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Abstract

An experimental comparison of a large number of different
image descriptors for content-based image retrieval is pre-
sented. Many of the papers describing new techniques and
descriptors for content-based image retrieval describe their
newly proposed methods as most appropriate without giving
an in-depth comparison with all methods that were proposed
earlier. In this paper , we first give an overview of a large vari-
ety of features for content-based image retrieval and compare
them quantitatively on four different tasks: stock photo re-
trieval, personal photo collection retrieval, building retrieval,
and medical image retrieval. For the experiments, five dif-
ferent, publicly available image databases are used and the
retrieval performance of the features is analysed in detail.
This allows for a direct comparison of all features consid-
ered in this work and furthermore will allow a comparison of
newly proposed features to these in the future. Additionally,
the correlation of the features is analysed, which opens the
way for a simple and intuitive method to find an initial set of
suitable features for a new task. The article concludes with
recommendations which features perform well for what type
of data. Interestingly, the often used, but very simple, colour
histogram performs well in the comparison and thus can be
recommended as a simple baseline for many applications.

1 Introduction

Image retrieval in general and content-based image retrieval
(CBIR) in particular are well-known fields of research in in-
formation management in which a large number of methods
have been proposed and investigated but in which still no
satisfying general solutions exist. The need for adequate so-
lutions is growing due to the increasing amount of digitally
produced images in areas like journalism, medicine, and pri-
vate life, requiring new ways of accessing images. For exam-

ple, medical doctors have to access large amounts of images
daily [1], home-users often have image databases of thousands
of images [2], and journalists also need to search for images
by various criteria [3, 4]. In the past, several CBIR systems
have been proposed and all these systems have one thing in
common: images are represented by numeric values, called
features or descriptors, that are meant to represent the prop-
erties of the images to allow meaningful retrieval for the user.

Only recently have some standard benchmark databases
and evaluation campaigns been created which allow for a
quantitative comparison of CBIR systems. These bench-
marks allow for the comparison of image retrieval systems
under different aspects: usability and user interfaces, combi-
nation with text retrieval, or overall performance of a system.
However, to our knowledge, no quantitative comparison of the
building blocks of the systems, the features that are used to
compare images, has been presented so far. In [5] a method
for comparing image retrieval systems was proposed relying
on the Corel database, which has restricted copyrights, is no
longer commercially available today, and can therefore not be
used for experiments that are meant to be a basis for other
comparisons.

Another aspect of evaluating CBIR systems are the re-
quirements of the users. In [3] and [4] studies of user needs
in searching image archives are presented and the outcome
in both studies is that CBIR alone is very unlikely to ful-
fill the needs but that semantic information obtained from
meta data and textual information is an important additional
knowledge source. Although today the semantic analysis and
understanding of images is much further developed due to the
recent achievements in object detection and recognition, still
most of the requirements specified are not satisfiable fully
automatically. Therefore, in this paper we compare the per-
formance of a large variety of visual descriptors. These can
then later be combined with the outcome of textual informa-
tion retrieval as described e.g. in [6].

1



The main question we address in this paper is: Which fea-
tures are suitable for which task in image retrieval? This
question is thoroughly investigated by examining the perfor-
mance of a wide variety of different visual descriptors for four
different types of CBIR tasks.

The question of which features perform how well is closely
related to the question which features can be combined to
obtain good results in a particular task. Although we do
not directly address this question here, the results from this
paper lead to a new and intuitive method to choose an ap-
propriate combination of features based on the correlation of
the individual features.

For the evaluation of the features we use five different pub-
licly available databases which are a good starting point to
evaluate the performance of new image descriptors.

Although today various initiatives for evaluation of CBIR
systems have evolved, only few of them resulted in evaluation
campaigns with participants and results: Benchathlon1 was
started in 2001 and located at the SPIE Electronic Imaging
conference but has become smaller over time. TRECVID2

is an initiative by the TREC (Text Retrieval Conference)
on video retrieval in which video retrieval systems are com-
pared. ImageCLEF 3 is part of the Cross-Language Evalua-
tion Framework (CLEF) and started in 2003 with only one
task aiming at a combination of multi-lingual information re-
trieval with CBIR. In 2004, it comprised three tasks, one of
them focused on visual queries and in 2005 and 2006 there
were four tasks, one and two of them purely visual, respec-
tively. We can observe that evaluation in the field of CBIR is
at a far earlier stage than it is in textual information retrieval
(e.g. Text REtrieval Conference, TREC) or in speech recog-
nition (e.g. Hub4-DARPA evaluation). One reason for this
is likely to be the smaller commercial impact that (content-
based) image retrieval has had in the past. However, with the
increasing amount of visual data available in various form,
this is likely to change in the future.

The main contributions of this paper are answers to the
questions above, namely

• an extensive overview of features proposed for CBIR, in-
cluding features that were proposed in the early days of
CBIR and techniques that were proposed only recently
in the object recognition and image understanding liter-
ature as well as a subset of features from the MPEG7
standard,

• a quantitative analysis of the performance of these fea-
tures for various CBIR tasks (in particular: stock photo
retrieval, personal photo retrieval, building/touristic im-
age retrieval, and medical image retrieval)

1http://www.benchathlon.net/
2http://www-nlpir.nist.gov/projects/trecvid/
3http://www.imageclef.org

• pointing out a set of five databases from four different
domains that can be used for benchmarking CBIR sys-
tems.

Note that we do not focus on the combination of features
nor on the use of user feedback for content-based image re-
trieval in this paper; several other authors propose and eval-
uate approaches to these important issues [7, 8, 9, 10, 11]. In-
stead, we mainly investigate the performance of single fea-
tures for different tasks.

1.1 State of the Art in Content-based Image
Retrieval

This section gives an overview on literature on CBIR. We
mainly focus on different descriptors and image representa-
tions. More general overviews on CBIR are given in [12,
13, 14]. Two recent reviews of CBIR techniques are given
in [15,16].

In CBIR, there are, roughly speaking, two different main
approaches: a discrete approach and a continuous ap-
proach [17]. (1) The discrete approach is inspired by tex-
tual information retrieval and uses techniques like inverted
files and text retrieval metrics. This approach requires all
features to be mapped to binary features; the presence of a
certain image feature is treated like the presence of a word
in a text document. (2) The continuous approach is similar
to nearest neighbor classification. Each image is represented
by a feature vector and these features are compared using
various distance measures. The images with lowest distances
are ranked highest in the retrieval process. A first, though
not exhaustive, comparison of these two models is presented
in [17].

Among the first systems that were available were the
QBIC system from IBM [18] and the Photobook system from
MIT [19]. QBIC uses color histograms, a moment based
shape feature, and a texture descriptor. Photobook uses ap-
pearance features, texture features, and 2D shape features.
Another well known system is Blobworld [20], developed at
UC Berkeley. In Blobworld, images are represented by regions
that are found in an Expectation-Maximization-like (EM)
segmentation process. In these systems, images are retrieved
in a nearest-neighbor-like manner, following the continuous
approach to CBIR. Other systems following this approach in-
clude SIMBA [21], CIRES [22], SIMPLIcity [23], IRMA [24],
and our own system FIRE [25, 26]. The Moving Picture Ex-
perts Group (MPEG) defines a standard for content-based
access to multimedia data in their MPEG-7 standard. In
this standard, a set of descriptors for images is defined. A
reference implementation for these descriptors is given in the
XM Software4. A system that uses MPEG-7 features in com-
bination with semantic web ontologies is presented in [27].

4http://www.lis.ei.tum.de/research/bv/topics/mmdb/e mpeg7.

html
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In [28] a method starting from low-level features and creat-
ing a semantic representation of the images is presented and
in [29] an approach to consistently fuse the efforts in various
fields of multimedia information retrieval is presented.

In [30], the VIPER system is presented which follows the
discrete approach. VIPER is now publicly available as the
GNU Image Finding Tool (GIFT) and several enhancements
have been implemented during the last years. An advan-
tage of the discrete approach is that methods from textual
information retrieval can easily be transferred as e.g. user
interaction and storage handling. Nonetheless, most im-
age retrieval systems follow the continuous approach often
using some optimization, for example pre-filtering and pre-
classification [12, 23, 31], to achieve better runtime perfor-
mance, e.g. [18, 19,20,21].

We can clearly observe that many different image descrip-
tion features have been developed. However, only few works
have quantitatively compared different features. Interesting
insights can also be gained from the outcomes of the Image-
CLEF image retrieval evaluations [32, 33] in which different
systems are compared on the same task. The comparison
is not easy because all groups use different retrieval systems
and text-based information retrieval is an important part of
these evaluations. Due to the lack of standard tasks, in many
papers on image retrieval, new benchmark sets are defined to
allow for quantitative comparison of the proposed methods
to a baseline system. A problem with this approach is that
it is simple to create a benchmark for which you can show
improved results [34].

Recently, local image descriptors are getting more atten-
tion within the computer vision community. The underly-
ing idea is that objects in images consist of parts that can
be modelled with varying degrees of independence. These
approaches are successfully used for object recognition and
detection [35, 36, 37, 38, 39, 40] and CBIR [26, 41, 42, 43]. For
the representation of local image parts, SIFT features [44]
and raw image patches are commonly used and a bag-of-
features approach, similar to the bag-of-words approach in
natural language processing, is commonly taken. The fea-
tures described in Section 3.7 also follow this approach and
are strongly related to the modern approaches in object recog-
nition. In contrast to the methods described above, the image
is not modelled as a whole but rather image parts are mod-
elled individually. Most approaches found in the literature
on part-based object recognition learn (often complicated)
models from a large set of training data. This approach is
impractical for CBIR applications since it would require an
enormous amount of training data on the one hand and would
lead to tremendous computing times to create these models
on the other hand. However, some of these approaches are
applicable for limited domain retrieval, e.g. on the IRMA
database (cf. Section 5.3) [45].

Overview. The remainder of this paper is structured as
follows. The next section describes the retrieval metric used
to rank images given a feature and a distance measure and
the performance measures used to compare different settings.
Section 3 gives an overview of 19 different image descriptors
and distance measures which are used for the experiments.
Section 4 presents a method to analyse the correlation of dif-
ferent image descriptor/distance combinations. In Section 5,
five different benchmark databases are described that are
used for the experiments presented in Section 6. The ex-
perimental section is subdivided into three parts: Section 6.1
directly compares the performance of the different methods
for the different tasks, Section 6.2 describes the results of the
correlation analysis, and Section 6.3 analyses the connection
between the error rate and the mean average precision. The
paper concludes with answers to the questions posed above.

2 Retrieval Metric

The CBIR framework used to conduct the experiments de-
scribed here follows the continuous approach: images are rep-
resented by vectors that are compared using distance mea-
sures. For the experiments we use our CBIR system FIRE5.
FIRE was designed as a research system with extensibility
and flexibility in mind. For the evaluation of features, only
one feature and one query image is used at a time, as de-
scribed in the following.

Retrieval Metric. Let the database {x1, . . . xn, . . . , xN}
be a set of images represented by features. To retrieve im-
ages similar to a query image q, each database image xn is
compared with the query image using an appropriate dis-
tance function d(q, xn). Then, the database images are sorted
according to the distances such that d(q, xni) ≤ d(q, xni+1)
holds for each pair of images xni and xni+1 in the sequence
(xn1 . . . , xni , . . . xnN

). If a combination of different features
is used, the distances are normalized to be in the same value
range and then a linear combination of the distances is used
to create the ranking.

To evaluate CBIR, several performance evaluation mea-
sures have been proposed [46] based on the precision P and
the recall R:

P =
Number of relevant images retrieved

Total number of images retrieved

R =
Number of relevant images retrieved

Total number of relevant images

Precision and recall values are usually represented in a
precision-recall-graph R → P (R) summarizing (R,P (R))

5freely available under the terms of the GNU General Public
Licencse at http://www-i6.informatik.rwth-aachen.de/∼deselaers/
fire.html.
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pairs for varying numbers of retrieved images. The most
common way to summarize this graph into one value is the
mean average precision that is also used e.g. in the TREC
and CLEF evaluations. The average precision AP for a sin-
gle query q is the mean over the precision scores after each
retrieved relevant item:

AP (q) =
1

NR

NR∑
n=1

Pq(Rn),

where Rn is the recall after the nth relevant image was re-
trieved. NR is the total number of relevant documents for
the query. The mean average precision MAP is the mean of
the average precision scores over all queries:

MAP =
1
|Q|

∑
q∈Q

AP (q),

where Q is the set of queries q.
An advantage of the mean average precision is that it con-

tains both precision and recall oriented aspects and is sensi-
tive to the entire ranking.

We also indicate the classification error rate ER for all ex-
periments. To do so we consider only the most similar image
according to the applied distance function. We consider a
query image to be classified correctly, if the first retrieved
image is relevant. Otherwise the query is misclassified:

ER =
1
|Q|

∑
q∈Q

{
0 if the most similar image is relevant/from the correct class
1 otherwise

This is in particular interesting if the database for retrieval
consists of images labelled with classes, which is the case for
some of the databases considered in this paper. For databases
without defined classes but with selected query images and
corresponding relevant images, the classes to be distinguished
are “relevant” and “irrelevant” only.

This is in accordance with precision at document X being
used as an additional performance measure in many infor-
mation retrieval evaluations. The ER used here is equal to
1− P (1), where P (1) is the precision after one document re-
trieved. In [47] it was experimentally shown that the error
rate and P (50), the precision after 50 documents, are corre-
lated with a coefficient of 0.96 and thus they essentially de-
scribe the same property. The precision oriented evaluation
is interesting, because most search engines, both for images
and text, return between 10 and 50 results, given a query.

Using the ER, the image retrieval system can be viewed as
a nearest neighbor classifier using the same features and the
same distance function as the image retrieval system. The
decision rule of this classifier can be written in the form

q → r(q) = arg min
k=1,...,K

{ min
n=1,...,Nk

d(q, xnk)}.

The query image q is predicted to be from the same class as
the database image that has the smallest distance to it. Here,
xnk denotes the n-th image of class k.

3 Features for CBIR

In this section we give an overview of the features tested, with
the intention to include as many features as possible. Obvi-
ously we cannot cover all features that have been proposed
in the literature. For example, we have left out the Blob-
world features [20] because for comparing images based on
these features, user interaction to select the relevant regions
in the query image is required. Furthermore, a variety of tex-
ture representations have not been included and we have not
investigated different color spaces.

However, we have tried to make the selection of fea-
tures as representative and at the state-of-the-art as possi-
ble. Roughly speaking, the features can be grouped into the
following types: (a) color representation, (b) texture repre-
sentation, (c) local features, and (d) shape representation6.
The features that are presented in the following are grouped
according to these four categories in Table 1. Table 1 also
gives the timing information on feature extraction and re-
trieval time for a database consisting of 10 images7.

The distance function used to compare the features rep-
resenting an image obviously also has a big influence on the
performance of the system. Therefore, we refer to the used
distance functions for each feature in the particular sections.
We have chosen distance functions that are known to work
well for the features used as the discussion of their influence
is beyond the scope of this paper. Different comparison mea-
sures for histograms are presented e.g. in [49, 50] and dis-
similarity metrics for direct image comparison are presented
in [51].

3.1 Appearance-based Image Features

The most straight-forward approach is to directly use the
pixel values of the images as features: the images are scaled
to a common size and compared using the Euclidean distance.
In this work, we have used a 32× 32 down-sampled represen-
tation of the images and these have been compared using the
Euclidean distance. It has been observed that for classifica-

6Note that no features that fully cover the shapes in the images
are included since therefore an algorithm segmenting the images into
meaningful regions is required, but since fully-automatic segmentation
for general images is an unsolved problem, it is not covered here. The
features that we mark to represent shape only represent shape in a local
(for the SIFT features) and very rough global context (for appearance-
based image features). There are however, overview papers on the shape
features defined in MPEG7 which use databases consisting of segmented
images for benchmarks [48].

7These experiments have been carried out on a 1.8GHz machine with
our standard C++ implementation of the software. The SIFT fea-
ture extraction was done with the software from Gyuri Dorko (http://
lear.inrialpes.fr/people/dorko/downloads.html), the MPEG7 ex-
periments were performed with the MPEG7 XM reference implemen-
tation (http://www.lis.ei.tum.de/research/bv/topics/mmdb/mpeg7.
html), and the downscaling of images was performed using the Im-
ageMagick library (http://www.imagemagick.org/). The timings in-
clude the time to load all data and initialize the system.
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Table 1: Grouping of the features into different types. (a) color representation, (b) texture representation, (c) local features,
(d) shape representation. The table also gives the time to extract the features from 10 images and to query 10 images in a
10 image database to give an impression of the computational costs of the different features (experiments were performed
on a 1.8GHz machine).

Feature name Section comp. measure type extr.[s] retr.[s]
Appearance-based Image Features

32×32 image 3.1 Euclidean abcd 0.25 0.19
X×32 image 3.1 IDM abcd 0.25 9.72

Color Histograms 3.2 JSD a 0.77 0.16
Tamura Features 3.3 JSD b 14.24 0.13
Global Texture Descriptor 3.4 Euclidean b 3.51 0.16
Gabor histogram 3.5 JSD b 8.01 0.12
Gabor vector 3.5 Euclidean b 8.68 0.17
Invariant Feature Histograms

w. monomial kernel 3.6 JSD ab 28.93 0.16
w. relational kernel 3.6 JSD ab 18.23 0.14

LF Patches
global search 3.7 - ac 4.69 7.13
histograms 3.7 JSD ac 4.69+5.17 0.27
signatures 3.7 EMD ac 4.69+3.37 0.55

LF SIFT
global search 3.7 - cd 11.91 9.23
histograms 3.7 JSD cd 11.91+6.23 0.27
signatures 3.7 EMD cd 11.91+4.50 1.03

MPEG 7: scalable color 3.8.1 MPEG7-internal a 0.48 0.42
MPEG 7: color layout 3.8.2 MPEG7-internal ad 0.20 0.33
MPEG 7: edge histogram 3.8.3 MPEG7-internal b 0.16 0.43

tion and retrieval of medical radiographs, this method serves
as a reasonable baseline [51].

In [51] different methods were proposed to directly compare
images accounting for local deformations. The proposed im-
age distortion model (IDM) is shown to be a very effective
means of comparing images with reasonable computing time.
IDM clearly outperforms the Euclidean distance for optical
character recogniton and medical radiographs. The Image
Distortion Model is a non-linear deformation model, it was
also successfully used to compare general photographs [52]
and for sign language and gesture recognition [53]. In this
work it is used as a second comparison measure to compare
images directly. Therefore the images are scaled to have a
common width of 32 pixels while keeping the aspect ratio
constant, i.e. the images may be of different heights.

3.2 Color Histograms

Color histograms are among the most basic approaches and
widely used in image retrieval [12,18,52,49,54]. To show per-
formance improvements in image retrieval systems, systems
using only color histograms are often used as a baseline. The
color space is partitioned and for each partition the pixels
with a color within its range are counted, resulting in a rep-

resentation of the relative frequencies of the occurring colors.
We use the RGB color space for the histograms. We observed
only minor differences with other color spaces which was also
observed in [55]. In accordance with [49], we use the Jeffrey
divergence or Jensen-Shannon divergence (JSD) to compare
histograms:

dJSD (H,H ′) =
M∑

m=1

Hm log
2Hm

Hm + H ′
m

+ H ′
m log

2H ′
m

H ′
m + Hm

,

where H and H ′ are the histograms to be compared and Hm

is the mth bin of H.

3.3 Tamura Features

In [56] the authors propose six texture features corresponding
to human visual perception: coarseness, contrast, direction-
ality, line-likeness, regularity, and roughness. From experi-
ments testing the significance of these features with respect
to human perception, it was concluded that the first three fea-
tures are very important. Thus, in our experiments we use
coarseness, contrast, and directionality to create a histogram
describing the texture [52] and compare these histograms us-
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ing the Jeffrey divergence [49]. In the QBIC system [18] his-
tograms of these features are used as well.

3.4 Global Texture Descriptor

In [52] a texture feature consisting of several parts is de-
scribed: Fractal dimension measures the roughness of a sur-
face. The fractal dimension is calculated using the reticular
cell counting method [57]. Coarseness characterizes the grain
size of an image. It is calculated depending on the variance
of the image. Entropy of pixel values is used as a measure
of disorderedness in an image. The spatial gray-level differ-
ence statistics describe the brightness relationship of pixels
within neighborhoods. It is also known as co-occurrence ma-
trix analysis [58]. The circular Moran autocorrelation func-
tion measures the roughness of the texture. For the calcu-
lation a set of autocorrelation functions is used [59]. From
these, we obtain a 43 dimensional vector consisting of one
value for the fractal dimension, one value for the coarseness,
one value for the entropy and 32 values for the difference
statistics, and 8 values for the circular Moran autocorrela-
tion function. This descriptor has been successfully used for
medical images in [24].

3.5 Gabor Features

Gabor features have been widely used for Texture analy-
sis [31, 30]. Here we use two different descriptors derived
from Gabor features:

• Mean and standard deviation: Gabor features are ex-
tracted at different scales and directions from the im-
ages and the mean and standard deviation of the filter
responses is calculated. We extract Gabor features in
five different orientations and five different scales lead-
ing to a 50 dimensional vector.

• A bank of 12 different circularly symmetric Gabor filters
is applied to the image, the energy for each filter on the
bank is quantized into 10 bands and a histogram of the
mean filter outputs over image regions is computed to
give a global measure of the texture characteristics of
the image [30]. These histograms are compared using
the JSD.

3.6 Invariant Feature Histograms

A feature is called invariant with respect to certain transfor-
mations if it does not change when these transformations are
applied to the image. The transformations considered here
are translation, rotation, and scaling. In this work, invariant
feature histograms as presented in [60] are used. These fea-
tures are based on the idea of constructing invariant features
by integration, i.e. a certain feature function is integrated
over the set of all considered transformations. The feature

functions we have considered are monomial and relational
functions [21] over the pixel intensities. Instead of summing
over translation and rotation, we only sum over rotation and
create a histogram over translation. This histogram is still
invariant with respect to rotation and translation. The re-
sulting histograms are compared using the JSD. Previous ex-
periments have shown that the characteristics of invariant
feature histograms and color histograms are very similar and
that invariant feature histograms can sometimes outperform
color histograms [26].

3.7 Local Image Descriptors

Image patches, i.e. small subimages of images, or features
derived thereof currently are a very promising approach for
object recognition, e.g. [40, 61, 62]. Obviously, object recog-
nition and CBIR are closely related fields [63, 64] and for
some clearly defined retrieval tasks, object recognition meth-
ods might actually be the only possible solution: e.g. look-
ing for all images showing a certain person, clearly a face
detection and recognition system would deliver the best re-
sults [19,65].

We consider two different types of local image descriptors
or local features (LF): a) patches that are extracted from
the images at salient points and dimensionality reduced us-
ing PCA transformation [40] and b) SIFT descriptors [44]
extracted at Harris interest points [35, chapters 3, 4].

We employ three methods to incorporate local features into
our image retrieval system. The methods are evaluated for
both types of local features described above:

LF histograms. The first method follows [40]: local fea-
tures are extracted from all database images and jointly clus-
tered to form 2048 clusters. Then for each of the local fea-
tures all information except the identifier of the most similar
cluster center is discarded and for each image a histogram of
the occurring patch-cluster identifiers is created, resulting in
a 2048 dimensional histogram per image. These histograms
are then used as features in the retrieval process and are com-
pared using the Jeffrey divergence. This method was shown
to produce good performance in object recognition and detec-
tion tasks [40]. Note that the timing information in Table 1
does not give the time to create the cluster model, since this
is only done once for a database and can be computed offline.

LF signatures. The second method is derived from the
method proposed in [66]. Local features are extracted from
each database image and clustered for each image separately
to form 32 clusters per image. Then for each image, the
parameters of the clusters, i.e. the mean and the variance,
are saved and the according cluster-identifier histogram of
the extracted features is created. These “local feature signa-
tures” are then used as features in the retrieval process and
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are compared using the Earth Mover’s Distance (EMD) [67].
This method was shown to produce good performance in ob-
ject recognition and detection tasks [66].

LF global search. The third method is based on global
patch search and derived from the method presented in [62].
Here, local features are extracted from all database images
and stored in a KD tree to allow for efficient nearest neighbor
searching. Given a query image, we extract local features
from the image in the same way as we did for the database
images and search for the k nearest neighbors for each of
the query-patches in the set of database-patches. Then, we
count how many patches from each of the database image
were found for the query patches and the database images
with the highest number of patch-hits are returned. Note
that the timing information in Table 1 does not include the
time to create the KD tree, since this is only done once for a
database and can be computed offline.

3.8 MPEG-7 Features

The Moving Picture Experts Group (MPEG) has defined sev-
eral visual descriptors in their standard referred to as MPEG-
7 standard8. An overview of these features can be found
in [68, 69, 70, 71]. The MPEG initiative focuses strongly on
features that are computationally inexpensive to obtain and
to compare and also strongly optimizes the features with re-
spect to the required memory for storage.

Coordinated by the MPEG, a reference implementation of
this standard has been developed9. This reference implemen-
tation was used in our framework for experiments with these
features. Unfortunately, the software is not yet in a fully
functional state and thus only three MPEG7 features could
be used in the experiments. For each of these features, we
use the comparison measures proposed by the MPEG stan-
dard and implemented in the reference implementation. The
feature types are briefly described in the following:

3.8.1 MPEG 7: Scalable Color Descriptor

The scalable color descriptor is a color histogram in the HSV
color space that is encoded by a Haar transform. Its binary
representation is scalable in terms of bin numbers and bit
representation accuracy over a broad range of data rates. Re-
trieval accuracy increases with the number of bits used in the
representation. We use the default setting of 64 coefficients.

3.8.2 MPEG 7: Color Layout Descriptor

This descriptor effectively represents the spatial distribution
of the color of visual signals in a very compact form. This

8http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.

htm
9http://www.lis.e-technik.tu-muenchen.de/research/bv/

topics/mmdb/e mpeg7.html

compactness allows visual signal matching functionality with
high retrieval efficiency at very small computational costs. It
allows for query-by-sketch queries because the descriptor cap-
tures the layout information of color features. This is a clear
advantage over other color descriptors. This approach closely
resembles the use of very small thumbnails of the images with
a quantization of the colors used.

3.8.3 MPEG 7: Edge Histogram

The edge histogram descriptor represents the spatial distribu-
tion of five types of edges, namely four directional edges and
one non-directional edge. According to the MPEG-7 stan-
dard, the image retrieval performance can be significantly
improved if the edge histogram descriptor is combined with
other descriptors such as the color histogram descriptor. The
descriptor is scale invariant and supports rotation invariant
and rotation sensitive matching operations.

4 Correlation Analysis of Features
for CBIR

After discussing various features, now let us assume that a set
of features is given, some of which account for color, others ac-
counting for texture, and maybe others accounting for shape.
A very interesting question then is, how features that can be
used in combination can be chosen. Automatic methods for
feature selection have e.g. been proposed in [72, 73]. These
automatic methods, however do not directly explain why fea-
tures are chosen, are difficult to manipulate from a user’s
perspective, and normally require labelled training data.

The method proposed here does not require training data
but only analyses the correlations between the features them-
selves, and instead of automatically selecting a set of features
it provides the user with information helping to select an ap-
propriate set of features.

To analyze the correlation between different features,
we analyze the correlation between the distances d(q, X)
obtained for each feature of each of the images X
from the database given a query q. For each pair
of query image q and database image X we create a
vector (d1(q, X), d2(q, X), . . . dm(q, X), . . . dM (q, X)) where
dm(q, X) is the distance of the query image q to the database
image X for the mth feature. Then we calculate the corre-
lation between the dm over all q ∈ {q1, . . . , ql, . . . qL} and all
X ∈ {X1, . . . , Xn, . . . , XN}.

The M × M covariance matrix Σ of the dm is calculated
over all N database images and all L query images as:

Σij =
1

NL

N∑
n=1

L∑
l=1

(di(ql, Xn)− µi) · (dj(ql, Xn)− µj) (1)

with µi = 1
NL

∑N
n=1

∑L
l=1 di(ql, Xn).
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Given the covariance matrix Σ, we calculate the correlation
matrix R as Rij = Σij√

ΣiiΣjj

. The entries of this correlation

matrix can be interpreted as similarities of different features.
A high value Rij means a high similarity between features i
and j. This similarity matrix can then be analyzed to find
out which features have similar properties and which do not.
One way to do this is to visualize it using multi-dimensional
scaling [74, p. 84ff]. Multi-dimensional scaling (MDS) seeks
a representation of data points in a lower dimensional space
while preserving the distances between data points as well as
possible. To visualize this data by multi-dimensional scaling,
we convert the similarity matrix R into a dissimilarity matrix
D by setting Dij = 1− |Rij |. For visualization purposes, we
choose a two-dimensional space for MDS.

5 Benchmark databases for CBIR

To cover a wide range of different applications in which CBIR
is used, we propose benchmark databases from different do-
mains. In the ImageCLEF evaluations large image retrieval
benchmark databases have been collected. However, these
are not suitable for the comparison of image features as for
most of the tasks textual information is supplied and neces-
sary for an appropriate solution of the task. Table 2 gives an
overview of the databases used in the evaluations. Although
the databases presented here are small in comparison to other
CBIR tasks, they represent a wide variety of tasks and allow
for a meaningful comparison of feature performances.

The WANG database (Section 5.1), as a subset from the
Corel stock photo collection, can be considered similar to
stock photo searches. The UW database (Section 5.2) and
the UCID database (Section 5.5) mainly consist of personal
images and represent the home user domain. The ZuBud
database (Section 5.4) and the IRMA database (Section 5.3)
are limited domain tasks for touristic/building retrieval and
medical applications, respectively.

5.1 WANG database

The WANG database is a subset of 1,000 images of the Corel
stock photo database which have been manually selected and
which form 10 classes of 100 images each. One example of
each class is shown in Figure 1. The WANG database can
be considered similar to common stock photo retrieval tasks
with several images from each category and a potential user
having an image from a particular category and looking for
similar images which have e.g. cheaper royalties or which have
not been used by other media. The 10 classes are used for
relevance estimation: given a query image, it is assumed that
the user is searching for images from the same class, and
therefore the remaining 99 images from the same class are
considered relevant and the images from all other classes are
considered irrelevant.

africa beach monuments buses

food dinosaurs elephants

flowers horses mountains

Figure 1: One example image from each of the 10 classes of
the WANG database together with their class labels.

5.2 UW database

The database created at the University of Washington con-
sists of a roughly categorized collection of 1,109 images.
These images are partly annotated using keywords. The re-
maining images were annotated by our group to allow the
annotation to be used for relevance estimation; our annota-
tions are publicly available10.

The images are of various sizes and mainly include vaca-
tion pictures from various locations. There are 18 categories,
for example “spring flowers”, “Barcelona”, and “Iran”. Some
example images with annotations are shown in Figure 2. The
complete annotation consists of 6,383 words with a vocabu-
lary of 352 unique words. On the average, each image has
about 6 words of annotation. The maximum number of key-
words per image is 22 and the minimum is 1. The database
is freely available11. The relevance assessment for the exper-
iments with this database were performed using the anno-
tation: an image is considered to be relevant w.r.t. a given
query image if the two images have a common keyword in the
annotation. On the average, 59.3 relevant images correspond
to each image. The keywords are rather general; thus for
example images showing sky are relevant w.r.t. each other,
which makes it quite easy to find relevant images (high preci-
sion is likely easy) but it can be extremely difficult to obtain a
high recall since some images showing sky might have hardly

10http://www-i6.informatik.rwth-aachen.de/∼deselaers/uwdb/
index.html

11http://www.cs.washington.edu/research/imagedatabase/

groundtruth/
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Table 2: Summary of the databases used for the evaluation with database name, number of images in the database, number
of query images, average number of relevant images per query, and a description how the queries are evaluated.

database images queries avg. rel query mode
WANG 1,000 1,000 99.0 leaving-one-out
UW 1,109 1,109 59.3 leaving-one-out
IRMA 10000 10,000 1,000 520.2 test & database images are disjoint
ZuBuD 1,005 105 5.0 test & database images are disjoint
UCID 1,338 262 3.5 leaving-one-out

buildings clouds

mountain people sand

sky

bench, car, house,

lantern, trees,

window

trees, bushes,

overcast sky,

building, post

buildings, fountain,

grass, lantern, sky

overcast sky, house,

car, sidewalk, struct,

bushes, flowers,

people

mosque, tiles, people,

sky, car

partially cloudy sky,

hills, trees, grasses,

ground, houses

Husky Stadium,

north stands, people,

football, field,...

sailboats, ice, water,

buildings

Figure 2: Examples from the UW database with annotation.

any visual similarity with a given query.
This task can be considered a personal photo retrieval task,

e.g. a user with a collection of personal vacation pictures is
looking for images from the same vacation, or showing the
same type of building.

5.3 IRMA-10000 database

The IRMA database consists of 10,000 fully annotated radio-
graphs taken randomly from medical routine at the RWTH
Aachen University Hospital. The images are split into 9,000
training and 1,000 test images. The images are subdivided
into 57 classes. The IRMA database was used in the Im-
ageCLEF 2005 image retrieval evaluation for the automatic

annotation task. For CBIR, the relevances are defined by the
classes, given a query image from a certain class, all database
images from the same class are considered relevant. Example
images along with their class numbers and textual descrip-
tions of the classes are given in Figure 3. This task is a
medical image retrieval task and is in practical use at the
Department for Diagnostic Radiology of the RWTH Aachen
University Hospital.

As all images from this database are gray value images,
we evaluate neither the color histograms nor the MPEG7
scalable color descriptor since they only account for color
information.

5.4 ZuBuD database

The “Zurich Buildings Database for Image Based Recogni-
tion”(ZuBuD) is a database which has been created by the
Swiss Federal Institute of Technology in Zurich and is de-
scribed in more detail in [75,76].

The database consists of two parts, a training part of 1,005
images of 201 buildings, 5 of each building and a query part
of 115 images. Each of the query images contains one of the
buildings from the main part of the database. The pictures
of each building are taken from different viewpoints and some
of them are also taken under different weather conditions and
with two different cameras. Given a query image, only images
showing exactly the same building are considered relevant.
To give a more precise idea of this database, some example
images are shown in Figure 4.

This database can be considered as an example for a mo-
bile travel guide task, which attempts to identify buildings
in pictures taken with a mobile phone camera and then ob-
tains certain information about the building [75]. The ZuBud
database is freely available12.

5.5 UCID database

The UCID database13 was created as a benchmark database
for CBIR and image compression applications [77]. In [78]
this database was used to measure the performance of a CBIR
system using compressed domain features. This database is

12http://www.vision.ee.ethz.ch/ZuBuD
13http://vision.doc.ntu.ac.uk/datasets/UCID/ucid.html
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02

plain radiography
coronal
facial cranium
musculosceletal s.

20

plain radiography
coronal
lower leg
musculosceletal s.

21

plain radiography
coronal
knee
musculosceletal s.

31

plain radiography
sagittal
handforearm
musculosceletal s.

48

plain radiography
other orientation
right breast
reproductive s.

49

plain radiography
other orientation
left breast
reproductive s.

50

plain radiography
other orientation
foot
musculosceletal s.

56

fluoroscopy
coronal
upper leg
cardiovascular s.

57

angiography
coronal
pelvis
cardiovascular s.

Figure 3: Example images of the IRMA 10000 database along with their class and annotation

(a) (b)

Figure 4: a) A query image and the 5 images from the
same building in the ZuBuD-database b) 6 images of different
buildings in the ZuBuD-database.

Figure 5: Example images from the UCID database

similar to the UW database as it consists of vacation images
and thus poses a similar task.

For 264 images, manual relevance assessments among all
database images were created, allowing for performance eval-
uation. The images that are judged to be relevant are im-
ages which are very clearly relevant, e.g. for an image show-
ing a particular person, images showing the same person are
searched and for an image showing a football game, images
showing football games are considered to be relevant. The
used relevance assumption makes the task easy on one hand,
because relevant images are very likely quite similar, but on
the other hand, it makes the task difficult, because there are
likely images in the database which have a high visual sim-
ilarity but which are not considered relevant. Thus, it can
be difficult to have high precision results using the given rel-
evance assessment, but since only few images are considered
relevant, high recall values might be rather easy to obtain.
Example images are given in Figure 5.

6 Evaluation of the Features Consid-
ered

In this section we report the results of the experimental eval-
uation of the features. To evaluate all features on the given
databases, we extracted the features from the images and ex-
ecuted experiments to test the particular features. For all
experiments, we report the mean average precision and the
classification error rate. The connection between the clas-
sification error rate and mean average precision shows the
strong relation between CBIR and classification. Both per-
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formance measures have advantages. The error rate is very
precision oriented and thus it is best if relevant images are
retrieved early. On the contrary, the mean average precision
accounts for the average performance over the complete PR
graph. Furthermore, we calculated the distance vectors men-
tioned in Section 4 for each of the queries performed to obtain
a global correlation analysis of all features.

6.1 Performance Evaluation of Features

The results from the single feature experiments are given in
Figures 6 and 7 and in Tables 3 and 4. The results are sorted
by the average of the classification error rates. The results
from the correlation analysis are given in Figure 9. Note that
the features ‘color histogram’ and ‘MPEG7 scalable color’
were not evaluated for the IRMA database because pure color
descriptors are not suitable for this gray-scale database.

It can clearly be seen that different features perform dif-
ferently on the databases. Grouping the features by per-
formance results in three groups, one group of five features
clearly outperforms the other features (average error rate <
30%, average mean average precision ≈ 50%). A second
group has average error rates of approximately 40% (respec-
tively average mean average precision 40%) and a last group
performs clearly worse.

The top group is led by the color histogram which performs
very well for all color tasks and has not been evaluated on the
IRMA data. When all databases are considered, the global
feature search (cf. Section 3.7) of SIFT features extracted at
Harris points [35, chapters 3, 4] performs best on the aver-
age. This good performance is probably partly due to the
big success on the ZuBuD database, where features of similar
type were observed to perform exceedingly well [79]. They
also perform well on the UCID database, where relevant im-
ages, in contrast to the UW task, are very close neighbours.
The possible high dissimilarity between relevant images in
the UW database, thus explains the bad performance there.
However, the patch histograms outperform the SIFT features
on all other tasks as they include color information which ob-
viously is very important for most of the tasks. They also
obtain a good performance for the IRMA data. It can be
observed that the error rates for the UCID database are very
high in comparison to the other databases, so the UCID task
can be considered to be harder than e.g. the UW task.

A similar result to the one obtained using color histogram
is obtained by the invariant feature histogram with monomial
kernel. This is not surprising, as it is very similar to a color
histogram, except that it also partly accounts for local tex-
ture. It can be observed that the performance for the color
databases is nearly identical to the color histogram. The rel-
atively bad ranking of these features in the tables is due to
the bad performance on the IRMA task. Leaving out the
IRMA task for this feature, it would be ranked second in the
entire ranking. The high similarity of color histograms and

invariant feature histograms with monomial kernel can also
directly be observed in Figure 9 where it can be seen that
color histograms (point 1) and invariant feature histograms
with monomial kernel (point 11) have very similar properties.

The second group of features consists of four features: sig-
natures of SIFT features, appearance-based image features,
and the MPEG 7 color layout descriptor.

Although the image thumbnails compared with the image
distortion model perform quite poorly for the WANG, the
UW, and the UCID tasks, they perform extremely well for
the IRMA task and reasonably well for the ZuBuD task. A
major difference between these tasks is that the first three
databases contain general color photographs of completely
unconstrained scenes, whereas the latter ones contain images
from limited domains only.

The simpler appearance-based feature of 32×32 thumbnails
of the images, compared using Euclidean distance, is the next
best feature, and again it can be observed that it performs
well for the ZuBuD and IRMA tasks only.

As expected, the MPEG7 color layout descriptor and
32×32 image thumbnails obtain similar results because they
both encode the spatial distribution of colors or gray values
in the images.

Among the texture features (Tamura texture histogram,
Gabor features, global texture descriptor, relational invari-
ant feature histogram, and MPEG-7 edge histogram), the
Tamura texture histogram and the Gabor histogram outper-
form the others.

6.2 Correlation Analysis of Features

Figure 8 shows the average correlation of different features
over all databases. The darker a field in this image is, the
lower the correlation between the corresponding features,
bright fields denote high correlations. Figure 9 shows the
visualizations of the outcomes of multi-dimensional scaling
of the correlation analysis. We applied the correlation analy-
sis for the different tasks individually (4 top plots) and for all
tasks jointly (bottom plot). Multi-dimensional scaling was
used to translate the similarities of the different features into
distances in a two-dimensional space. The further away two
points are in the graph, the less similar the corresponding fea-
tures are for CBIR, and conversely the closer together they
appear, the higher the similarity between these features.

For each of these plots the according distance vec-
tors obtained from all queries with all database images
have been used (WANG database: 1,000,000 distance vec-
tors, UW&UCID database: 194,482+350,557 distance vec-
tors, IRMA database: 9,000,000 distance vectors, ZuBuD
database: 115,575 distance vectors, all databases: 10,660,614
distance vectors).

The figures show a very strong correlation between color
histograms (point 1) and invariant feature histograms with
monomial kernel (point 11). In fact, they lead to hardly any
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Table 3: Error rate [%] for each of the features for each of the databases (sorted by average error rate over the databases).

feature wang uw irma ucid zubud average

color histogram 16.9 12.3 – 51.5 7.8 22.1
LF SIFT global search 37.2 31.5 27.7 31.7 7.0 27.0
LF patches histogram 17.9 14.6 24.9 58.0 24.4 28.0
LF SIFT histogram 25.6 21.4 30.8 50.4 18.3 29.3
inv. feature histogram (monomial) 19.2 12.9 55.8 53.8 7.8 29.9
MPEG7: scalable color 25.1 13.0 – 60.7 32.2 32.7
LF patches signature 24.3 17.6 42.7 68.7 36.5 38.0
Gabor histogram 30.5 20.5 44.9 74.1 24.4 38.9
32x32 image 47.2 26.4 22.8 82.8 27.0 41.2
MPEG7: color layout 35.4 21.2 47.7 75.2 27.0 41.3
Xx32 image 55.9 26.7 21.4 83.2 20.9 41.6
Tamura texture histogram 28.4 16.8 33.0 63.4 84.4 45.2
LF SIFT signature 35.1 20.9 99.3 58.4 20.0 46.7
gray value histogram 45.3 23.0 42.6 86.6 47.0 48.9
LF patches global 42.9 42.7 48.2 63.4 47.8 49.0
MPEG7: edge histogram 32.8 22.9 99.3 69.9 23.5 49.7
inv. feature histogram (relational) 38.3 23.6 39.2 83.2 93.9 55.6
Gabor vector 65.5 37.9 42.5 95.8 73.0 62.9
global texture feature 51.4 32.4 67.7 95.4 98.3 69.0
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Figure 6: Classification error rate [%] for each of the features for each of the databases (sorted by average error rate over
the databases). The different shades of gray denote different databases and the blocks of bars denote different features.
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Table 4: Mean average precision [%] for each of the features for each of the databases (sorted in the same order as Table 3
to allow for easy comparison).

feature wang uw irma ucid zubud average

color histogram 50.5 63.0 – 43.3 75.6 58.1
LF SIFT global search 38.3 63.6 20.9 62.5 81.3 53.3
LF patches histogram 48.3 62.0 31.4 37.5 64.7 48.8
LF SIFT histogram 48.2 62.3 32.7 44.7 68.0 51.2
inv. feature histogram (monomial) 47.6 62.6 24.4 41.6 71.0 49.5
MPEG7: scalable color 46.7 63.9 – 37.9 54.3 50.7
LF patches signature 40.4 59.9 23.0 27.6 42.6 38.7
Gabor histogram 41.3 59.7 25.2 22.3 48.7 39.4
32x32 image 37.6 60.1 40.9 14.0 41.9 38.9
MPEG7: color layout 41.8 61.0 29.8 21.7 47.7 40.4
Xx32 image 24.3 57.0 35.0 13.9 47.0 35.4
Tamura texture histogram 38.2 60.8 30.4 33.2 15.8 35.7
LF SIFT signature 36.7 61.2 10.9 34.1 62.7 41.1
gray value histogram 31.7 59.4 26.1 11.8 36.5 33.1
LF patches global 30.5 55.7 17.6 30.3 38.5 34.5
MPEG7: edge histogram 40.8 61.4 10.9 25.2 46.3 36.9
inv. feature histogram (relational) 34.9 59.7 24.1 14.4 6.3 27.9
Gabor vector 23.7 56.3 27.7 4.7 15.9 25.7
global texture feature 26.3 56.5 16.4 6.7 2.6 21.7
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Figure 7: Mean average precision for each of the features for each of the databases (sorted in the same order as Fig.6 to
allow for easy comparison).

13



differences in the experiments. For the databases consisting
of color photographs they outperform most other features. A
high similarity is also observed between the patch signatures
(point 14) and the MPEG7 color layout (point 2) for all tasks.

Two other features that are highly correlated are the two
methods that use local feature search for the two different
types of local features (points 5 and 12). The different com-
parison methods for local feature histograms/signature have
similar performances (3, 4 and 13, 14, respectively).

Another strong correlation can be observed between 32×32
image thumbnails (point 18) and the MPEG7 color layout
representation (point 2), which was to be expected as both of
these have a rough representation of the spatial distribution
of colors (resp. gray values) of the images.

Interestingly, the correlation between 32×32 images com-
pared using Euclidean distance (point 18) and the X×32 im-
ages compared using the image distortion model (point 19) is
low, with only some similarity for the IRMA and the ZuBuD
task. This is partly due to the exceedingly good performance
of the image distortion model for the IRMA task and partly
due to the missing invariance with respect to slight deforma-
tions in the images for the Euclidean distance. For example
in the ZuBuD task, the image distortion model can partly
compensate for the changes in the viewpoints which leads to
a much better performance.

Another interesting aspect is that the various texture fea-
tures (MPEG7 edge histogram (6), global texture feature
(10), Gabor features (8, 7), relational invariant feature his-
togram (15), and Tamura texture histogram (17)) are not
correlated strongly. We conclude that none of the texture fea-
tures is sufficient to completely describe the textural proper-
ties of an image. The Tamura texture histogram and the Ga-
bor histogram outperform the other texture features, Tamura
features being better in three and Gabor histograms being
clearly better in two of the five tasks, both of them are a
good choice for texture representation.

To give a little insight into how these plots can be used
to select sets of features for a given task, we discuss how
features for the WANG database could be chosen in the fol-
lowing paragraph. Combined features are linearly combined
as described in Section 2. Here, all features are weighted
equally, but some improvement of the retrieval results can
be achieved by choosing different weights for the individual
features. In [80] we present an approach to automatically
learning a feature combination from a set of queries with
known relevant images using a discriminative maximum en-
tropy model.

Finding a suitable set of features. Assume we are about
to create a CBIR system for a new database consisting of
general photographs. We extract features from the data and
create the according MDS plot (Figure 9, top left). Since we
know that we are dealing with general photographs, we start

with a simple color histogram (point 1). The plot now tells
us that invariant feature histograms with monomial kernel
(11) would not give us much additional information. Next,
we consider the various texture descriptors (points 6, 10, 15,
17, 7, 8) and choose one of these, say global texture features
(10) and maybe another: Tamura texture histograms (17).
Now we have covered color and texture and can consider a
global descriptor such as the image thumbnails (18) or a local
descriptor such as one of (12, 13, or 14) or (3, 4, or 5). After
adding a feature, the performance of the CBIR system can be
evaluated by the user. In Table 5 we quantitatively show the
influence of adding these features for the WANG database. It
can be seen that the performance is incrementally improved
by adding more and more features.

6.3 Connection Between Mean Average
Precision and Error Rate

In Figures 10 and 11 the correlation between mean aver-
age precision and error rate is visualized database-wise and
feature-wise, respectively. The correlation of error rate and
mean average precision over all experiments presented in this
paper is 0.87. In the keys of the figures, the correlations per
database and per feature are given, respectively.

From Figure 10 it can be seen that this correlation varies
between the tasks between 0.99 and 0.67. For the UCID task,
this correlation is markedly strong with 0.99. The correlation
is lowest for the UW task which has a correlation of 0.67 and
which is the only task with a correlation below 0.8.

In Figure 11, the same correlation is analyzed feature-wise.
Here, the correlation values vary strongly between 0.4 and
1.0. The LF SIFT signature descriptor has the lowest cor-
relation and the LF patches histogram descriptor also has a
low correlation of only 0.6. The two different image thumb-
nail descriptors have a correlation of 0.7. All other features
have correlation values greater than 0.8, thus it can be said
that an image representation that works well for classifica-
tion will generally work well for CBIR as well and vice versa.
Exemplarily, this effect can be observed when looking at the
results for the WANG and IRMA database for the color his-
tograms and the X×32 thumbnails. On the one hand, for the
WANG database, the color histograms perform very well for
error rate and mean average precision; in contrast, the image

Table 5: Combining features using the results from the cor-
relation analysis described for the WANG database.

features ER [%] MAP [%]
color histograms 16.9 50.5

+ global texture 15.7 49.5
+ Tamura histograms 13.7 51.2

+ thumbnails 13.7 53.9
+ patch histograms 11.6 55.7
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Xx32 image                         
32x32 image                        
Tamura texture histogram           
MPEG7: scalable color              
inv. feature histogram (relational)
LF patches signature               
LF patches histogram               
LF patches global                  
inv. feature histogram (monomial)  
global texture feature             
gray value histogram               
Gabor histogram                    
Gabor vector                       
MPEG7: edge histogram              
LF SIFT global search              
LF SIFT signature                  
LF SIFT histogram                  
MPEG7: color layout                
color histogram                    
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Figure 8: Correlation of the different features. Bright fields denote high and dark fields denote low correlation. Another
representation of this information is given in Figure 9

thumbnails perform poorly. On the other hand, the effect is
reversed for the IRMA database: here, the color histograms
perform poorly and the image thumbnails outstandingly well.
It can be observed that the performance increase (resp. de-
crease) is in the same magnitude for mean average precision
and error rate. Thus, it can be seen that a feature that per-
forms well for the task of classification on a certain dataset,
it will most probably be a good choice for retrieval of images
from that dataset, too.

7 Conclusion

We have discussed a large variety of features for image re-
trieval and a setup of five freely available databases that can
be used to quantitatively compare these features. From the
experiments conducted it can be deduced, which features per-
form well on which kind of task and which do not. In contrast
to other papers, we consider tasks from different domains
jointly and directly compare and analyze which features are
suitable for which task.

Which features are suitable for which task in CBIR?
The main question addressed in this paper, which features
are suitable for which task in image retrieval, has been thor-
oughly investigated:

One clear finding is that color histograms, often cited as
a baseline in CBIR, clearly are a reasonably good baseline
for general color photographs. However, approaches using lo-
cal image descriptors outperform color histograms in various
tasks but usually at the cost of much higher computational
costs. If the images are from a restricted domain, as they are
in the IRMA and in the ZuBuD task, other methods should
be considered as a baseline, e.g. a simple nearest neighbor
classifier using thumbnails of the images.

Furthermore, it has been shown that, despite more than 30
years in research on texture descriptors, still none of the tex-
ture features presented can convey a complete description of
the texture properties of an image. Therefore a combination
of different texture features will usually lead to best results.

It should be noted that for specialized tasks, such as finding
images that show certain objects, better methods exist today
that can learn models of particular objects from a set of train-
ing data. However, these approaches are computationally far
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more expensive and always require relatively large amounts
of training data.

Although the selection of features tested was not com-
pletely exhaustive, the selection was wide and the methods
presented can easily be applied to other features to compare
them to the features presented here. On one hand, the pre-
sented descriptors were selected such that features presented
many years ago, such as color histograms [54], Tamura tex-
ture features [56], Gabor features, and spatial autocorrelation
features [58], as well as very recent features such as SIFT de-
scriptors [44] and patches [40] were compared. On the other
hand, the features were selected such that descriptors ac-
counting for color, texture, and (partly) shape, as well as
local and global descriptors were covered. We also included
a subset of the standardized MPEG7 features.

All features have been thoroughly examined experimentally
on a set of five databases. All of these databases are freely
available and pointers to their location are given in this pa-
per. This allows researchers to compare the findings from
this work with other features that were not covered here or
which will be presented in future. The databases chosen are
representative for four different tasks in which CBIR plays
an important role.

Which features are correlated and how can features
be combined? We conducted a correlation analysis of the
features considered showing which features have similar prop-
erties and which do not. The outcomes of this method can
be used as an intuitive help to finding suitable combinations
of features for certain tasks. In contrast to other methods for
feature combination, the method presented here does not rely
on training data/relevance judgements to find a suitable set of
features. In particular, it will tell you which features are not
worth combining because they produce correlated distance re-
sults. The method is not a fully automatic feature selection
method but the process of selecting features is demonstrated
for one of the tasks with promising results. However, the fo-
cus of this paper is not to combine several features as this
would exceed the scope and a variety of known methods have
covered this aspect, e.g. [7, 81,82].

Another conclusion we have drawn from this work is that
the intuitive assumption that classification of images and
CBIR are strongly connected is justified. Both tasks are
strongly related to the concept of similarity which can be
measured best if suitable features are available. In this paper,
we have evaluated this assumption quantitatively by consid-
ering four different domains and analyzing the classification
error rate for classification and the mean average precision
for CBIR. It was clearly shown empirically that features that
perform well for classification also perform well for CBIR and
vice versa. This strong connection allows us to take advan-
tage of knowledge obtained in either classification or CBIR
for the other respective task. For example, in the medical

domain much research has been done to classify whether an
image shows a pathological case or not, likely some of the
knowledge obtained in these studies can be transfered to the
CBIR domain to help retrieving images from a picture archiv-
ing system.

Future Work. Future work in CBIR certainly includes
finding new and better image descriptors and methods to
combine these appropriately. Furthermore, the achievements
in object detection and recognition will certainly find their
way into the CBIR domain and a shift towards methods that
automatically learn about the semantics of images is imagin-
able. First steps into this direction can be seen in [83] where
a method is presented that learns how to compare never seen
objects and presents an image similarity measurement which
works on the object level. Methods for automatic image an-
notation are also related to CBIR and the automatic gener-
ation of textual labels for images allows to use textual infor-
mation retrieval techniques to retrieve images.
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Figure 9: Correlation of the different features visualized using multi-dimensional scaling. Features that lie close together have
similar properties. Top 4 plots: database-wise visualization, bottom plot: all databases jointly. The numbers in the plots
denote the individual features: 1: color histogram, 2: MPEG7: color layout, 3: LF SIFT histogram, 4: LF SIFT signature,
5: LF SIFT global search, 6: MPEG7: edge histogram, 7: Gabor vector, 8: Gabor histograms, 9: gray value histogram, 10:
global texture feature, 11: inv. feature histogram (monomial), 12: LF patches global, 13: LF patches histogram, 14: LF
patches signature , 15: inv. feature histogram (relational), 16: MPEG7: scalable color, 17: Tamura texture histogram, 18:
32x32 image, 19: Xx32 image.
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Figure 10: Analysis of the correlation between classification error rate and mean average precision for the databases. The
numbers in the legend give the correlation for the experiments performed on the individual databases.
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Figure 11: Analysis of the correlation between classification error rate and mean average precision for the features. The
numbers in the legend give the correlation for the experiments performed using the individual features.
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