

with [19]. Moreover RSS values measured from WLAN APs may differ significantly with the UE’s hardware 

even under the same wireless conditions [22], [23]. In order to study the effect time and device variation on UE 

positioning we have collected GMDT data using different devices in two different times of a year.  

     

    The main goal of this research is to use four popular clustering algorithms namely: k-means, Hierarchical 

Clustering, Fuzzy C-Means Clustering and Self-Organizing Map based clustering in conjunction to our 

proposed CRFF method and also to compare these CRFF methods with GRFF and KNN in terms of positioning 

accuracy and computational time complexity. Thereby we can evaluate which clustering algorithm performs the 

best using the proposed CRFF technique. The rest of the paper is organized as follow. Section 2 describes the 

GMDT data collection and pre-processing steps. The conventional grid-based RF fingerprinting (GRFF) 

method, K-nearest neighbours (KNN) based positioning and CRFF methods are explained in Section 3. Section 

4 presents the experiment results and their performance comparison. Finally, Section V concludes the paper and 

gives some future directions to this effort. 
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2 Offline Data Collections and Pre-processing  

 

2.1 GMDT Data Measurement  

 

The 3rd Generation Partnership Project (3GPP) has been studying solutions for enhancing the interworking 

between WLAN and LTE in Release 12 and 13 [24]. Authors in [14] have proposed an enhancement to the LTE 

MDT referred to as GMDT with minor changes to the 3GPP MDT framework which enables WLAN APs to be 

added to the MDT report containing LTE network measurements as well as the UE location information.  

      

Table 1 Summary of two different data recording campaigns  

Time of 

Data 

Collecti

-on  

Area of 

Interest 

(kilome

ters2) 

No. of 

BSs and 

APs 

No. of 

GMDT 

samples 

Mobile 

Device  

Wi-Fi 

Module  

LTE and WLAN 

Signal 

Frequency 

Sampling 

Frequency of 

LTE and 

WLAN 

Sept. 

2014      

(5days) 

 

0.33 

 

16 and  

1776 

 

21954 

Samsung 

GT-I9305 

Murata  

M2322007 

LTE- 1800 and 

800 MHz 

WLAN- 2.4 and 

5 GHz  

2 samples/sec. 

and 1 sample/ 

5 seconds  

May 

2015  

(6 days) 

 

0.34 

 

13 and 

2280 

 

87930 

Samsung 

SM-G900F 

Murata 

KM4220004 

LTE- 1800 and 

800 MHz 

WLAN- 2.4 and 

5 GHz 

2 samples/sec. 

and 1 sample/ 

5 seconds 

     

    To build the GMDT data-base commercially available mobile phones installed with drive test software known 

as ‘Nemo Handy’ was used [25]. This enabled us to measure reference signal received power (RSRP) values of 

Long Term Evolution (LTE) serving and detected Base Stations (BS) and received signal strength 

indicator (RSSI) values of WLAN APs with corresponding GNSS locations of the UEs. Both LTE and WLAN 

signal strengths were recorded in dBm and GNSS latitude and longitude values were converted to Universal 

Transverse Mercator (UTM) coordinate system values. About 150 kilometres of measurements were recorded 

by feet, bicycle and car from a residential urban area in Tampere, Finland. In order to collect enough 

measurement samples from the area of interest every route was repeated at least twice during the data recording 

period. Table 1 summarizes the parameters of two data collection campaigns. 
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Fig. 1 Block diagram of GRFF and CRFF positioning methods 
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2.2 GMDT Data Pre-processing  

 

Our proposed positioning system is network-based system where a positioning server (GMDT server) is used to 

store and update the ‘radio map’ through merging multiple GMDT samples recorded from the same x-y 

coordinate comprising of similar LTE BS and WLAN AP IDs to form a single fingerprint of mean RSS values 

of the constituent GMDTs. Since the strongest APs provide good probability of coverage over time [18]; we 

have chosen a subset of APs with the highest observation RSS values. In indoor WLAN positioning seven 

WLAN RSSI values were used by authors in [20] to obtain acceptable positioning accuracies. Authors in [14] 

have noticed that increasing WLAN APs after ten provides little to no gain in UE positioning performance. 

Hence in this study we have compare the UE positioning performances of two different sets of RSS values Sj,n 

where, j=1 and 2 refers to different GMDT data-sets and n is the total number of  GMDT samples. The first set 

S1,n comprises of serving LTE RSRP and six WLAN RSSI values while the second set S2,n contains serving LTE 

RSRP and ten WLAN RSSI values. We can represent a GMDT sample of a set by a row vector:  

 

Sj,n = LWID, RSSLW, PXY                                                                (1) 

     where, LWID
 denotes the LTE BS IDs and WLAN AP IDs,  RSSLW  corresponds to RSRP and RSSI values, 

and PXY contains x-y coordinates of the UEs obtained from GNSS positioning information. 

 

Training phase of GRFF method: We have used a conventional single grid-cell layout based fingerprinting. The 

whole geographical area of interest is segmented into 10m-by-10m square grid-cell units (GCU). As shown in 

Fig. 1(a) the GMDT samples of a given data-set Sj,n are grouped in different GCUs. For any particular GCU a 

single training signature TrainSig is formed from all its samples. This shortens the searching time during the UE 

position estimation phase and reduces the computational cost. The TrainSig formed from all the GMDT samples 

of ith GCU can be defined by:  

 

Traini
sig = TSID

LW, RSSTS
LW, PRef

XY                                                                                        (2) 

 
where, TSID

LW contains all unique LTE BS IDs and WLAN AP IDs obtained from samples of the GCU, 
RSSTS

LW is a vector of the corresponding mean LTE RSRP and WLAN RSSI values, and  PRef
XY is the reference x-

y coordinate calculated from the mean values of x and y coordinates of the samples. 

    Training phase of CRFF method: The GMDT samples of a given data set Sj,n are grouped according to unique 

LTE serving BS IDs. Hence literally it does not require any data-processing during the training phase.  
 
3 Position Estimation Phase  
 

The test UE first sends a positioning request to the GMDT server along with the recorded cell-IDs and 

associated RSS values. After matching and data processing GMDT server sends the position estimation 

information to the test UE.  

 

3.1 Test Phase of GRFF Method  

 

As shown in Fig. 1(b) the LWID of test GMDT sample (TestSam) is compared to TSID
LW of all the training 

signatures of the data server to select those signatures which meet a minimum matching threshold (MT) value. 

In our study this minimum MT number for both GMDT sets were set to two. Therefore for MT-2 all the training 

signatures that contain at least two or higher number of LWID as compared to the test GMDT are selected: a 

partial ID match procedure. The maximum MT numbers for S1,n and S2,n were four and five respectively. 

Euclidean distance was used to measure the statistical difference between a test sample and selected training 

signatures which was found to be effective in WLAN-based indoor UE positioning [26]. Here we have used a 

simplified Mahalanobis distance (MD) equation where the inverse covariance matrix is replaced by an identity 

matrix: 

 

d(TestSam, TrainSig) = √ (uTe − uTr)T I (uTe − uTr)                          (3)            

      

    where, uTe and uTr denotes the RSRP and RSSI values of the TestSam and a TrainSig respectively and I is the 

identity matrix. Separate calculations are done to measure all the distances between a TestSam and training 

signatures. The TrainSig that corresponds to the smallest Euclidean distance is chosen for UE positioning. The 

estimated position of the TestSam is obtained from PRef
XY of the chosen TrainSig. 
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3.2 Test Phase of KNN Based Positioning  

The most well-known pattern matching algorithm is K nearest neighbour (KNN) [5]. In order to satisfy the 

acceptable localization accuracy with low computation effort KNN has been used for WLAN UE positioning by 

several researchers [[3], [21], [27], [28]]. Here first we select the training GMDT group (TrainGrp) according to 

the LTE serving BS ID of the TestSam. Then multiple GMDT samples are selected from TrainGrp according to the 

partial ID matching. The partial matching begins with the highest MT number and until multiple partially 

matched training samples (GMDTPM) are obtained MT number is sequentially lowered towards the minimum. 

Now according to the lowest Euclidean distance a maximum of five closest GMDTs are chosen using the 

following KNN equation: 

 

  (4) 

      

    where, GMDTRSS and TestRSS are vectors of LTE RSRP and WLAN RSSI values of GMDTPM and TestSam 

respectively. The estimated position of a test UE is calculated from mean x-y coordinates of the selected 

GMDTPM samples. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
3.3 Test Phase of CRFF Methods  

 

The main steps of the proposed CRFF method is depicted in Fig. 2.  

   

3.3.1 K-means Cluster Based Positioning  

 

The k-means method is a widely used clustering technique in scientific and industrial applications [29]. 

Although it offers no accuracy guarantee, its simplicity and speed are very appealing in practical RF fingerprint 

positioning. It has been successfully used in indoor mobile localization and also in outdoor positioning as an 

energy efficient RF fingerprinting method [30], [31]. Here k-means++ algorithm was used which is faster to 

implement and also improves the performance of Lloyd’s algorithm [32]. The methods begins with a set of xi 

data points where i = 1,2,…,n and a pre-defined maximum cluster number K. The task is to choose K centres ck  
so as to minimize the following distance function, 

 

          (5) 

 

Here each centroid is the component-wise median of the sample points in that cluster. Assuming D(xi) denotes 

the shortest distance from a data point to the already chosen cluster centre k-means++ algorithm performs the 

following steps: 

(i) The first centre c1 is chosen uniformly at random from x.  

(ii) A new centre ck is chosen from x with probability 
𝐷(𝑥𝑖)2

∑ 𝐷(𝑥𝑖)2𝑛−1
𝑖=1

  

(iii) Step (ii) is repeated until all k centres are chosen. 

d(x,c) = ∑𝑖=1
𝑛 ǀxi - ckǀ              

1. To estimate the position of a test sample, a GMDT group is selected from training data according to the 

serving LTE BS ID of the test sample 

3. The test sample is added to this group and clustering is done 

4. Clustering criteria is checked: a cluster is valid only if it contains multiple GMDTs. If the TestSam does not 

belong to any cluster reduce matching threshold and go-to Step 2 

2. For a particular MT number GMDT samples are selected which have enough common cell-ID/APs as 

compared to the test sample  

5. Select the cluster which contains the TestSam; the estimated UE position is obtained from the mean x-y 

coordinates of the GMDTs of that cluster 

Fig. 2 Block-diagram of CRFF based UE fingerprint positioning 

d( GMDTPM, TestSam) = √∑𝑗=1
𝑛 (GMDTRSS − TestRSS)2 
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(iv) For each ck, data points are assigned to it which are closer to it than any other ck.  

(v) New ck is computed from the mean of all data points that belongs to the previous ck.  

(vi) Steps (iv) and (v) are repeated until c no longer changes. 

 

Depending upon number of GMDTPM samples (GMDTPM
num) different K values were assigned for k-

means++ algorithm so that clustering takes place even with less GMDTPM
num. K is set to 6 if GMDTPM

num >= 20, 

K is 3 if 20 > GMDTPM
num >= 10 and K is 2 if 10 > GMDTPM

num >= 2.  

 

 

3.2.3 Agglomerative Hierarchical Cluster Based Positioning  

 

Hierarchical clustering is a technique that constructs a tree-like nested structure of clusters. In agglomerative 

hierarchical clustering (AHC), one starts by considering each data point as a single cluster and follows by 

merging two neighbouring clusters at each step of the process [33]. In this study we have used weighted-linkage 

based AHC clustering since it has shown good positioning performance in GSM outdoor UE localization [34]. 

The neighbouring clusters are chosen based on a linkage criterion where weighted average distance determines 

the distance between two clusters. In order to select the optimal cluster number in AHC method we have used 

Davies-Bouldin criterion [35]. This criterion is based on a ratio of within-cluster and between-cluster distances. 

Minimum Davies-Bouldin index (DB) indicates the potential number of clusters in the data:   

 

      (6) 

                    

     where, K is the initial maximum number of clusters, Di,j is the within-to-between cluster distance ratio for 

the ith and jth clusters. Di,j is given by; Di,j = (di¯+dj¯)/di,j, where, di¯ is the average distance between each point 

in ith cluster and centroid of the ith cluster. dj¯ is the average distance between each point in jth cluster and 

centroid of the jth cluster. di,j is the Euclidean distance between centroids of the ith and jth clusters. Here we have 

selected K = 6 if GMDTPM
num > 10 and K = 2 when GMDTPM

num < 10, so that clustering still takes place when 

there is lees number of GMDTPM
num samples.  

 

3.2.4 Fuzzy C-Means Cluster Based Positioning  

 

Fuzzy C-means (FCM) is a data clustering technique - a dataset is partitioned into multiple clusters with every 

data-point in the dataset belonging to every cluster to a certain degree. Authors in [36] and [37] have used FCM 

in WLAN indoor localization to obtain good positioning accuracy and also to reduce the computation time as 

compared to a conventional GRFF method. We have assigned different initial cluster size c depending on number 

of GMDTPM samples: c = 6 if GMDTPM
num >= 20; c = 3 if GMDTPM

num < 20 and GMDTPM
num >= 10; and c = 2 if 

GMDTPM
num < 10 and GMDTPM

num > 2. FCM starts with an initial guess for the cluster centres, which are intended 

to mark the mean location of each cluster and it also assigns every data point a membership grade for each 

cluster. By iteratively updating the cluster centres and the membership grades for each data point, it moves the 

cluster centres to the right location. This iteration is based on minimizing the objective function for subdividing 

the selected GMDT data-set [38]: 

 

      (7) 

where, n is the number of samples in the data set, c is the number of clusters (1 ≤ c ≤ n), ui,k is the element of 

partition matrix U of size (c x n) containing membership function, vi is the centre of ith cluster, and m is a 

weighting factor that controls fuzziness of membership function. The matrix U is constrained to contain 

elements in the range of [0, 1] such that ∑𝑖=1
𝑐  uik = 1  for each ui,k(1≤ k ≤ n). The norm ║Dk − vi║is the distance 

between the sample Dk and the clusters centre vi. 

 

3.2.5 Self-Organizing Map based Positioning 

 

SOM was introduced as an unsupervised competitive learning algorithm of the artificial neural networks by 

Finnish Professor Teuvo Kohonen in the early 1980s, SOM is also called the Kohonen map. A Self Organizing 

Map (SOM) is a single layer neural network, where neurons are set along an n-dimensional grid. Each neuron 

has as many components as the input patterns. Training a SOM requires a number of steps to be performed in a 

sequential way. For an input sample the SOM training phase consists of three steps: 1) to evaluate the distance 

between input sample and each neuron of the SOM; 2) to select the neuron (node) with the smallest distance 

from the sample; and 3) to correct the position of each node according to the results of step 2), in order to 

DB(K) = (1/K)∑𝑖=1
𝐾  maxj≠i (Di,j) 

Jm(u,v) = ∑𝑖=1
𝑐

 ∑𝑘=1
𝑛 ui,k

m║Dk − vi║2 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



7 
 

preserve the network topology. Steps 1) to 3) can be repeated more than once for each input sample until 

stopping criteria is reached. The SOM technique is simple yet effective in capturing the properties of the input 

space and it can be used for clustering input data.  

    In [43] and [44] authors have used SOM to compute virtual coordinates that are effective for location-aided 

routing in Wireless Sensor Networks (WSN). In [44] synchronous readings collected by all the sensor nodes 

were used to build the training set for the SOM. After training the model, the localization task was performed 

using new sensor readings to sort nodes on the basis of their proximity to a virtual grid of nodes. In [45] authors 

have used SOM to develop an indoor locating and tracking system using Wi-Fi RSS values. They have achieved 

good positioning accuracy by using SOM technique. In this study we have employed SOM as another CRFF 

method for outdoor user localization using GMDT data.  

 

4 Experimental Results and Discussion  
 

To evaluate the robustness of the positioning methods with changes in recording device and surrounding 

environment two experimental studies (ExStudy-1 and ExStudy-2) were carried out. In ExStudy-1 both training 

and test samples were selected from the same time period - September 2014. Here training and test data-sets 

comprises of randomly choosing data chunks of 20 sequentially recorded samples. 

  

Table 2 Positioning error results of ExStudy-1 using GMDT dataset S1,n  

M

T 

GRFF KNN K-means AHC FCM 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam.  

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam.  

(%)  

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam.    

(%) 

4 15.3 43.1 99.3 15.0 45.5 98.6 10.0 36.3 84.6 8.2 31.2 74.9 11.0 38.8 84.6 

3 15.3 43.3 99.8 15.2 46.0 99.7 11.5 40.4 94.9 9.0 33.8 80.8 12.8 42.6 96.2 

2 15.3 43.4 99.9 15.2 46.0 99.8 11.5 40.5 95.0 9.1 34.0 81.0 12.8 42.7 96.3 

 

 

Table 2 shows the UE positioning results of ExStudy-1 obtained from 10 fold cross-validations. In this study 

only GMDT data-set S1,n was used. In each of experimental studies the number of training and test GMDTs were 

23080 and 2565 respectively. Table 2 shows the 68th and 95th percentile cumulative distribution function 

(CDF) values of positioning error (PE) for each of the positioning methods along with the percentage of 

analysed TestSams corresponding to different MT values. 

 

 Table 3 Positioning error results of ExStudy-2 using GMDT dataset S1,n and S2,n  

 

D. 

S. 

M

T 

GRFF KNN K-means AHC FCM 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

68% 

PE 

(m) 

95% 

PE 

(m) 

Ana. 

Sam. 

(%) 

 

S1,n 

4 26.6 47.0 80.3 25.8 47.3 69.7 24.1 47.2 66.8 20.8 39.8 26.8 24.5 43.4 41.8 

3 27.2 49.2 96.5 27.0 53.4 94.6 25.2 51.2 93.7 21.5 41.7 60.5 25.5 50.2 78.1 

2 27.9 51.1 99.7 27.5 55.6 99.4 25.5 55.4 99.3 22.4 43.2 76.6 26.7 53.3 95.7 

 

S2,n 

5 25.7 46.1 57.0 24.7 44.3 89.6 23.8 41.6 86.9 20.8 38.7 43.1 23.5 42.2 62.4 

4 26.7 47.6 85.5 25.8 46.8 97.5 24.5 42.8 96.6 22.0 42.0 67.0 24.3 43.0 87.4 

3 27.6 49.5 96.8 26.0 47.5 98.9 24.7 44.1 98.8 23.0 43.7 78.4 24.8 44.1 97.5 

2 28.1 50.8 99.7 26.2 49.3 99.9 24.9 46.2 99.9 23.4 45.2 82.9 25.2 46.4 99.4 
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Table 4 Positioning error results of ExStudy-2 using SOM with GMDT dataset S1,n and S2,n 
Method SOM 

Data Set S1,n S2,n 

Matching 

Threshold 

4 3 2 5 4 3 2 

68% PE (m) 22.06 

 

23.05 25.27 24.78 23.83 24.53 24.81 

95% PE (m) 34.84 

 

39.93 45.70 42.42 41.95 44.27 45.23 

Analysed 

Samples (%) 

2.96 15.44 39.22 4.92 15.52 31.00 48.57 

 

Table 3 shows results of ExStudy-2 where both S1,n, and S2,n datasets were used. These datasets contain 32791 

training GMDTs of September 2014 and 3574 TestSams of May 2015. Here each of the selected TestSam is 

surround by more than ten training GMDTs within its three meter circular radius area to ensure the presence of 

sufficient number of training samples in its vicinity. It is found from Table 2, Table 3 and Table 4 that for MT-2 

all the methods have analyze maximum amount of TestSams.  
 

                             
 

 
Fig. 3. Comparison of PE results between ExStudy-1 and ExStudy-2 for MT-2. 

 

The bar plot of Fig. 3(a) and Fig. 3(b) shows 68th and 95th percentile PE values respectively corresponding to 

MT-2 of both studies using dataset S1,n. In every study AHC based RFFP has outperformed other positioning 

methods in both 68%-ile and 95%-ile of PE.  For MT-2 in ExStudy-1 AHC has shown an improvement of 

40.52% and 21.66% in 68%-ile and 95%-ile of PE respectively as compared to that of the GRFF method. For 

the same MT value and using S1,n in ExStudy-2 AHC improves positioning accuracy by 19.71% and 15.46% in 

68%-ile and 95%-ile of PE respectively over that of GRFF method. In ExStudy-2 AHC outperforms KNN by 

18.54% and 22.30% in 68%-ile and 95%-ile of PE respectively. However in both of the studies AHC has 

analyzed lower percentages of TestSams. From Table 3 it was found that when S2,n is used in ExStudy-2 

positioning performences of K-means and FCM does not differ significantly from that of the AHC method for 

MT values of 2, 3 and 4. It is also noticeable that corresponding to each of these MT values K-means and FCM 

have analyzed more TestSams than AHC based positioning.    

     In Table 4 gives the PEs of SOM based RFFP for ExStudy-2 using GMDT dataset S1,n and S2,n. It has given 

better positioning accuracies when compared to GRFF, KNN, K-means and FCM based RFFP but with 

significant reduction of analyzed TestSams. For MT-2 its 68%-ile and 95%-ile results closely resemble that of 

AHC results. For higher MT values the analyzed percentages of TestSams are even less.    

     The average computation time taken by the GRFF and cluster based methods are shown in Table 5; where n 

= 3574 is the total number of GMDT data samples; NGCU = 5478 is the total number of GCUs in GRFF method, 

d = 2 to 7 for data-set S1,n and d = 2 to 11 for data-set S2,n - is the data dimension of a GMDT sample; K = 2 to 6 

is the number of initial clusters; Kn = 100 is the number of neurons in SOM and T = 1 to 6 for data-set S1,n and T 

= 1 to 10 for data-set S2,n - is the number of iterations taken by an algorithm to converge. The computation time 

of all the positioning methods other than GRFF depend upon the T. We can find from Table 5 that only the 

GRFF needs training time - which is very long compared to the testing time of any method. It is also found that 

(a) 68th percentile PE values (meters)                               (b) 95th percentile PE values (meters) 
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UE position estimation time increases for all the methods when data-set S2,n was used as compared to that of S1,n 

- due to the increase in data dimension.    

 

Table 5 Execution time analysis of different methods in ExStudy-2 

Methods Time 

Complexity 

Average Elapsed Time (seconds) 

for S1,n 

 Average Elapsed Time (seconds) for 

S2,n 

GRFF Depends on n, 

NGCU, and d 

591.9551 (for Training) 

0.6062 (for Testing) 

1005.5040 (for Training) 

1.0145 (for Testing) 

KNN  O(n d) 0.9367  1.7078  

K-means  O (n K d T) 1.1492 1.9058  

AHC  O(n2 logn) 0.0788  0.1302  

FCM  Near O(n) 1.1003  1.7887  

SOM O(d + Kn) 5.94  12.24  

 

AHC has taken the least amount of time for UE positioning in both of the experimental Studies. But due to its 

high computational complexity, which is at least O (N2) it may not be a suitable method for a large-scale data-

set. Since K, d , and T are usually much less than N, the time complexity of K-means method is approximately 

linear; hence this algorithm scales well to large-scale data-sets [39], [40]. SOM based RFFP has taken much 

longer time to output position estimation as compared to rest of the methods. It is worth mentioning that 

depending upon the choice of the initial cluster size K both the performances and execution time of the methods 

might differ. Hence as a future work we intend to compare positioning accuracies of the methods with variations 

in K numbers. Also it worth comparing the results with less number of training samples in the vicinity of a test 

sample. 

 

5 Conclusion  
 

The conventional grid-based RF fingerprinting positioning heavily depends on training phase data-processing 

and also the output result varies upon the chosen grid-cell size. In this study we have used GMDT data for 

outdoor UE positioning in urban area using cluster-based fingerprint positioning that does not go through a 

training phase data processing. Proposed CRFF method can provide improved positioning accuracy with less 

computational cost over traditional GRFF and KNN methods. CRFF continues to perform better than GRFF and 

KNN even when facing recording device variation and environmental changes. For lower MT value SOM 

performs similar to AHC method but it fails to analyze considerable amount of test samples and also it takes the 

longest execution time for positioning. With data-set having eleven RSS K-means and FCM based CRFF 

improves positioning accuracies and analyzes 99% test data. From this study it is found that using GMDT data 

consisting of seven RSS values AHC based CRFF has given best positioning accuracy taking shortest time as 

compared to other methods. Hence using GMDT data cellular operators can utilize AHC based RF 

fingerprinting to provide fast and acceptable results for outdoor UE positioning.  
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