
Abstract Since its inception in 2013, one of the key contributions of the

CLEF eHealth evaluation campaign has been the organization of an ad-hoc

information retrieval (IR) benchmarking task. This IR task evaluates systems

intended to support laypeople searching for and understanding health infor-

mation. Each year the task provides registered participants with standard

IR test collections consisting of a document collection and topic set. Partici-

pants then return retrieval results obtained by their IR systems for each query,

which are assessed using a pooling procedure. In this article we focus on CLEF

eHealth 2013 and 2014’s retrieval task, which saw topics created based on pa-

tients’ information needs associated with their medical discharge summaries.

We overview the task and datasets created, and the results obtained by par-

ticipating teams over these two years. We then provide a detailed comparative

analysis of the results, and conduct an evaluation of the datasets in the light of

these results. This two-fold study of the evaluation campaign teaches us about

technical aspects of medical IR, such as the effectiveness of query expansion;

the quality and characteristics of CLEF eHealth IR datasets, such as their

reliability; and how to run an IR evaluation campaign in the medical domain.
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1 Introduction

The increasing availability of online medical information in recent years has

created great interest in the use of these resources to address medical informa-

tion needs. Online medical information originates from a wide range of sources
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including professional medical agencies, publishers, informed medical interest

groups, commercial organizations, the general public, and less well informed

or unreliable sources. Much of this information is freely available on the World

Wide Web using general purpose search engines, and is searched for by a wide

variety of users ranging from members of the general public with differing

levels of knowledge of medical issues to medical professionals such as general

practitioners. An important issue when searching these information resources

is receiving accurate information relevant to the information need and at a

technical level appropriate to the searcher.

The CLEF eHealth benchmark activities1, held as part of the Confer-

ence and Labs of the Evaluation Forum (CLEF)2 since 2013, creates annual

shared challenges for the evaluation and advancement of medical information

extraction, management and retrieval related research. This article analyzes

the outcomes of the 2013 and 2014 CLEF eHealth information retrieval (IR)

challenges, which provided a platform for the evaluation of search engines to

identify items relevant to user information needs as stated in search requests

(referred to here as search topics). The focus of these tasks was the evaluation

of the effectiveness with which search engines could retrieve relevant docu-

ments, from an archive collected from the World Wide Web, in response to a

set of patient search requests. The tasks provided, to registered task partic-

ipants, an IR test collection consisting of the document collection harvested

from the World Wide Web and the topic set. The registered task participants

then returned retrieval results obtained by their IR systems for each query

which were then assessed for relevance. Participants detailed descriptions of

the IR systems used to create their results in written reports (Working Notes

Papers), and then met at the CLEF 2013 and CLEF 2014 conferences to report

and discuss their work. While organizers published overview papers in 2013

[14] and 2014 [18], no deeper analysis of these results has so far been reported.

This article overviews the creation of these test collections, and summarizes

1 http://clef-ehealth.org/
2 http://www.clef-initiative.eu/

http://clef-ehealth.org/
http://www.clef-initiative.eu/
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the results obtained by the participants. It then provides, for the first time, a

detailed comparative analysis of the results seeking to identify common fea-

tures of success and failure in the participants’ work. Reflections on the general

outcomes of the task in terms of experimental design and scientific findings,

contributing to improved domain-specific IR benchmark design, are also pro-

vided.

The article is organized as follows: we first provide an overview of relevant

existing work in the benchmarking of medical IR and analysis of IR benchmark

results; we then describe the 2013 and 2014 CLEF eHealth IR challenges;

provide a summary of the results obtained by the challenge participants; and

detail a comparative analysis of participants’ results and the techniques used

to produce them. We conclude with the lessons learned from the task results

and a summary of the findings.

2 Related Work

2.1 Health-related Evaluation Campaigns

Medical IR evaluation challenges supporting individuals’ retrieval needs have

historically focused on needs of medical professionals, ignoring the different

needs and perspective of laypeople when searching for medical information.

Over the last 20 years a large number of evaluation tasks have focused on

a wide variety of aspects of the needs of medical professionals and the dif-

fering tools needed to support them in their work. OHSUMED, published in

1994, was the first such collection [24], and has subsequently been used in the

TREC 2000 Filtering Track and for individual research on health IR [9,31].

The TREC Genomics Track (2003-2007) targeted biologists’ needs [47]. The

ImageCLEFmed Track (2003-2013) focused on biomedical image retrieval [26,

40]. The TREC Medical Records Track (2011-2012) [65] focused on patient co-

hort identification. The TREC clinical decision support3 (CDS) track [54,46],

3 http://www.trec-cds.org/

http://www.trec-cds.org/
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organized for the first time in 2014, focused on patient care. The TREC clin-

ical decision support track collection has also been recently used to evaluate

systems for the selection of cohorts to recruit for clinical trial [30].

Most of these evaluation campaigns focus only on medical experts and in-

formation needs. Previous research has shown that exposing people with no

or scarce medical knowledge to complex medical language may lead to erro-

neous self-diagnosis and self-treatment and that access to medical information

on the web can lead to the escalation of concerns about common symptoms

(e.g., cyberchondria) [66,5]. Research has also shown that current commercial

search engines are still far from being effective in answering such unclear and

underspecified queries [78].

The CLEF eHealth IR challenges represent the first, and to-date only, eval-

uation campaigns focusing on evaluating and advancing search engine tech-

nologies aimed to support laypeople searching for health information and ad-

vice on the web. In this article we analyse the findings and contributions of the

2013 and 2014 labs. The lab has continued in 2015 and 2016 [44,79]; however

these newer evaluation campaigns sensibly differ from those in 2013 and 2014:

– Firstly, the topic creation process changed: instead of building queries from

medical reports (see 3.2.1 for details), they were built from images depict-

ing medical conditions, for example image depicting bloodshot eye4. This

change resulted in a different format and type of query. It also meant a shift

in the use case covered: 2013 and 2014 topics considered information needs

related to the understanding of diseases, conditions and treatments; while

2015-2016 topics focused on information needs related to self-diagnosis and

treatment.

– From 2016 onwards, the document collection changed: instead of using

a specific medical document collection, we opted for a larger web crawl,

closer to the real document collection users are faced with when querying

the web.

4 Subjects were asked to describe the picture as if it were their own health issue. See [44]
for details.
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In order to conduct analysis on a homogeneous and comparable set of runs,

this article focuses only on the IR evaluation task in 2013 and 2014.

2.2 Analysis of Evaluation Campaigns

Establishing a meaningful benchmark task to explore ad-hoc medical IR for

lay users requires careful design of the components for the task and use of

appropriate techniques to construct these. Construction of an IR test collection

requires data collection design, gathering of user information needs, test query

construction based on the information needs, and assessment of the relevance of

returned results for each information need. In this section we overview relevant

existing initiatives which analyze the results of (non-medical) IR tasks.

Probably the best known and most detailed comparative analysis of an

IR evaluation was carried out within the Reliable Information Access (RIA)

workshop [21,55] which examined methods for relevance feedback and their

behaviour. Retrieval results were manually examined for different runs and

systems to detect weaknesses and system failures. One of the main findings

was that most systems suffer from the same errors. Harman and Buckley con-

cluded that “it may be more important for research to discover what current

techniques should be applied to which topics, rather than to come up with

new techniques” [21]. While perhaps not an obviously insightful conclusion,

this observation was only made possibly based on extensive analysis of very

large numbers of experimental results created using many different systems

and algorithmic alternatives.

The Robust Track at TREC5 [63] focused on queries that are difficult for

typical systems in that it is difficult to design an IR method which is able to

retrieve relevant documents for these topics, aiming to improve the consistency

of retrieval technology. This involved carrying out a very detailed analysis of

the document collection, queries and the relevant documents for each query,

with the objective of trying to understand why some apparently reasonable

5 http://trec.nist.gov/data/robust.html

http://trec.nist.gov/data/robust.html
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queries are in fact very difficult to answer reliably from a collection containing

relevant items. This track resulted in considering evaluation metrics such as

the geometric mean average precision for IR when consistent IR effectiveness

across all queries is important.

In an analysis conducted by Armstrong et al. [2], an important finding

highlighted was that there has in fact been very little improvement over strong

baselines for publications describing experiments on established TREC ad-hoc

retrieval over a long period of time and the need to compare to the best cur-

rently available results for a task. This emphasizes the importance of estab-

lishing strong baselines for a task, while seeking to develop and understand the

potential contributions of novel methods which might be developed specifically

for a specific task. This issue is illustrated clearly for medical IR by results

reported by individual teams for the TRECmed search of medical reports

task, where many techniques are able to offer improvements over weak base-

line methods, but few are able to offer improvement when compared against

a strong baseline using established general IR methods [34,64].

Other related research on improving IR evaluation has examined minimiz-

ing efforts for relevance assessment by dynamically creating the set of pooled

documents [49], determining the quality of test collections [61] (which we will

also apply to our collections in Section 4.2.1), investigating how to automat-

ically predict query performance [22,23], and automatic exploitation of this

information.

3 CLEF eHealth - Information Retrieval Task

CLEF eHealth has been running as an activity within the benchmark labs of

the CLEF Conference (Conference and Labs of the Evaluation Forum) since

2013. Each year CLEF eHealth offers IR, information extraction (IE) and

information management tasks to volunteer task participants which aim to

evaluate systems that support laypeople in searching for and understanding

health information [15,27,28,57]. In 2013 and 2014 the tasks were built around
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Table 1: CLEF eHealth Tasks in 2013 and 2014. Bold entries are the tasks this
article focuses on.

Year Tasks
Named Entity Recognition in English Clinical Reports
Normalization of acronyms/abbreviations2013
Patient-centered Information Retrieval
Visual-interactive Search and Exploration of eHealth Data
Information Extraction from Clinical Text

2014

Patient-centered Information Retrieval
Subtask: monolingual information retrieval
Subtask: multilingual information retrieval

an assumed use case of a patient receiving a discharge summary when they

leave hospital, and then wishing to find relevant additional information. The

discharge summary describes the diagnosis and the treatment that the pa-

tient received in hospital. The use case postulates that, given their discharge

summary and the diagnosed disorders, patients often have questions regarding

their health condition. Table 1 summarizes the tasks organized in 2013 and

2014.

This article focuses on details of the Information Retrieval task offered

in 2013 and 2014 which adopted this use case. In this section we provide

an overview of the organization of the tasks and of the submissions of the

participating groups. More detailed descriptions are available in the 2013 and

2014 task overview papers in the CLEF proceedings [14,18].

3.1 Task Description

CLEF eHealth adopts the standard IR evaluation benchmark practice of pro-

viding participants with a collection of documents which must be indexed into

their IR evaluation system, and a set of queries representative of the user

task to be evaluated. In this case the documents covered various health and

biomedical topics.

As shown in the Table 1, the task was monolingual in 2013, and had

two subtasks in 2014: monolingual and multilingual IR. Figure 1 presents an
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Document collection

Indexing

… …

TopicsEN TopicsCZ,FR,GE

IRsystem

Pre-processing

Dischargesummaries

Creationof the
topics

Optional useas
contextual data

PARTICIPANT'SSYSTEM

Knowledge
bases

Fig. 1: Summary of the data and its use within CLEF eHealth IR task.

overview of the data and its use within the task: the provided document col-

lection, described in 3.2, is used to create an index. The discharge summaries

are used to create the topics, as described in 3.2.1. They can also optionally be

used by participants as external data. Similarly, external knowledge bases can

be used as an additional source of information (details are provided in 3.4).

The gray box in the figure represents a participant’s system: the format and

method varies across participating teams and teams’ systems.

3.2 Test Collection

The task dataset provided to participants in the 2013 and 2014 CLEF eHealth

IR challenges comprise a document collection of around one million web pages

from medical websites made available through the Khresmoi project [16,19].

The document collection distributed in 2013 and 2014 are identical, excepting

documents excluded because they had incorrectly formatted HTML markup
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or raised copyright issues identified by the Khresmoi project, see [16] for de-

tails. The search topics for the test collections were developed by medical

experts. Separate sets of 5 training topics and 50 test topics were created in

2013 and in 2014. The topics contain title and description fields as defined by

TREC6, where: title is a shorter query statement of the user’s information need

and the description is a larger statement of the same need typically includ-

ing multiple sentences. The created topic statements also contain additional

fields: discharge-summary, which contains the discharge summary report which

the patient’s query stemmed from, and profile, containing basic information

on the patient. Discharge reports originated from the de-identified MIMIC-II

database7.

3.2.1 Topic Creation

As detailed earlier, the topics8 used in the task aim to model queries used by

laypeople (i.e., patients, their relatives or other non-medical representatives)

to find out more about their disorders, once they have examined a discharge

summary. Contextual information related to the patient history is contained

in the discharge summary which is included in the topic statement. The dis-

charge summaries can automatically be incorporated into the creation of the

actual search query used by the IR system. The information contained in the

discharge summary can subsequently be used with the query fields of the topic

statement to determine the relevance of retrieved information to the specific

user. The following example shows an extract from a discharge summary:

Admission Date : [∗∗2014−03−28∗∗]

Discharge Date : [∗∗2014−04−08∗∗]

Date o f Birth : [∗∗1930−09−21∗∗]

Sex : F

Se rv i c e : CARDIOTHORACIC

A l l e r g i e s :

Pat ient recorded as having No Known A l l e r g i e s to Drugs

6 http://trec.nist.gov/
7 http://mimic.physionet.org/
8 A query here is text typed in a search engine. A topic is an enriched query.

http://trec.nist.gov/
http://mimic.physionet.org/
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Attending : [ ∗ ∗ Attending In fo 565∗∗ ]

Chie f Complaint : Chest pain

Major S u r g i c a l or Invas ive Procedure :

Coronary a r t e ry bypass g r a f t 4 .

His tory o f Present I l l n e s s :

83 year−old woman , pa t i en t o f Dr . [∗∗ F i r s t Name4

( NamePattern1 ) ∗∗ ] [∗∗ Last Name ( NamePattern1 ) 5005∗∗ ] ,

Dr . [∗∗ F i r s t Name ( STi t l e ) 5804∗∗ ] [∗∗Name ( STi t l e )

2275∗∗ ] , with in c r ea s ed SOB with a c t i v i t y , l e f t shou lder

blade /back pain at re s t , + MIBI , r e f e r r e d f o r ca rd i a c

cath . This p l ea sant 83 year−old pat i en t notes becoming

SOB when walking up h i l l s or i n c l i n e s about one year

ago . This SOB has p r o g r e s s i v e l y worsened and she i s now

SOB when walking [∗∗01 −19∗∗ ] c i t y block ( f l a t s u r f a c e ) .

[ . . . ]

Past Medical His tory :

a r t h r i t i s ; ca rpa l tunne l ; s h i n g l e s r i g h t arm 2000 ;

needs r i g h t knee replacement ; l e f t knee replacement

in [∗∗2010∗∗ ] ; thyroidectomy 1978 ; cho lecystectomy

[∗∗1981∗∗ ] ; hysterectomy 2001 ; h/o LGIB 2000−2001

a f t e r tak ing baby ASA; 81 QOD

[ . . . ]

Different strategies were used to create topics in 2013 and 2014. In both

cases, the topic was manually created by registered nurses, who were also clin-

ical documentation researchers, from a selected disorder in a given discharge

summary. This solution has been chosen in place of recruiting patients because

of the issues involved with recruitment and privacy. We believe that, being

in daily contact with patients receiving treatment and discharge summaries,

nurses are familiar with patients’ information needs and patient profiles.

– In 2013, a disorder was randomly selected from each discharge summary

from among those already annotated. This selected disorder is assumed to

be the main aspect of interest to a patient, e.g. a disorder mentioned in

the discharge summary that a patient wants to find out more about.

– In 2014, instead of randomly selecting the disorder, we decided to create

topics from the main disorder in each discharge summary. This was done

using the field “Discharge diagnosis” or “Main diagnosis” in the discharge
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summary. If several disorders were diagnosed, the medical professionals

were free to pick one from the list. When this field did not appear in the

report, we asked them to select a disorder that appeared to be the main

one in the whole report.

Using selected disorder and the associated discharge summary, the experts

developed topics (and the criteria for judging the relevance of documents to the

query, for use in the relevance assessment task described in the next section).

The following example from 2014 outlines topic structure:

<query>

<t i t l e > thrombocytopenia treatment c o r t i c o s t e r o i d s

l ength </ t i t l e >

<desc> How long should be the c o r t i c o s t e r o i d s treatment

to cure thrombocytopenia ? </desc>

<narr> Documents should conta in in fo rmat ion about

treatments o f thrombocytopenia , and e s p e c i a l l y

c o r t i c o s t e r o i d s . I t should d e s c r i b e the treatment ,

i t s durat ion and how the d i s e a s e i s cured us ing i t .

<s cenar io> The pat i en t has a short−term d i s ea se , or

has been h o s p i t a l i s e d a f t e r an acc ident ( l i t t l e to

no knowledge o f the d i so rder , short−term treatment )

</scenar io>

<p r o f i l e > P r o f e s s i o n a l female </p r o f i l e >

</narr>

</query>

3.2.2 Participants Run Submission

Participating teams were permitted to submit up to 7 runs:

– Run 1 (mandatory) is a team baseline: only title and description could be

used in the query, with no use of external resources such as dictionaries for

example.

– Runs 2-4 (optional) any experiment WITH the medical reports.

– Runs 5-7 (optional) any experiment WITHOUT the medical reports.

The runs in each group had to be ranked in order of priority (1, 2 and 5

being the highest priority runs).This ranking allowed us to select the highest
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priority runs from each team for pool set generation, as detailed in the next

section.

3.2.3 Relevance Assessment

Every query-document pair in the assessment pool was judged by only one as-

sessor. Assessors were domain experts and IR experts in 2013, specifically nurs-

ing professionals and researchers at the authors’ organizations respectively;

and paid professional assessors (but not medical experts) recruited externally

in 2014.

Relevance assessment was based on a four point scale, which is mapped to

a binary scale:

– {0: non relevant, 1: on topic but unreliable} → non relevant

– {2: somewhat relevant, 3: relevant} → relevant

Relevance assessments for the training queries were formed based on pooled

sets created using the Vector Space Model (VSM) [51] and Okapi BM25 [48] for

both 2013 and 2014 tasks. Assessments for the training queries were conducted

by the domain experts, each document being assessed by one person. In order

to investigate the effect of medical expertise on the relevance assessment, in the

2013 task the assessment for the corresponding five training queries was also

conducted by an IR expert. A comparison of their assessments and analysis of

their agreement is provided later in this article.

Pooling for the 2013 task For the 2013 task, we pooled the top ten docu-

ments obtained from the participants’ baseline runs (run 1), their top-priority

run using discharge summaries (run 2) and their top-priority run not using

discharge summaries (run 5)9. A large number of submissions were received:

due to budget constraints the pool depth was limited to the top 10 ranked

documents. This resulted in a pool of 6,391 documents in total.

9 Runs are described in the section that analyzes participants’ retrieval results.
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Pooling for the 2014 task For the 2014 task, the pool depth was also limited to

the top 10 ranked documents. Documents were pooled from the participants’

baseline runs (run 1), their top-two priority runs using discharge summaries

(runs 2 and 3), and their top-two priority runs not using discharge summaries

(runs 5 and 6). Thus, compared to the 2013 assessment pool, the 2014 pool

contained two more runs per team. The pool depth was 10: as in 2013, this

was mainly dictated by budget constraints. This resulted in a pool of 6,800

documents, in line with the size of the pool for the 2013 task.

3.3 Evaluation of the Task Results

Since the assessment pools were limited to depth ten, we evaluated partici-

pants’ submissions mainly using metrics at a cut-off of up to 10 documents.

This allows us to compare systems using only complete assessments, thus pro-

viding a reliable analysis of the difference between systems’ performance. In

addition, as the task models consumer laypeople using web search engines, it

is expected that they rarely go beyond the first page of results (top 10 docu-

ments) [20]. The evaluation measures that are considered are precision at 5 and

10 document cut off(P@5 and P@10) and normalized discounted cumulative

gain (NDCG@5 and NDCG@10). We also considered MAP as an evaluation

metric, but we are aware that the MAP values may be unreliable since only

the top ten documents have been assessed and submitted runs exhibit little

diversity. Nevertheless, we wanted to report a measure covering the full set of

up to 1,000 retrieved documents. We also report the number of relevant and

retrieved documents in the top 1,000 results as a more recall-oriented measure.

Nine teams submitted a total of 46 runs in 2013 and 14 teams submitted

a total of 62 runs in 2014. Only one team submitted runs for both years.
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3.4 Summary of the Methods Used by Task Participants

Tables 2 and 3 provide a summary overview of the participating teams’ ap-

proaches, for each step of the retrieval process: pre-processing of the documents

collection, indexing and retrieval. Note that retrieval can involve more than

one retrieval pass to enable inclusion of retrieval enhancement techniques such

as query expansion via the use of relevance feedback. The tables also show de-

tails of any additional external resources used by each team and whether the

discharge summaries (DS) were used is also presented. We highlight key fea-

tures of individual participants’ approaches in the next section, and examine

the efficacy of these methods for this task. Methods used by each participant

are described in full in the Working Notes papers; references provided in Tables

2 and 3.

Most of the external resources are medical thesauri, such as UMLS. The

Unified Medical Language System (UMLS) is a metathesaurus gathering var-

ious medical knowledge bases and terminologies. It provides for every entry

(corresponding to a medical concept) a unique identifier, a definition, semantic

types, related concepts, etc. For example, breast carcinoma in UMLS has the

identifier C0678222, and as a definition ”A malignant neoplasm that develops

or arises in breast tissue”10.

10 A single definition is provided here for example purposes. In reality an exhaustive list
of definitions is provided for gathered terminologies.



16 Lorraine Goeuriot et al.

Table 2: Overview of the methods used by the participating teams in 2013.
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Table 3: Overview of the methods used by the participating teams in 2014.
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4 Analysis of the Results of the Evaluation Task

The participants’ submissions for the CLEF eHealth IR tasks in 2013 and 2014

represent a rich source of information to investigate task design and techniques

for Medical IR.

Firstly, in Section 4.1, we observe, compare and draw conclusions on par-

ticipants’ runs in the following way: which systems are applied as baselines;

how the discharge summaries are integrated in the systems; which external

resources are used; if query expansion is integrated and how.

Secondly, in Section 4.2, we evaluate the campaigns’ datasets in four ways:

we first evaluate the reliability of the datasets; secondly, we observe the rel-

evance of documents across queries and across datasets; then we analyze if

medical expertise has an impact on the relevance assessments recorded and

their quality; finally we investigate the impact of the size of the pool sets by

assessing the effect of the relevance of non-assessed documents on the partici-

pants’ results.

4.1 Analysis of Participants Results

In this section, we observe and compare the runs and results of the teams

participating in the IR task of CLEF eHealth in 2013 and 2014. As the datasets

varied from 2013 to 2014, we can only compare results in parallel for each

campaign.

4.1.1 Baselines Used

Participating teams were required to submit a baseline run (run 1) consist-

ing of a retrieval approach only (e.g. Vector Space Retrieval Model), with no

additional information (e.g. discharge summary) or external resources used to

boost performance. The organizers also provided baseline runs using BM25 in

2013 and using a variety of retrieval models in 2014 (specifically tf.idf, BM25,

language modeling with Jelinek-Mercer smoothing, and language modeling
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Fig. 2: P@10 values (y-axis) for participants and task organizers (x-axis) pro-
vided best and worst performing baselines.
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with Dirichlet smoothing)11. Figure 2 compares the retrieval effectiveness (in

terms of P@10) of each team’s mandatory baseline system (run 1) with the

organizers best performing baseline run and worst performing baseline run.

In both years, the effectiveness of the best organizer provided baselines are

comparable to those of the participating teams’ baseline systems. In particu-

lar, in the 2013 task, only two teams achieved higher effectiveness with their

baseline than that achieved by BM25, the worst organizers baseline (no statis-

tically significant differences), and no team achieved higher effectiveness than

the BM25 with feedback (BM25 FB) baseline provided by the organizers. In

2014 the organizer provided language modeling with Dirichlet smoothing base-

line is outperformed by 5 teams, while the worst organizers baseline (language

modeling with Jelinek Mercer smoothing) is outperformed by all participants’

baselines excepting team YORKU.

It is interesting to note that the best team baseline effectiveness in 2013

and both the best organizers baseline and team baseline effectiveness in 2014

are obtained using language models with Dirichlet smoothing (but with differ-

ent pre-processing steps), suggesting that this type of language model forms a

consistently strong baseline for system comparison. Furthermore, four of the

top five team baselines in the 2013 task and all top five team baselines in

2014 are obtained using language models, while in 2013 team UOG.Tr (4th

best team baseline in 2013) used divergence from randomness as implemented

in the Terrier Toolkit. Indeed, four main types of baselines can be identified

across runs submitted in 2013 and 2014: language models, vector space mod-

els, divergence from randomness (only in 2013) and the TOPSIG’s document

signatures approach (only in 2013). Overall, language models (in particular

with Dirichlet smoothing) appear to be obtaining considerably better results

than vector space models and its variants, although in 2013 our BM25 task

baseline outperformed most participants’ baselines. In 2013, divergence from

randomness provides effectiveness similar to language models.

11 Further details on baselines used are provided in the Task overview papers [14,18].
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Fig. 3: P@10 for the participants’ baselines, best run using discharge sum-
mary (DS) and best run without DS in 2013 (left) and 2014 (right). The 95%
confidence interval from the mean is represented with error bars.

It is essential in IR evaluation challenges to provide strong baselines, in

order to obtain valuable results and outcomes [34]. Even if teams’ baseline

performance varies, teams’ results seem consistent enough, i.e. no team can

claim an improvement over a weak baseline.

4.1.2 Use of Discharge Summaries as Contextual Information

Figure 3 shows results of teams that used the discharge summaries (DS) in

2013 and 2014. Specifically, the first column is their best run using the DS, the

second is their best run without the DS, and the third shows their baseline run.

Five teams submitted runs using the DS in 2013, and four teams in 2014. Note

that the best runs without discharge summaries are only given for reference,

since they do not necessarily have similar experimental settings to the best

run with DS.

For 2013, we observe that three teams out of five achieved an improvement

over their baseline using the DS. Among these teams, only two obtained better

results with the DS than without (QUT-TOPSIG and MAYO). These 2 teams

used the DS as follows: to perform re-ranking based on concepts extracted

from documents, queries and DS (MAYO); and to perform query refinement
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(QUT-TOPSIG). The other teams used DS mainly for query expansion: to

filter out expansion terms (Medinfo); for concept-based expansion (KC&RA

and THCIB).

As described in Section 3.2.1, the disorders used to generate the 2013 topics

were selected randomly from within all the disorders identified in each DS.

Therefore, the selected disorder was not necessarily the main one mentioned

in the DS. This could explain why, for most of the teams, the use of the

discharge summaries did not provide useful contextual information to improve

retrieval performance. This problem was identified by KC&RA [3], who tried

to identify relevant passages in DS and expand their queries with concepts

identified in these passages only.

In 2014, this potential issue was fixed by selecting the main diagnosed

disorder mentioned in the DS, hence creating a real link between the DS and

the generated topic. Globally we observed much higher performance in 2014

than in 2013, which applies for the runs using DS. Among the 4 teams, none

reported any decrease in their results while including DS information in their

systems. However, all obtained results comparable to their baseline or their

best runs without DS information, apart from team Nijmegen, who obtained

a significant improvement over the baseline.

All teams in 2014 also used the DS to perform query expansion, either to

find expansion terms (teams IRLabDAIICT, KISTI and Nijmegen), or to filter

expansion terms (team SNUMEDINFO).

Although information in the DS could in theory be ideal for contributing to

the selection of relevant and personalized documents, we can see that in an IR

environment, refinement needs to be achieved to get more focused and concise

contextual information. Further investigation is necessary to fully understand

how patient medical information can be used and how DSs can contribute to

improving IR [13].
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4.1.3 Use of External Resources

In this section, we describe the external resources used by the participants,

how they were used and the results achieved using them. Table 4 provides

an overview of the external resources used in 2013 and 2014. These resources

were mainly used in one of three stages of the IR process: indexing, query

expansion, or re-ranking. We distinguish three categories of resources:

– Corpora, composed of document collections (generally from the medical

domain). The majority of these come from related evaluation campaigns

or IR benchmarks;

– Thesauri/lexicons, medically related lexical or semantic resources, very of-

ten UMLS or subsets;

– Other types of resources, namely one list of recommended health-consumer

websites.

In the medical domain, there are various rich knowledge bases. The Unified

Medical Language System (UMLS) is a metathesaurus: it consists of several

thesauri and terminologies. MESH and SNOMED belong to UMLS and are

often used for text mining applications:

– SNOMED is a clinical health terminology used to process clinical data.

It includes terms related to: clinical findings, symptoms, diagnoses, proce-

dures, body structures, organisms and other etiologies, substances, phar-

maceuticals, devices and specimens.

– MESH is a controlled vocabulary thesaurus used for indexing articles on

the National Library of Medicine search engine PubMed.

We can see, in Table 4, that most of the resources are used for query

expansion. A few teams used them for indexing: teamMayo used UMLS to

annotate documents and index the concepts’ CUI (concept unique identifier);

team KC&RA used SNOMED to identify and index medical noun-phrases;

team CUNI used Medline plus for spell-checking during the pre-processing of

the documents. Team AEHRC used the list of recommended health-consumer
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Table 4: Overview of the external resources and their use.

Category Resource Indexing Query Re-ranking
expansion

Corpora TREC Medical records 2011 x
TREC genomics 2007 x
TREC genomics 2005 x
(Wikipedia and Medline) x
TREC genomics 2004 x
Mayoclinic clinical notes x
CLEF eHealth 2013 x

Thesauri, UMLS x x
lexicon SNOMED x

MeSH x
Wikipedia list of x
medical abbreviations
Medline Plus x

Other type CAPHIS recommended x
of resource health-consumer sites

websites, the last resource listed in Table 4, to re-rank retrieval results based

on website authoritativeness. We observed very little variation in the resources

used in 2013 and 2014. The main one being the use of the 2013 collection and

qrels in 2014 to train the systems or predict good expansion terms (teams

DEMIR, RePaLi, SNUMEDINFO and UIOWA).

The use of external resources, and in particular thesauri/lexicons, to aid

the indexing of noun-phrases or to drive the whole retrieval process (concept

retrieval) has shown mixed results. This finding resonate with results from the

literature for both the task considered here, and other health related tasks [32,

52,68]. We discuss the use of domain resources for query expansion in greater

detail in the next section.

Details of teams’ approaches are provided above in the Summary of the

Methods Used by Task Participants section, Section 3.4.
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4.1.4 Effectiveness of Query Expansion

As can be seen from Tables 2 and 3, most teams performed some form of query

expansion (QE) in some of their runs.

We distinguish two main approaches: corpus-based QE and concept-based

QE. In this section we describe the approaches participants used, and analyze

their results from these perspectives.

Corpus-based expansion involves using a document collection to expand

the query to add the most salient related terms to the query. The collection

used can be the task collection, already indexed for retrieval, or an external

collection, often on the same domain or topic.

– In 2013, three teams used corpus-based QE: teams UOG.Tr, QUT-TOPSIG,

and MAYO. While QUT-TOPSIG only used the discharge summaries as

a resource, the other two teams used the task collection, as well as other

related collections such as the TREC Medical Records, TREC genomics,

etc. collections (details can be found in Table 2). Teams UOG.Tr and QUT-

TOPSIG performed Pseudo Relevance Feedback (PRF), and team MAYO

a Mixture of Relevance Model.

– In 2014, five teams performed a PRF QE approach: teams CKSU, CUNI,

DEMIR, KISTI and UIOWA. They used the discharge summaries, the

task collection and various external collections. Team DEMIR used the

Kullback-Leibler divergence approach.

Concept-based expansion involves finding relevant related terms in knowl-

edge bases.

– In 2013, four teams experimented with concept-based QE: teams SNUMED-

INFO, THCIB, UTHealth and OHSU. They all use UMLS to select expan-

sion terms, with different selection strategies: preferred terms for identified

concepts, top-ranked terms given by the UMLS API concept identification

tool, or the sibling entry terms for identified concepts. Team SNUMED-

INFO also used the discharge summaries to filter out expansion terms.
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Team THCIB added to the UMLS preferred terms keywords automatically

added after human annotation of the queries.

– In 2014, seven teams performed concept-based QE. They all used UMLS

or MeSH to expand queries, with synonyms, preferred terms, descendants,

or similarity-based related terms (teams ERIAS, RePaLi, SNUMEDINFO,

and GRIUM). Some teams also used various weighting schemes or filtering

approaches to rank expansion terms.

In 2013, team AEHRC investigated a QE approach slightly different from

the two categories above, with spelling correction and acronym expansion.

Combined approaches involve expanding queries with both corpus- and

concept-based approaches. Three teams combined approaches: team MAYO

in 2013, and teams NIJMEGEN and ITLabDAIICT in 2014. In combination

with the mixture of relevance model, team Mayo also performed some concept-

based expansion, adding for each concept identified in the queries its MeSH

entry terms and its descendant nodes (they used the discharge summaries to

filter out non-relevant expansion terms). Teams NIJM and IRLabDAIICT,

combined corpus-based methods (PRF on the DS and a linear combination of

DS with query terms) with concept-based methods.

Figures 4a and 4b present a comparison of P@10 values for the baseline and

a run with QE. We chose to compare against the baseline a run with only QE

added if available, or with QE among other additions otherwise. When several

runs were available for selection, we chose the best performing one. Figure

4a shows that in 2013 three teams improved their baseline using QE, three

obtained lower results, and two teams obtained similar results. For the teams

who achieved an improvement, team MAYO achieved this by using concept-

based QE, and a mixture of relevance models combined, with the CUI indexed

as well. As all their runs except the baseline use QE, the improvement cannot

be assigned to any individual part of the process. Team AEHRC obtained an

improvement over their baseline by expanding the queries with acronyms and

spelling errors. Team THCIB improved over their baseline by expanding the
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queries with the UMLS synonyms and acronyms expanded. Team MEDINFO

obtained lower results by adding to the baseline QE with UMLS preferred

terms (filtering out the terms not relevant using the discharge summaries).

They only used the title of the topics in this experiment, but obtained very

similar results when using the description and narrative fields as well. Although

there is not much detail in their Working Notes paper, it appears that this

is the only addition to their baseline. Team UTHealth added to the VSM

retrieval model query expansion using the top-ranked concepts identified by

the UMLS API. They used the title, description and narrative fields as a

query for the baseline run as well as for the QE run. Team OHSU also used

concept-based expansion, adding to the queries MeSH sibling entry terms.

Team UOG.Tr and team QUT-TOPSIG, who obtained similar results, used

PRF based approaches.

Figure 4b shows that in 2014 almost all teams performance improved with

the addition of QE. While this cannot be systematically attributed to QE

(as many changes can be made from one run to another), such an attribu-

tion appears obvious for some runs. Ten teams achieved better results using

QE, which does not discriminate concept-based from corpus-based expansion.

Teams CUNI and DEMIR achieved an improvement with corpus-based meth-

ods, and teams ERIAS, RePaLi, SNUMEDINFO and GRIUM improved their

baseline by expanding their queries with related concepts. Only teams UIOWA

and IRLabDAIICT do not obtain any improvement over their baseline using

similar techniques. Team NIJM, by using both corpus- and concept-based ex-

pansion, showed that concept-based expansion on this dataset provided better

performance than corpus-based expansion, which was not the case in 2013.

From this set of experiments, concept-expansion appears to introduce noise

more so than contributing to retrieval effectiveness on 2013 queries, as most

teams observed a decrease in their results using this approach. However, the

opposite held true on 2014 queries, with most teams achieving improvement

over their baseline with the addition of concept-based expansion. Acronym

expansion appears to work well, since two teams obtained an improvement
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Fig. 4: P@10 for the baseline and the best performing run using query ex-
pansion for 2013 (left) and 2014 (right). The 95% confidence interval from the
mean is represented with error bars.

in performance using this technique. While we clearly observed an overall

improvement in system performances on the 2014 dataset compared to 2013,

it seems difficult to explain why concept-based expansion works better on

one set than the other. Possible explanations could be firstly that teams had

access to the 2013 dataset in 2014 and therefore could train their systems on

much bigger datasets; and secondly that the queries were much simpler, and

arguably closer to concepts in UMLS.

Further analysis would be required to generalize this experiment, but it is

not possible within the framework of this evaluation task, as we do not have

access to the teams’ systems, rather only the runs they have submitted.

We note that mixed findings about the effectiveness of query expansion in

health information retrieval have been reported in relevant literature. In par-

ticular, concept-based query expansion has been shown to be affected by the

risk of introducing noise within the reformulated query and that gains are pos-

sible if methods are finely tuned; this was found for methods evaluated within

the same task considered here [25,38,60] and within other health-related tasks,

such as cohort selection/health record search [1,32,35,74,72,77,75] and clini-

cal decision support [11,56].
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4.2 Analysis and Evaluation of the Datasets in the Light of the Campaign

In this section, we evaluate the task datasets in the light of the campaigns

and the participants’ results. In particular, we assess the reliability of the

collections and the quality of the relevance judgments.

4.2.1 Evaluation of the Dataset

Whenever a new test collection is introduced, there is a question about the

reliability of the test collection in distinguishing between systems. In general,

the more queries one has (i.e. the more test cases) the more confident one is

with regard to the reliability of the test collection. In domain specific bench-

marking such as CLEF eHealth, the cost of assessment is particularly high, so

the number of queries is generally relatively small. In this section therefore, we

consider the stability of the 2013 and 2014 CLEF eHealth IR benchmarks. We

follow the method recently introduced by Urbano, Marrero and Martin [61],

which is based on Generalizability theory, but also provides information re-

garding the more common Kendall Tau correlations.

Urbano et al’s method consists of two steps. First a G-study (generaliz-

ability study) estimates variance components based on existing data. Second,

a D-study (decision study) computes reliability indicators. For the 2013 and

2014 collections, Table 5 shows the parameters based on the existing data. The

first row shows the sample size, i.e. the number of runs (systems), queries, and

run-query pairs (interactions). The following rows show, for each of the above,

the variance components.

In calculating these values, for the 2014 collection we only considered the

English queries. We also had to eliminate 2 of the 35 runs because they had

not provided answers to all the queries.

Figure 5 shows the estimated Kendall Tau correlation and relative stabil-

ity of the collections, for different sizes of the query set, as well as the 95%

confidence intervals (shaded regions). Comparing the two collections we ob-

serve that the 2013 collection is more reliable than the 2014 collection. This is



30 Lorraine Goeuriot et al.

CLEF eHealth 2013 CLEF eHealth 2014

0 25 50 75 100 125 150 175 200
Number of Queries

0.5

0.6

0.7

0.8

0.9

1.0

Ke
nd

al
l T

au
 R

an
k 

Co
rre

la
tio

n

0 25 50 75 100 125 150 175 200
Number of Queries

0.75

0.80

0.85

0.90

0.95

1.00

Re
la

tiv
e 

St
ab

ilit
y

Fig. 5: Kendall Tau (top) and Eρ2 (bottom) estimates for the 2013 and 2014
eHealth test collection for NDCG@100.

explained by the data in Table 5. We know that reliability is related to three

components [37]: query set size, mean effectiveness scores, and variability of

scores. We observe that while the query set size is constant for the two years,

the mean effectiveness score and the variance are larger in 2013 compared with
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Table 5: G-study for the existing eHealth test collections for NDCG@100.

2013 2014
Systems Queries Interaction Systems Queries Interaction

Sample size 36 50 1800 33 50 1650
Mean Sq. 0.3214 1.2324 0.0213 0.0834 0.8197 0.0108
Variance 0.0060 0.0336 0.0213 0.0015 0.0245 0.0108
Variance(%) 9.851 55.225 34.924 3.947 66.781 29.372

2014. That means that in 2014, the collection has a harder time distinguishing

between runs, because the runs have smaller overall scores, and are tighter

together.

4.2.2 Documents and Relevance Assessment

Figure 6 shows the number of documents per query that were assessed, along

with their graded relevance distribution. For the 2014 task, these documents

correspond exactly to those that were pooled from the participants’ submis-

sions; for the 2013 task these documents include the pooled ones and those

that were identified as duplicates of pooled documents. These figures allow us

to analyse the diversity and coverage of the assessed pools of documents. For

the 2013 task, this analysis shows that all the queries have a roughly similar

amount of documents pooled, except for 2 queries (query 19 and 46), for which

the document pool is much larger. A first hypothesis to explain this finding

is that for these two queries, participants submitted runs that highly differ

in terms of documents that contribute to the pool. A further analysis of the

assessments for these queries reveals that this is not the case. The large num-

ber of documents assessed is explained by the fact that the collection contains

duplicate documents: for query 19 and 46, some documents that are largely

duplicated in the collection were pooled and assessed, thus producing a large

number of documents with relevance labels for these two queries.

For the 2014 task, the analysis highlights that, on average, more documents

were assessed than in the 2013 task (on average 124 documents per query in

2013 and 132 documents per query in 2014). The larger pool for the 2014 task
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Fig. 6: Amount of documents per query in the pool set, and distribution of
their graded relevance.

suggests that document rankings are more diverse (at least up to the pooled

depth) across participants than they were in the 2013 submissions. However,

the increase in pool size may also be due to the fact that more runs were

submitted (46 in 2013 and 62 in 2014) and that two more runs per participant

were pooled in 2014.
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The analysis of the 2014 assessments also highlights an increase in number

of relevant documents from the 2013 task: in particular it shows an increase

in the number of highly relevant documents. This may be due to a number

of reasons, for example: (1) the 2014 task considered easier queries (i.e. easier

for the retrieval systems to find highly relevant answers); (2) the professional

assessors were less stringent than the 2013 assessors in assigning the highly

relevant label; or (3) a genuine increase in the effectiveness of the submitted

systems. The third hypothesis can be ruled out as (almost all) similar systems

deliver different effectiveness in the two years. That is, the higher number

of relevant documents in 2014 may not mean that the systems participating

in that year were, overall, better than those used in 2013. The remaining

two hypothesis may be instead applicable and indeed the findings may be

explained by a mix of these two conditions. Changing the procedure used to

obtain queries in 2014 may have resulted in queries that refer to more common

conditions which may in turn be easier for a system to retrieve highly relevant

documents for. Similarly, recent studies have found that medical relevance

assessment is hard [29], and thus small changes in assessment conditions, like

the use of a different pool of assessors, as in 2014, may affect the results of the

assessment exercise.

Figure 7 shows the distribution of binary relevance (relevant/non relevant

document) for each query. The majority of queries in the 2013 task had more

documents judged as non-relevant than those in 2014. This finding confirms

the previous analysis that queries in the 2014 task were less challenging than in

the 2013 task, or that the change in type of relevance assessors influenced the

distribution of relevant/non relevant documents in the pool, or a mix of these

two hypothesis. Figure 8 shows the topics with highest and lowest percentage

of relevant documents for both collections.
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Fig. 7: Percentage of relevant and not relevant documents per query.

4.2.3 Effect of the Relevance of Non-assessed Documents on Participant

Results

The quality of relevance assessments and the depth of the pool of documents

assessed can affect how meaningful and reliable system-level IR benchmarking

results are. Typical IR evaluation tasks such as the ad-hoc retrieval tasks at

TREC and CLEF average between 100-200 assessed documents per topic. For
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Highest Percentage of Relevant Documents for CLEF eHealth 2013 and 2014 Collections

<query>
<id>qtest19</id>
<discharge_summary>11439-014138-DISCHARGE_SUMMARY.txt</discharge_summary>
<title>abnominal pain and helicobacter pylori and cancer</title>
<desc>is abdominal pain due to helicobacter pylori a symptom of cancer</desc>
<narr>cancer, helicobacter pylori and abdominal pain</narr>
<profile>A 60-year-old male who knows that helicobacter pylori is causing cancer and

now wants to know if his current abdominal pain could be a symptom of cancer</profile>
</query>

<topic>
<id>qtest2014.18</id>
<discharge_summary>11762-027273-DISCHARGE_SUMMARY.txt</discharge_summary>
<title>dizziness and hypotension</title>
<desc>How to prevent dizziness and hypotension?</desc>
<narr>The document should contain information about hypotension and dizziness.</narr>
<profile>This 63 year old lady lives in a group home due to her mental illness.

She fainted and had to visit the hospital. Now that she is back home, her caregivers
want to know how they could best prevent the fainting occurring again. </profile>

</topic>

Lowest Percentage of Relevant Documents for CLEF eHealth 2013 and 2014 Collections

<query>
<id>qtest8</id>
<discharge_summary>04266-000520-DISCHARGE_SUMMARY.txt</discharge_summary>
<title>Acidosis and metastasic adeno carcinoma</title>
<desc>what is the connection between acidosis and metastasic adeno carcinoma</desc>
<narr>Acidosis and metastasic adeno carcinoma</narr>
<profile>A 76-year old man who dies from metastatic adeno carcinoma. The family is
wondering about the asidocis and its connection with carcinoma.</profile>

</query>

<topic>
<id>qtest2014.33</id>
<discharge_summary>16994-022078-DISCHARGE_SUMMARY.txt</discharge_summary>
<title>Repiratory failure and CHF</title>
<desc>What are the connections between respiratory failure and CHF? </desc>
<narr>Relevant documents should contain information about respiratory

failure and CHF.</narr>
<profile>The patient is a 68 years old woman who has suffered from CHF for

a long time. Now she was taken to the hospital because of respiratory failure
and she wants to know about the connection between these two maladies.</profile>

</topic>

Fig. 8: Topics qtest19 and qtest2014.18 had the highest percentage of relevant
documents (91.5% and 93.5%, respectively for 2013 and 2014). Topics qtest8
and qtest2014.33 were the ones with lowest percentage of relevant documents
(only 1.4% and 4.8%, respectively for 2013 and 2014).
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the CLEF eHealth IR task, there are 37.16 assessed documents per topic on

average for a pool depth of 10 (1858 relevant documents in total), taken from

a subset of the submitted runs.

To investigate if and how the system performance would change with more

complete relevance assessments, we conducted experiments which automati-

cally estimate missing relevance assessments. For our experiments, we compare

three different strategies of re-assessing documents with missing relevance in-

formation for relevance:

– A: All documents with missing relevance information are assumed to be

non-relevant. This is the standard approach used in IR evaluation cam-

paigns.

– B: All documents with missing relevance information are assumed to be

relevant. This approach corresponds to the worst-case situation arising

from incomplete relevance assessment.

– C: The same number of documents which is known to be relevant for a

given topic is assumed to be relevant. This approach corresponds to the

observation that for topics with few relevant documents, few additional

relevant documents can be found when increasing the pool size, while for

topics with many relevant documents, typically many more can be found

[21,63,65].

We compute the extended relevance information (qrels) for a pool depth of

10, 20, 50, 100, 200, and 500 documents and compare the system performance

for the three approaches (i.e. corresponding to A10, B10, C10, etc.). Results

are presented in Tables 6 and 7. For brevity, only results for the run with

the highest MAP for each team are shown. Note that results for method A

correspond to the results from the original runs. Also note that for a large pool

size, the assumption that all previously unassessed documents are relevant is

unrealistic.

It has been noted that the missing relevance information may make the

evaluation of sophisticated methods such as automatic query expansion more
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Table 6: Experiments using automatic reassessment of documents with miss-
ing relevance information for reassessment strategy A and B (BL = baseline
results).

Run ID BL A10 A20 A50 A100 A200 A500 B10

eHealth-bl.en TFB 0.265 0.298 0.216 0.229 0.249 0.255 0.221 0.265
eHealth-bl.en T 0.304 0.307 0.240 0.256 0.278 0.279 0.234 0.304

MEDINFO.1.3 0.313 0.309 0.244 0.271 0.291 0.294 0.247 0.313
QUT-TOPSIG.1.3 0.201 0.198 0.173 0.187 0.209 0.222 0.202 0.201
THCIB.6.3 0.116 0.108 0.032 0.011 0.006 0.003 0.001 0.116
KC&RA.1.3 0.267 0.265 0.218 0.244 0.266 0.270 0.230 0.267
Mayo.2.3 0.311 0.305 0.248 0.267 0.289 0.296 0.251 0.311
UTHealth.1.3 0.148 0.145 0.097 0.074 0.049 0.021 0.001 0.148
OHSU.5.3 0.100 0.096 0.075 0.069 0.055 0.036 0.017 0.100
teamAEHRC.5.3 0.273 0.267 0.206 0.223 0.239 0.244 0.219 0.273
UOG.Tr.1.3.res 0.244 0.243 0.203 0.229 0.253 0.262 0.227 0.244

difficult, as new documents with unknown relevance are found. Even if new

proposed methods would in fact significantly improve efficiency over a baseline

approach, this increase in effectiveness might not be noted due to missing rel-

evance information in the benchmark data. In particular, it was argued before

that experiments with blind relevance feedback or query expansion did not

show a significant improvement in performance due to incomplete or missing

relevance information [45]. Our analysis shows that for all three strategies in-

vestigated, this is clearly not the case (cf. baseline run with baseline run with

blind relevance feedback in the first two lines in Tables 6 and 7)
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Table 7: Experiments using automatic reassessment of documents with missing
relevance information for reassessment strategy C (BL = baseline results).

Run ID BL C10 C20 C50 C100 C200 C500

eHealth-bl.en TFB 0.255 0.294 0.207 0.187 0.175 0.163 0.148
eHealth-bl.en T 0.304 0.307 0.235 0.215 0.196 0.181 0.166

MEDINFO.1.3 0.313 0.309 0.240 0.220 0.206 0.192 0.175
QUT-TOPSIG.1.3 0.201 0.198 0.163 0.145 0.136 0.123 0.114
THCIB.6.3 0.116 0.108 0.058 0.058 0.058 0.058 0.058
KC&RA.1.3 0.267 0.265 0.210 0.191 0.176 0.163 0.146
Mayo.2.3 0.311 0.305 0.245 0.220 0.206 0.191 0.173
UTHealth.1.3 0.148 0.145 0.103 0.093 0.085 0.080 0.075
OHSU.5.3 0.100 0.096 0.075 0.067 0.060 0.056 0.053
teamAEHRC.5.3 0.273 0.267 0.209 0.190 0.176 0.163 0.151
UOG.Tr.1.3.res 0.244 0.243 0.193 0.173 0.163 0.151 0.136

5 Lessons Learned from the Evaluation Campaign in 2013 and 2014

In this section we gather together the lessons learned from the first two years

of the CLEF eHealth IR task. We first detail the lessons learned from the

participating teams systems; we then present the lessons learned from the

analysis and evaluation of the campaign datasets.

5.1 Lessons Learned from the Analysis of the Runs and Teams Results

The analysis of the baseline runs submitted by the participants showed that

IR using language modelling (LM) with Dirichlet Smoothing gave the best

performance overall. This was observed in 2013 and 2014 on both the partic-

ipating teams baselines and the task baselines. Moreover, observation of the

submitted baselines confirms that it is essential for such IR evaluation tasks

to provide strong baselines, both for the organizers (to set up a high-level

competition) and for the participants.

The discharge summaries (DS) were used by 5 teams out of 9 in 2013 and 4

teams out of 14 in 2014. In 2013, only one team obtained their highest ranked

run using the summaries (and even in this case it is not possible to attribute
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this result to the DS). All other participants obtained similar or lower results

when using the DS. In 2014, nearly all teams obtained comparable results

with and without the DS. In 2013, the disorders picked to build the queries

were selected randomly from within the DS, while in 2014 the main one was

selected. The only difference found in the results is that in 2013, the use of

DS on average significantly degrades the results while it does not affect them

in 2014. It appears that the DS does not bring useful contextual information

to the IR task. However, this could be explained by the fact that the dataset

itself might not be built properly for personalized/contextual IR: the queries

are very short, and the relevance assessment only takes into account minimal

elements of the DS.

All teams used external resources in their systems. These resources were

used for three purposes: indexing, expansion and re-ranking. The resources

are from two main types: corpora (document collection, IR benchmarks) and

thesauri/lexicon. Most of the teams used external resources for the query ex-

pansion, while a few built concept-based indexes, and filtering or re-ranking

systems that proved to give good results.

The participating teams expanded their queries based on two approaches:

corpus-based approach (pseudo-relevance feedback) or concept-based approach.

The corpus-based approach generally increased the results, especially when

used with the same or a very similar document collection. The concept-based

approach generally decreased the results in 2013, but increased them on aver-

age in 2014 (while the techniques were very close). Methods to filter or weight

expansion terms appear to reduce the noise and improve the quality of the

expansion. With the vocabulary gaps and the constantly evolving medical ter-

minology, query expansion seems to be essential to medical IR.

Goeuriot et al. [17] conducted an analysis on the 2013 dataset and the

impact of query complexity on IR performance. The complexity of a query is

measured as the amount of specific medical entities it contains. They showed

that performance is affected by the query complexity, and that some systems

such as language models give better results on complex queries on average.
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5.2 Lessons Learned from the Evaluation of the Campaign Datasets

We first assessed the dataset reliability, based on the generalizability theory

and Kendall Tau correlation. We showed that the 2013 dataset was more

reliable than 2014’s, the reliability being based on the query set size, the mean

effectiveness score and the variability.

The analysis of the relevance judgments showed that 2014 queries had a

larger pool on average, which could be explained by the increased number of

runs submitted, or the fact that 2 additional runs per team were pooled. We

also observed an increase in the proportion of relevant documents in 2014. This

could be explained by the fact that the queries are simpler (confirmed by the

general higher performance of participant runs in 2014) or that the assessors

were less stringent. It is very difficult to achieve the exact same settings from

one year to another to build a dataset, which leads to such variations. While

they can hardly be avoided, they also make the task more interesting, but

ultimately we would hope to see consistent trends in terms of behavior of

retrieval algorithms from year to year.

Our 2013 experiment on the effect of medical expertise on relevance judg-

ment showed that the major disagreements were due to the nature and defini-

tion of relevance rather than the medical content, and that clearer guidelines

could lead to better agreement. The results of this experiment were used to

design better guidelines for the relevance judgment within the 2014 evaluation

campaign. Moreover, this task targets patients, so it is arguably feasible for

the relevance judgments to be made by IR experts, whose medical knowledge

is close to patients. This wouldn’t be the case with more specialized tasks such

as clinical or biomedical tasks.

The analysis of the effect of the relevance of non-assessed documents on

2013 participants’ results was conducted by observing the results of the partic-

ipants when the unassessed documents were considered as non-relevant (stan-

dard approach), relevant (worst-case scenario) or partly relevant (a subset).

For the three approaches, we observed only minor changes in the results. One
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could wonder if the amount of unjudged documents could have a negative ef-

fect on methods such as query expansion, aimed at finding additional relevant

documents. However, this experiment shows that unjudged documents might

not be the only reason that these methods degrade performance.

We did not perform an in depth analysis of assessors behavior for the

CLEF 2013 and 2014 collections. A follow up study from Palotti et al. [43]

that considered the CLEF 2015 collection (a newer collection stemming from

the lessons learned from the CLEF 2013 and 2014 collections investigated here)

further analyzed the relationship between assessor type (expert vs. layperson),

payment levels (paid vs. unpaid), query variations and relevance dimensions

(topicality and understandability). They also indicated the impact of these as-

pects on system evaluation in the presence of disagreements across assessments

obtained in the different settings.

6 Conclusions

This article provides a detailed analysis of the datasets and results of the 2013

and 2014 CLEF eHealth medical IR tasks. These evaluation tasks sought to

contribute to the better understanding of the effective evaluation of medical

IR for tasks based on realistic user information needs, and also to the identi-

fication of the current and potential contributions of established IR methods

and medically relevant knowledge resources to effective medical IR techniques.

As such, the article provides insights into IR techniques tuned to the support

of laypeople in their quest for health advice on the web. In addition, the article

documents and crystallizes the methodologies used for the creation of the two

CLEF eHealth IR 2013 and 2014 datasets, the main results obtained and the

main findings that emerged.

We conducted an analysis of the participating teams results from different

angles: which systems are applied as baselines; how discharge summaries are

integrated in the systems; which external resources are used; and if query

expansion is integrated and how. Then, we analyzed the task dataset in the
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light of the evaluation campaign: the reliability of the datasets; the relevance of

documents across queries and across datasets; the impact of medical expertise

on the relevance assessment conducted and its quality; and the effect of the

relevance of non-assessed documents on the participants results. This two-fold

study of the evaluation campaign over two years provides insight on technical

aspects of medical IR, such as the effectiveness of query expansion; about the

quality and characteristics of the CLEF eHealth IR datasets, such as their

reliability; and about other aspects of running an IR evaluation campaign in

the medical domain.
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33. Nesrine Ksentini, Mohamed Tmar, and Fäıez Gargouri. Miracl at CLEF 2014: eHealth

information retrieval task. In Proceedings of the ShARe/CLEF eHealth Evaluation Lab,

2014.



CLEF eHealth: Analysis of ad-hoc Medical IR Evaluation Campaigns 45

34. Johannes Leveling, Lorraine Goeuriot, Liadh Kelly, and Gareth J. F. Jones.

DCU@TRECMed 2012: Using ad-hoc baselines for domain-specific retrieval. In Pro-

ceedings of TREC 2012. NIST, 2012.

35. Nut Limsopatham, Craig Macdonald, and Iadh Ounis. Inferring conceptual relationships

to improve medical records search. In Proceedings of the 10th Conference on Open

Research Areas in Information Retrieval, pages 1–8, 2013.

36. Nut Limsopatham, Craig Macdonald, and Iadh Ounis. University of Glasgow at CLEF

2013: Experiments in eHealth Task 3 with Terrier. In Proceedings of the ShARe/CLEF

eHealth Evaluation Lab, 2013.

37. Jimmy Lin. Evaluation of resources for question answering evaluation. In Proceedings of

the 28th Annual International ACM SIGIR Conference on Research and Development

in Information Retrieval (SIGIR 2005), pages 392–399, 2005.

38. Xiaojie Liu, Jian-Yun Nie, and Alessandro Sordoni. Constraining word embeddings

by prior knowledge–application to medical information retrieval. In Asia Information

Retrieval Symposium, pages 155–167. Springer, 2016.
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