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Abstract
Query performance prediction (QPP) has been studied extensively in the IR community 
over the last two decades. A by-product of this research is a methodology to evaluate the 
effectiveness of QPP techniques. In this paper, we re-examine the existing evaluation meth-
odology commonly used for QPP, and propose a new approach. Our key idea is to model 
QPP performance as a distribution instead of relying on point estimates. To obtain such 
distribution, we exploit the scaled Absolute Ranking Error (sARE) measure, and its mean 
the scaled Mean Absolute Ranking Error (sMARE). Our work demonstrates important sta-
tistical implications, and overcomes key limitations imposed by the currently used corre-
lation-based point-estimate evaluation approaches. We also explore the potential benefits 
of using multiple query formulations and ANalysis Of VAriance (ANOVA) modeling in 
order to measure interactions between multiple factors. The resulting statistical analysis 
combined with a novel evaluation framework demonstrates the merits of modeling QPP 
performance as distributions, and enables detailed statistical ANOVA models for compara-
tive analyses to be created.
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1 Introduction

The information retrieval (IR) community has long recognized the importance of apply-
ing statistical tests to evaluation results. Although best practices continue to evolve, con-
ference and journal guidelines, and discussion papers including those of Fuhr (2017) and 
Sakai (2020) have led the community to appreciate the importance of a more theoretically 
grounded evaluation. Practitioners in IR have been urged over the years to include sound 
analyses using statistical tests of significance or confidence intervals in submitted man-
uscripts. While this has led to higher quality analytical comparisons in many IR-related 
fields, not all areas have adopted the practice. An example of a common IR problem that 
might benefit from alternative evaluation techniques is Query Performance Prediction 
(QPP).

The goal of QPP is to estimate the effectiveness of a retrieval system in response to a 
query when no relevance judgments are available (Carmel & Yom-Tov, 2010). The most 
widely-used method for evaluating QPP approaches is based on the strength of a relation-
ship between per-topic prediction scores, and the actual per-topic system effectiveness as 
measured using a standard IR effectiveness metric, usually Average Precision (AP). The 
association is measured using a correlation coefficient, with different papers reporting the 
Pearson (linear) correlation, Spearman’s rank correlation, or Kendall’s � . A QPP approach 
that achieves a higher correlation value than another is taken to be the superior approach. 
This evaluation method compares QPP effectiveness at a very high level, with the perfor-
mance of a QPP approach over a whole set of topics being summarized by a single correla-
tion coefficient as a point value.

In order to statistically validate the results two alternatives are available. First, we can 
test whether or not the correlation between a predictor and the retrieval results is sig-
nificantly different from zero  (He & Ounis, 2004; Zhou & Croft, 2006, 2007; Cronen-
Townsend et  al., 2002; Chifu et  al., 2018; Diaz, 2007; Zhao et  al., 2008; Carmel et  al., 
2006; Cummins, 2014; Hauff et  al., 2008; Mothe & Tanguy, 2005; Shtok et  al., 2010). 
However, this validation approach just tells us how reliable the conclusions are for a single 
QPP method, and does not allow two or more QPP approaches to be directly compared. 
Second, by relying on repeated randomized topic sampling, we can test whether or not 
the correlation coefficients for two different QPP methods are significantly different from 
each other. A statistically appropriate method to test the latter would rely on Fisher’s z 
transformation of sample correlation coefficients. In fact, this approach was previously sug-
gested by Hauff et al. (2009) and again more recently by Roitman (2020) to more reliably 
test for significant differences in QPP model performance. However, this practice has not 
been adopted in published QPP work to date. Instead, a Student’s t-test for the difference of 
means of the correlated correlation coefficients is currently the preferred approach (Roit-
man, 2018a; Zamani et al., 2018; Zendel et al., 2019). However, it is important to note that 
both of these approaches are fundamentally different from the pair-wise significance test 
used for system retrieval effectiveness, which is now common practice in IR evaluation 
exercises.

Motivated by these observations, we re-examine how QPP effectiveness can be analyzed 
using a more fine-grained approach— by modeling the performance of QPP techniques as 
distributions. This approach has also previously been applied successfully in system evalu-
ation exercises. A distribution-based model can be constructed as follows. First, an esti-
mate of the performance for each system-topic combination is computed using a traditional 
performance measure, such as AP. Then, all of the topics for a collection are used to model 
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the performance distribution. Note that this is fundamentally different from a classical QPP 
evaluation approach. Indeed, even when various sampling techniques (e.g., randomization 
or bootstrap) are currently used in QPP, this is a re-sampling of topics, and leads to a new 
(aggregated) point estimate, e.g., Kendall’s � , for that sample. The different re-samples are 
then used to compute an expectation and a confidence interval for the point estimate. In 
contrast, when randomization/bootstrap techniques are used for the evaluation of retrieval 
effectiveness (Smucker et al., 2007), it is topics that are re-sampled; for each topic a per-
formance score such as AP is computed, and a distribution of performance for that sample 
is obtained. A summary of this distribution, e.g., a mean or a confidence interval, is then 
computed, and finally the different re-samples are used to compute a further expectation 
and confidence interval for the summary.

In this work, we propose a methodology similar to the latter approach. Our evalu-
ation approach has several appealing properties: it allows formal inferential statistics to 
be applied, which generalizes the results to the entire population of topics; it allows the 
behavior of a QPP approach to be more clearly isolated, for example through confidence 
intervals; and, it enables factor decomposition, which in turn allows us to measure the rela-
tive contributions to observed effectiveness systematically. In particular, we compare the 
performance with the distance between the rank predicted by a QPP model for a query and 
the rank of the query using a given traditional performance measure. Being a measure of 
the rank error made by a predictor, we call the above measure scaled Absolute Ranking 
Error (sARE). So, we now have a measure of error for each of the topics, given a specific 
predictor. To have a measure of the overall quality of the predictor, we can average sARE 
over all topics and compute the scaled Mean Absolute Ranking Error (sMARE). We also 
incorporate recent work in retrieval effectiveness on query variation and reformulation for 
each topic  (Bailey et  al., 2016, 2017; Benham et  al., 2019; Thomas et  al., 2017; Zendel 
et al., 2019) into our framework, which allows a finer-grained sampling of retrieval perfor-
mance, and allows us to estimate interaction between systems, topics and query formula-
tions, which was not possible using only single pointwise estimates.

Our work focuses on two closely related research questions:

– RQ1: How can detailed statistical analysis and testing be applied to QPP evaluation 
exercises?

– RQ2: What factors contribute to improving or reducing the performance of a QPP 
model?

This is an extended version of (Faggioli et al., 2021), awarded “Best Paper" at the Euro-
pean Conference on Information Retrieval, 2021 which proposed a novel evaluation frame-
work for QPP, based on the sARE measure, and models QPP prediction performance as a 
distribution computed over the evaluation topics.

The sARE-based approach is a statistically grounded evaluation methodology that can 
be used by practitioners to perform comprehensive comparative analyses of the effective-
ness of new QPP prediction techniques.

1.1  Novel contributions

In this work, we present some novel contributions with respect to Faggioli et al. (2021). 
We discuss the performance differences observed at the query level based on different 
performance characteristics (“easy” versus “hard” queries determined by system level 
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effectiveness of AP for example) to demonstrate how predictors might be more compre-
hensively studied in the future. We also present, as a new contribution, further examples of 
the capabilities and applications of the proposed framework. In particular, we include an 
additional ANOVA analysis to show and compare the performance of QPP models based 
on multiple factors. This provides new insights and observations into how QPP algorithms 
behave in our original study. It also allows us to provide practitioners with new techniques 
to understand, debug and explain the performance of new QPP approaches. Finally, we 
include a detailed experimental study of ties as well as a comprehensive analysis of several 
alternative formulations to measure the rank error in order to ensure that we are recom-
mending the most appropriate tie-breaking approach and rank error formulation.

2  Related work

Retrieval performance can vary widely across different systems, even for a single 
query (Carmel & Yom-Tov, 2010; Culpepper et al., 2021). This has resulted in a large body 
of work on QPP, which is divided into two common approaches. Pre-retrieval predictors 
analyze query and corpus statistics prior to retrieval (Cronen-Townsend et al., 2002; Hauff 
et al., 2008; He & Ounis, 2004; Mothe & Tanguy, 2005; Scholer et al., 2004; Zhao et al., 
2008) and post-retrieval predictors that also analyze the retrieval results (Aslam & Pavlu, 
2007; Roitman, 2018b; Shtok et al., 2016; Zamani et al., 2018; Zhou & Croft, 2006; Car-
mel et al., 2006; Cummins, 2014; Diaz, 2007; Amati et al., 2004). Predictors are typically 
evaluated by measuring the correlation coefficient between the AP values attained with 
relevance judgments and the values assigned by the predictor. Such evaluation method-
ologies are based on a point estimate and have been shown to be unreliable when compar-
ing multiple systems, corpora and predictors (Hauff et al., 2009; Scholer & Garcia, 2009). 
Hauff et al. (2009) demonstrate that higher correlation does not necessarily attest to bet-
ter prediction, and used Root Mean Square Error (RMSE) in their evaluation. Hauff et al. 
applied methods from Meng et al. (1992) to compare two or more correlation coefficients, 
and argued that to test the significance of differences in correlation between the predic-
tors, Fisher’s z transformation should be used and the Confidence Interval (CI) should be 
reported. When computing the CI for Pearson’s linear correlation in the evaluation using 
multiple previously reported pre-retrieval predictors, they found that many of the predic-
tors had overlapping CIs, and concluded that they were not significantly different from the 
best performing predictor. Hauff et al. focused on prediction of normalized scores that can 
be compared to AP using linear correlation as measured with a parametric statistic. In this 
work, we focus on ranking the queries based on the retrieval effectiveness, which is analo-
gous to a rank-based correlation given by Kendall’s � as our reference for the existing eval-
uation framework, but many other alternatives are possible. We chose to use a rank-based 
correlation as it is a non-parametric statistical method, and hence makes no assumptions 
about the underlying distributions of the data.

Also of interest, recent work using query variations for QPP  (Thomas et  al., 2017; 
Zendel et al., 2019; Di Nunzio & Faggioli, 2021) has demonstrated that the relative pre-
diction quality of predictors can vary with respect to the effectiveness of the queries 
used to represent the topics, and we explore such observation further using advanced 
statistical instrumentation. One principled approach that can be used in IR evaluation is 
ANOVA  (Maxwell & Delaney, 2004; Rutherford, 2011). ANOVA is commonly used to 
assess the presence of statistically significant differences in mean performance observed 
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when using different experimental conditions. This technique can be operationalized 
as a General Linear Mixed Model (GLMM), where a response variable, called Data, is 
linearly modeled into two parts: the experimental conditions (the Model) and the Error: 
Data = Model + Error . The Error represents that part of the variance in the Data that the 
Model cannot account for. The ANOVA approach is particularly useful in our work as it 
allows us to break down the variance observed in the data, assigning it to the factors that 
caused it  (Banks et  al., 1999; Carterette, 2012; Voorhees et  al., 2017; Ferro & Silvello, 
2016; Ferro et al., 2019; Robertson & Kanoulas, 2012; Tague-Sutcliffe & Blustein, 1994; 
Faggioli and Ferro, 2021). The Model often includes a subject component (which in IR 
evaluation often corresponds to the topic), one or more factors, which are the different 
experimental conditions (either the entire system, or its components—e.g., the stemmer, 
the stoplist and the QPP model), and possibly their interactions. If all the possible combi-
nations of factors are applied to all subjects, this is a Factorial/Crossed Design, and its fac-
tors are called Crossed Factors. Specific factors might be nested inside others: in the fol-
lowing analyses, query formulations are a nested factor of the topic, since each formulation 
represents a single topic and cannot be used to represent others. To compare the effect size 
of different factors, which cannot be done by looking only at the F-statistic or p-value, the 
Strength of Association (SOA) is reported, measured as �2 , and is the factor significance, 
bounded between [0, 1]. The larger �2 is, the greater the impact is of factor levels to the 
response variable.

3  Experimental analysis

In this section we detail the experiments carried out to demonstrate the advantages of 
using the sARE measure to evaluate QPP models. In Sect. 3.1 we describe the experimen-
tal setup. Section 3.2 contains details on the traditional evaluation of QPP models, used 
as a baseline for the subsequent analyses. Section  3.4 contains the analysis of how the 
framework behaves when using several approaches to compute the error and to break ties. 
In Sect.  3.5 we describe how to use the sARE measure to compare systems. Finally, in 
Sect. 3.6, we include observations that can now be made on QPP models and query formu-
lations when performing an evaluation using ANOVA and the sARE measure.

3.1  Experimental setup

In our analyses, we use the TREC Robust 2004 (Robust04) Ad Hoc (Voorhees, 2004) col-
lection. The Robust04 ad hoc track consists of approximately 528K documents from TREC 
disks 4 & 5, minus the Congressional Record from the TIPSTER corpus, and contains 249 
topics with at least one relevant document in the original TREC relevance judgments. We 
enrich the set of queries for the corpus using publicly available human-curated query refor-
mulations for each topic (Benham and Culpepper, 2017).1 Our experiments use a Grid of 
Points (GoP) of runs as described by Ferro and Harman (2010), using 4 different stopword 
lists (atire, zettair, indri, lingpipe), plus the no stop (not applying stop-
word removal) approach and 2 different stemmers, (lovins, porter) plus a nostem 
approach. The indexes are constructed from the raw postings lists created with the Apache 

1 http:// culpe pper. io/ publi catio ns/ robust- uqv. txt. gz.

http://culpepper.io/publications/robust-uqv.txt.gz
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Lucene search engine,2 and the Common Index File Format (CIFF) (Lin et al., 2020). All 
runs were produced using our own implementation of the query-likelihood model and use 
Dirichlet smoothing ( � = 1000 ), as described originally by Zhai and Lafferty (2001). Each 
run was repeated 15 times. We test 16 QPP models ( 12 + 4 UEF-based methods) in our 
analyses, all of which are summarized in Table 1. Our goal was to choose representative 
and well known system configurations and QPP models, and the evaluation framework is 
not limited to any specific configuration. It can easily be extended by others for further 
experiments in the future. In total, 240 different predictor-system combinations were gener-
ated for the Robust04 collection. The pre-retrieval approaches are parameter-free and do 
not require tuning. For the parameters of the post-retrieval predictors we used fixed settings 
that have been demonstrated to be effective for the Robust04 collection previously (Shtok 
et  al., 2012, 2010; Tao & Wu, 2014). We apply Average Precision (AP) to measure the 
effectiveness of the different retrieval pipelines, as our primary goal is to be consistent with 

Table 1  A summary of QPP models used in this work

QPP model Description

Pre-retrieval
 SCQ  by Zhao et al. (2008) Measures similarity based on cf.idf to the corpus, summed 

over the query terms
 AvgSCQ  by Zhao et al. (2008) SCQ normalized by the query length
 MaxSCQ by Zhao et al. (2008) The query term with maximal SCQ score
 SumVAR by Zhao et al. (2008) Measures the cf.idf variability of the query terms in the 

corpus
 AvgVAR by Zhao et al. (2008) Variability normalized with the query length
 MaxVAR by Zhao et al. (2008) The query term with maximal variability
 AvgIDF by Cronen-Townsend et al. (2004) The mean idf value of the query terms
 MaxIDF by Scholer et al. (2004) The query term with maximal idf value

Post-retrieval
 Clarity  by Cronen-Townsend et al. (2002) Measures the divergence between the Language Model (LM) 

constructed over top documents in the result list to the LM 
of the entire corpus

 NQC  by Shtok et al. (2012) Measures the standard deviation of the top documents scores 
in the retrieval list

 WIG  by Zhou and Croft (2007) Measures the difference between the mean retrieval score 
of the top retrieved documents and the score of the entire 
corpus

 SMV  by Tao and Wu (2014) Scores the queries based on a combination of the scores 
standard deviation and magnitude

 UEF  by Shtok et al. (2010) Prediction framework that is based on the similarity of the 
initial result list with the list re-ranked using a Relevance 
Model (RM), scaled by an estimator of the RM quality. In 
this work we scale the RM with the existing post-retrieval 
predictors: UEF(Clarity), UEF(NQC), UEF(WIG) and 
UEF(SMV)

2 https:// lucene. apache. org.

https://lucene.apache.org
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previous evaluation exercises, as AP was the most common effectiveness metric used in 
prior QPP work.

3.2  Traditional QPP evaluation using correlations

Prior work on QPP has relied primarily on a single evaluation paradigm. Given a set of top-
ics (information needs), where each topic is represented by a single query, a single retrieval 
method, and a single document corpus, the prediction quality of the predictors is evaluated 
as follows: 

1. Retrieval effectiveness of the queries is measured with a common IR metric, usually 
AP or possibly Normalized Discounted Cumulated Gain (nDCG), to induce a ranking 
of the queries. This ordering serves as the ground truth in the evaluation process.

2. The QPP method is applied to the queries, which generates a candidate list where the 
queries are ranked by their prediction values.

3. A correlation coefficient is computed between the ground truth list and the candidate 
list produced by the predictor.

4. The correlation coefficients of different predictors are then compared, with an underlying 
assumption that a higher correlation value attests to the superior quality of a predictor.

The correlation coefficient is usually reported as Pearson’s r for linear correlation, Kend-
all’s � , or Spearman’s � for the monotonic rank correlation.

Figure 1 shows the performance of 16 different QPP models when using this common 
evaluation approach – Kendall’s � correlation in this case – with 95% confidence intervals 
shown as well. In this example, the results are generated for a specific retrieval pipeline, 
using the indri stoplist and porter stemmer. To compute the 95% confidence inter-
vals, we used a bias-corrected and accelerated bootstrap procedure with 10, 000 samples. 
Observe that when using title queries only (orange bars), there is a large degree of over-
lap between the different QPP approaches. Similar results were observed when using all 
of the other pipelines described in this work. Conducting pairwise comparisons on the 
data from Fig. 1 (title queries only), a bootstrap hypothesis testing (Efron and Tibshirani, 
1994) shows that 57 pairs of predictors are statistically significantly different at signifi-
cance level � = 0.05 , out of 120 total pairs of QPP models (47.5%). In particular, among 
the best performing predictors, UEF(Clarity) is not statistically different from UEF(WIG), 
UEF(NQC), UEF(SMV), Clarity and NQC. A large number of statistical “ties” between 

Fig. 1  Prediction quality of 
the selected QPP models on 
Robust04 (Confidence Intervals 
computed with Kendall’s � ), 
using either title queries or all 
available formulations (Color 
figure online)
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different QPP models may be caused by one of the following two reasons: i) methods 
are in fact equal and there has been little to no improvement since Clarity was proposed 
by Cronen-Townsend et  al. (2002); or ii) our current evaluation strategy is not powerful 
enough to measure any difference between the models. We are more inclined to believe 
our second hypothesis, which is inline with the observations of Hauff et al. (2009). That 
is, using confidence intervals can make it difficult to conclusively determine which QPP 
system is the best performing one. Figure 2 shows a heat-map plot of the pairwise ranking 
similarities between the different QPP methods. The similarity is measured with Kendall’s 
� correlation (Kendall, 1945). Given two sorted lists of real values, the original Kendall’s 
� (Kendall, 1938)3 is defined as follows:

Defining C as the proportion of concordant pairs, we can show that (see Appendix A):

(1)� =
number of concordant pairs − number of discordant pairs

total number of pairs

C =
� + 1

2

Fig. 2  The Kendall’s � correlation coefficient computed between several different QPP predictors. The cor-
relation is calculated over topics, which are represented by TREC title queries on the Robust04 indri-porter 
pipeline (Color figure online)

3 The original formula has no adjustments for ties in the rankings, it is mentioned here for its simplicity.



102 Information Retrieval Journal (2022) 25:94–122

1 3

which is an intuitive approximation of the ratio of agreement. Note there are later formula-
tions of Kendall’s � which do account for ties automatically. This distinction is discussed in 
greater detail in the Appendix.

For � = 0.6 , C = 0.8 ; 80% of the topic pairs are ranked identically using either predictor. 
Figure 2 further supports this result as all of the UEF based predictors show no significant dif-
ferences from each other in the current setup. However, the noticeable drop in the similarity of 
the NQC and Clarity methods when compared to UEF(Clarity) suggests that a more powerful 
statistical analysis would yield a different outcome. This is a key motivation for our work and 
will be examined in greater detail.

In addition to using the traditional title queries, we also explore the scenario of using mul-
tiple query formulations for a topic, which allows us to produce replicas for the same experi-
mental conditions (i.e., the retrieval system or the QPP model used) on the same subject (i.e., 
the topic). While the correlation is generally lower when using multiple topic formulations 
(the blue bars shown in Fig. 1), there is a high degree of similarity between the ordering of the 
QPP models for multiple query formulations to the ordering for title-only (Kendall’s tau cor-
relation between using title-only versus multiple queries per topic is 0.98, p < 0.0001 ). Notice 
that, to prevent the number of formulations for each topic from influencing the result, we ran-
domly sample each topic using 5 different formulations. Overall, the statistically induced boot-
strap intervals are substantially larger if a traditional title-only evaluation approach is used, 
which makes it less suitable for determining if any single system is a clear winner, while using 
multiple queries does induce smaller intervals and better discriminative power between the 
QPP approaches. Even if, as shown, using query variants does not dramatically impact the 
ranking of QPP models, it is nevertheless important to consider whether adding variants has 
an impact on the distribution of the raw AP scores. The Mean Average Precision (MAP) val-
ues are 0.211 and 0.254 for the set of all query formulations and title queries only, respec-
tively, and thus are quite consistent. Figure 3 shows the Probability Density Function (PDF) 
for the AP scores for the two scenarios – title-only (red line) and multiple queries per topic 
(blue line). The Kullback-Leibler Divergence (KLD), a measure of the distance the two dis-
tributions, is 0.039, which suggests there is a high similarity between the two distributions. In 
summary, the distributions are similar and thus the introduction of the multiple query formula-
tions does not appear to skew the overall AP score distribution.

3.3  ANOVA modeling and analysis of QPP

To support a more detailed analysis of QPP methods and associated factors, we now 
explore the use of ANOVA, which can be achieved by modifying steps 3 and 4 of the 

Fig. 3  A comparison of the AP 
score distributions of the title-
only queries and multi-query 
topic formulations (Color figure 
online)
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traditional QPP evaluation process shown above. Instead of computing the correlations 
between the complete lists, we measure the difference, for each query, in the rank posi-
tion assigned by a QPP method and the ground truth rank position assigned by AP. Ties in 
ranks are broken using the average of the ranks span, as is the default in many statistical 
applications (Gibbons and Chakraborti, 2011). Since the choice of tie breaking rule could 
have an impact on the results, several possible approaches are evaluated and discussed in 
greater detail in Sect. 3.4. Observe that this approach transitions us from point estimates of 
a single correlation value for the two lists over a whole set of topics to a distribution of the 
rank differences between the two lists for each query in the set. In order to scale the scores 
to the range [0, 1] we divide them by the number of samples. The error, labeled as AP 
induced scaled Absolute Rank Error (sARE-AP), for each query is:

where rp
i
 and re

i
 are the ranks assigned by the predictor and the evaluation metric respec-

tively for query i; Q is the set of queries. If we need the single point estimate of the predic-
tion quality for each predictor P , we can calculate the AP induced scaled Mean Absolute 
Rank Error (sMARE-AP) as follows:

Note that sMARE-AP can be seen as a derivation of Spearman’s Footrule distance, making 
it a distance metric for the full rankings instead of a correlation. Among the properties of 
Spearman’s Footrule distance, Diaconis and Graham (1977) list that it is bounded between 
[0, ⌊0.5n2⌋ ], where n is the length of the ranking. Since both sARE-AP and sMARE-AP are 
normalized by the number of queries, sMARE-AP is bounded between [0, 0.5].

To demonstrate the agreement between the proposed evaluation method with existing 
evaluation practices from a high-level (point estimate) perspective, we use the QPP meth-
ods over the Robust04 title queries. Figure 4 plots the ranking of the predictors, based on 
the median of the point estimates for each predictor for all 15 system configurations (which 
is simply the median of the Kendall’s � correlation for the traditional evaluation approach), 

(2)sARE-AP(qi) ∶ =
|rp

i
− re

i
|

|Q| ,

(3)sMARE-AP(P) ∶ =
1

|Q|
∑

qi∈Q

sARE-AP(qi).

Fig. 4  Prediction quality when measuring correlation with Kendall’s � and sMARE-AP for Robust04 title-
only queries and 15 different system configurations. The line inside the interquartile range (IQR) is the 
median, and the white square is the mean (Color figure online)
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and the median of sMARE-AP for our evaluation approach. Each predictor consists of 15 
values that represent the prediction quality. Though the directionality of the two approaches 
is inverted, the ranking of the predictors clearly agrees on the overall rank ordering. The 
corresponding box-plots also demonstrate the similarity of the variance estimate. In order 
to validate the agreement we computed the Pearson’s correlation coefficient over the point 
estimates for the predictors for each of the 15 system configurations. The resulting correla-
tions coefficients were all −0.99 or higher ( p < 0.0001 for each).

3.4  Computing the measure of deviation of an optimal rank ordering

When defining a measure to accurately represent the distance between the rank of a query 
w.r.t the rank of all queries when sorted in decreasing order by their AP score and their 
associated QPP score, two choices need to be made: the tie-breaking strategy and the 
approach used to quantify the deviation from the optimal rank.

3.4.1  Tie‑breaking strategies

The sMARE framework is based on computing differences between the expected and 
observed ranks. The expected rank corresponds to the rank that the query achieves if we 
sort them by performance. The observed rank, on the other hand, is the rank assigned 
considering the prediction of a given QPP approach. Since we are considering rankings 
induced by scores for either observed or predicted performance, we can expect that two 
or more queries will obtain the same observed/predicted scores. In such cases, we must 
decide how to assign the value of the rank for each of the queries. Let Qt be a set of queries 
that includes either identical QPP or AP scores, s. Given also rk the rank of the query with 
the maximal score such that sk < s , we can define the following tie-breaking strategies, 
using the list (0.1, 0.2, 0.2, 0.3) as an example:

– average (1, 2.5, 2.5, 4): the rank for all the queries in Qt is the average rank in the set, 
equal to (2rk + |Qt| + 1)∕2 . The main advantage of this method is that the sum of the 
ranks equals to the sum of the ranks when no ties exist.

– min (1, 2, 2, 4): all the tied queries have the lowest rank in the tie set, equal to rk + 1.

– max (1,  3,  3,  4): all the tied queries have the highest rank in the tie set, equal to 
rk + |Qt|.

– first (1, 2, 3, 4): ties are sorted “alphabetically” or “lexicographically”, according to 
the order of appearance in the ranked list: where all possible values between 1 and |Q| 
are associated to a query. Note that this is similar in spirit to tie-breaking in the trec_
eval tool which breaks ties by sorting on the document ID. However here we are sort-
ing by query score and not scoring ranked documents.

– dense (1, 2, 2, 3): similar to the min approach, the rank of all the queries in the set of 
ties will always be rk + 1 , but the rank between groups will always increase by 1. This 
means that, given n ≤ |Q| unique scores associated to queries in a ranked list, every 
possible value between 1 to n will be assigned to at least one query.

To further highlight the importance of the analysis on the number of ties, we also report 
in Fig. 5 the number of ties observed. The blue line shows the mean number of ties over 
all 13 QPP models, and the shaded area represents the 95% confidence interval. Note that, 
even if we consider as many as 6 digits, we still have on average more than 500 ties. Note 
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that we have used 6 significant digits in the subsequent experiments for each raw obser-
vation, and more than is common practice, and only because it reduces the number of 
observed ties to a more conservative level – making them less likely to influence any of the 
observations being made.

3.4.2  Error measures

Given rp
i
 , the rank observed for the query i in the ranked list sorted by QPP score, and re

i
 , 

the rank observed in the ranked list sorted by AP, four possible measures can be defined to 
quantify the distance from the optimal rank:

– scaled Absolute Rank Error (sARE), as defined in Eq. 2;
– sRE (scaled Rank Error) which uses the signed distance between the two ranks, scaled 

by the number of queries, and is defined as 

For the case of no ties, or using the first or average rank strategy for ties, the sum 
over all queries would be 0, as it is equal to 

This approach is not particularly useful for our needs, but may be useful for other 
studies.

– sSRE (scaled Square Rank Error) is the square of the difference between the two ranks, 
normalized by the number of queries and is defined as 

– sRSRE (scaled Root Square Rank Error) the root of the squared difference: 
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Fig. 5  The average number 
of ties observed between QPP 
methods, when the number of 
significant digits differs. Note 
that, even when using 6 signifi-
cant digits, we can observe more 
than 500 ties on average (Color 
figure online)
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As shown in Eq. 3, each of these measures can be aggregated by computing the mean of 
all queries for each predictor, to obtain a “mean” version.

Figure 6 compares all of the tie-breaking strategies and formulations for the ranking 
error of the distribution of the scores for using one possible retrieval pipeline (indri 
stoplist and porter stemmer). Figure 6a shows the tie-breaking comparison. Note that, 
we have artificially inflated the number of ties by truncating the AP and QPP scores to 
2 decimal points. Using higher precision scores, the tie-breaking strategies used are all 
nearly identical, due to proportionally fewer ties. For our tie-breaking strategy compari-
son, we show only the results observed using sARE – and its averaged version, sMARE 
– as deviation measure. All other measures discussed exhibit similar behavior. Fig-
ure 6b shows the comparison between the different approaches of computing the devia-
tion of the QPP prediction from the ideal rank. For this comparison, ties-breaking uses 
the average strategy since our earlier experiment shows no appreciable differences 
between tie-breaking strategy when using our experimental data. For each possible set-
ting, we compute the measure of interest for each topic-predictor pair, and plot the prob-
ability density distribution of such scores (blue lines). Furthermore, we compute the 
mean of the scores over all topics for each predictor (orange line). This statistical meas-
ure will be used later in our ANOVA experiments when we compare the QPP predictors.

For tie-breaking strategies, we observe that the average, min, max, and first 
tie-breaking strategies all exhibit similar behavior with sARE, with the exception of 
dense tie-breaking which produces much more widely dispersed results. Observe, for 
example, the additional peak in the distribution when using the dense approach. This 

(a)

(b)

Fig. 6  The top panel a shows a comparison between multiple tie-breaking strategies (average, min, max, 
first and dense approaches, respectively) for both sARE and sMARE. The bottom panel b shows the dif-
ferent aggregation algorithms (s(M)ARE, s(M)RE, s(M)RSRE, S(M)SRE, respectively) using average tie-
breaking, in term of score density distributions (Color figure online)
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peak corresponds to the small peaks observed in the other tie breaking strategies, but is 
inflated in size, when compared to the others. The dense approach is strongly influenced 
by the number of ties present in the ranking list. This causes the results to be unpre-
dictable since they depend on the randomly observed magnitude (the quantity of ties), 
which is not correlated with the magnitude of our goal—the performance of QPP. As 
a result, we recommend against using the dense approach, since it may overly inflate 
performance differences between systems.

Turning our attention to the first tie-breaking approach, even though it has a 
roughly similar distribution to the other strategies, it also introduces a bias as the que-
ries are sorted in an arbitrary order. Such an order does not depend on the actual per-
formance. This problem is particularly relevant when we have large number of ties. In 
general, if we have many queries and small groups of ties, then the bias does not heav-
ily impact sARE. Nevertheless, we recommend against using it, in order to minimize 
any possible corner cases. Based on these experimental results, in the remainder of our 
experiments we will use the average tie-breaking method, as it is the most common 
method, and was the best performing method in our experimental analysis.

With respect to ranking error, we observe that both sARE (scaled Absolute Rank 
Error) and sRSRE (scaled Root Square Rank Error) have similar density distributions, 
but sARE is in the [0, 1] interval. Similarly, sSRE is bound by a [0, 1] interval. Overall, 
the shape of the distribution is quite similar to sARE for our collection, but has two 
distinguishing differences: it has lower values on average, and it has a smaller range of 
values. Since differences are squared, sSRE tends to be higher when there are large dif-
ferences between predicted and observed ranks. Conversely, sARE is larger when there 
are many errors, even when many of them are small. The smaller values of sSRE when 
compared against sARE suggests that the QPP models tested tend to make many small 
errors, and not too many large errors. That is, sSRE is less discriminative.

To investigate this further, we compare the two approaches using sensitivity. Using 
the paired bootstrap test described by Sakai (2006), the Achieved Significance Level 
(ASL) is computed for each pair of QPP methods using the title queries and the boot-
strap with 10,000 samples. The outcome of our pairwise comparisons is presented in 
Fig.  7. While in general the patterns are similar, sARE does appear to be more sen-
sitive, identifying 74/120 statistically significantly different pairs (61.7%), compared 
with 68/120 (56.7%) for sSRE. Note that when using this approach, both methods iden-
tify more pairs of predictors which are significantly different (where the significance 
level is � = 0.05 ) than when using the Kendall’s � correlation measured with bootstrap 
resampling. Both lead to the SMV predictor being added to the cluster of best per-
forming methods. As discussed previously, sMARE can be associated with Spearman’s 
footrule distance, sMSRE (scaled Mean Squared Rank Error) on the other hand can be 
associated with Spearman’s coefficient of association � . While both sARE and sSRE 
have valuable statistical properties  (Diaconis & Graham, 1977), sARE appears to be 
more sensitive, and is more useful in our ANOVA analysis, as we want to perform a 
detailed comparative analysis of methods. The sRE (scaled Rank Error), despite being 
on a larger interval scale ([− 1, 1]), is not useful when computing a mean, here called 
sMRE (scaled Mean Ranked Error), and is always equal to 0. This is easily explain-
able since the sum over the ranking errors (using the average and first tie-breaking 
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strategies) will always be equal to 0. So, based on our desiderata, we have adopted the 
use of sARE/sMARE since: (i) they are bounded between 0 and 1;4 and (ii) sMARE is 
not always equal to 0.

Fig. 7  ASL value comparison showing the sensitivity of the sSRE and sARE deviation measures. Val-
ues above the diagonal show ASL values for sSRE and the ASL values for sARE are below the diago-
nal. Computing the sARE pairs result yields ASL < 0.05 ∶ 74∕120 (61.7%) and the sSRE pairs yield 
ASL < 0.05 ∶ 68∕120 (56.7%) (Color figure online)

Table 2  MD0
micro

 ANOVA on 
the Robust04 collection

Topics are represented with the title queries. SS: Sum of Squares; DF: 
Degrees of Freedom; MS: Mean Square; F: F statistics

Source SS DF MS F p-value �̂�2

⟨fact⟩

Topic 876.524 248 3.534 168.136 < 0.001 0.410
Stoplist 1.185 4 0.296 14.095 < 0.001 0.001
Stemmer 5.218 2 2.609 124.108 < 0.001 0.004
QPP model 46.569 15 3.105 147.691 < 0.001 0.036
Error 1250.538 59490 0.021
Total 2180.034 59759

4 The values of sSRE are bounded as well, and sMSRE ∈ [0,
1

3
) , or [0, 1√

3

) if the squared root is applied on 
the mean.
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3.5  Comparing systems using sMARE‑AP

We are now in a position to introduce our first ANOVA model which will enable a more 
comprehensive experimental analysis of the results: 

 where y i... is the performance (sARE-AP) on the i-th topic (using the specified QPP pipe-
line); � is the grand mean; � i is the effect of the i-th topic (represented with the title query 
formulation); � q , � r , and � s are the effect of the q-th stoplist, the r-th stemmer, and the s-th 
QPP model; � iqrs is the error component. Table 2 summarizes the ANOVA results of our 
first experiment. It can be seen that the stoplist, the stemmer, and the QPP model have a 
small effect size, while the topic effect is large, indicating that most of the performance of 
the QPP depends on the chosen topic.

Based on these results, we next ran a Tukey’s Honestly Significant Difference (HSD) 
post-hoc analysis to test for pairwise comparisons. Figure 8 shows the Tukey’s HSD confi-
dence intervals for sMARE-AP over the different QPP models. Comparing Fig. 1 (orange 
bars) and Fig. 8, we can observe that there is less overlap between the CIs, in particular 
computing the p-values for the pairwise comparisons, out of 120 pairs of predictors, 96 of 
them are significantly different (80.0%). The outcomes observed when using the bootstrap-
based approach resulted in 68.4%5 more statistically significant differences between predic-
tor pairs when compared against the original data, and the top performing cluster consists 
of UEF(WIG), UEF(SMV), UEF(NQC), and UEF(Clarity).

The “Topic” factor, as Table 2 suggests, is responsible for the largest part of the vari-
ance; this is in line with results from IR effectiveness evaluation (see for example Tague-
Sutcliffe & Blustein 1994). Thus, the estimate of the performance for a specific QPP model 
can vary significantly as it is dependent on properties of the underlying collection (per-
formance differences in topics/queries). By removing the contribution of the topics from 
the global variance, ANOVA removes any volatility in the underlying experimental data, 
therefore allowing the relative performance of predictors to be compared more precisely. 
When using only correlations aggregated across all topics, such information is lost, while 

yiqrs = � + �i + �q + �r + �s + �iqrs
(
MD0micro

)

Fig. 8  Confidence Intervals of 
sMARE-AP from MD0

micro
 for 

the QPP models on the Robust04 
title queries (Color figure online)

5 (96 − 57)∕57 = 0.684 , where 96 is the number of statistically significantly different pairs found now, and 
57 pairs were found using the bootstrap based approach.
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an ANOVA analysis facilitates more discriminative performance comparisons between 
systems by systematically accounting for each factor separately.

Figure  9 shows the main effects observed for different factors and levels when using 
ANOVA with MD0micro . From Fig. 9a we can see that, in line with Table 2, the topic factor 
exhibits a very large variance. The topics ‘356’ and ‘679’ present a very large sMARE 
(0.832 and 0.753 respectively). The title formulation for topic ‘356’ is “postmeno-
pausal estrogen Britain”, while for topic ‘679’ it is “opening adoption 
records”.

Figure 9b shows the main effect for the different stoplists included in our analysis. It is 
interesting to observe that the variance over the different stoplists is very small – chang-
ing from the best stoplist (atire) to the worst (nostop) only leads to an increase of 
approximately 1.5%. Furthermore, post-hoc analysis shows that atire and zettair are 
not statistically significanlty different, while indri, lingpipe and nostop are statisti-
cally significantly worse then atire. Furthermore, all the stoplists help QPP models in 
predicting performance more accurately.

Figure 9c highlights the main effect for the stemmer component. Note that the stemmer 
selected has a bigger impact than the stoplist. Using the best stemmer allows us to predict 
the performance of the queries more easily. In more detail, we observe that Porter’s stem-
mer performs best, followed by Lovins’s stemmer. The worst approach is to not use stem-
ming. All pairs of stemmers show a statistically significant difference in performance.

(a) topics

(b) stoplists (c) stemmers

Fig. 9  Main effects for topics, stoplists and stemmers of sMARE-AP from MD0
micro

 for the QPP models 
on the Robust04 title queries. We also report the confidence interval for stoplists and stemmers. We do not 
report CI for the topics, for the sake of image readability (Color figure online)
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3.6  ANOVA modeling of multiple queries and interactions

To more fully explore the impact of the query formulations on the performance of QPP 
predictor, we use the ANOVA model  MD0micro in a multiple query formulation setting. 
We randomly sample 5 formulations6 to represent the topics. In total, 1, 245 different que-
ries were used. Then, we compute the sARE score for each query-predictor pairing. The 
ANOVA summary table computed using the model MD0micro of multiple formulations of 
topics is shown in Table  3. Comparing Tables  3 to 2, we can see that the introduction 
of multiple query formulations and model MD0micro results in a reduced topic effect size, 
with the originally observed large-size effect becoming a medium-to-large sized effect. The 
introduction of the multiple formulations increases the variance of each topic, so the pos-
sible score differences between the topics tend to be smaller, smoothing the effect size. The 
QPP model factor effect is similar for both models. The large Sum of Squares (SS) for the 
Error component indicates that this model is not suitable if we wish to study/explain any 
variance in the data. To do this, the model complexity must be increased in order to fit the 
data more tightly.

To help the model more fit the data more closely, one possible solution is to include 
a query Formulation factor in the ANOVA. This allows the partial modeling of the addi-
tional variance due to the multiple formulations for each topic. Therefore, we now propose 
another alternative as an ANOVA model: 

Table 3  Summary table for ANOVA using model MD0
micro

 and representing topics with multiple formula-
tions

Source SS DF MS F p-value �̂�2

⟨fact⟩

Topic 1653.019 248 6.665 214.777 <0.001 0.151
Stoplist 0.405 4 0.101 3.266 0.0110 <0.001
Stemmer 12.726 2 6.363 205.028 <0.001 0.001
QPP model 349.503 15 23.300 750.795 <0.001 0.036
Error 9264.609 298530 0.031
Total 11280.263 298799

Table 4  Summary table for ANOVA using model MD0f
micro

 and representing topics with multiple formula-
tions

Source SS DF MS F p-value �̂�2

⟨fact⟩

Topic 1653.019 248 6.665 260.704 <0.001 0.177
Formulation (Topic) 1657.578 996 1.664 65.093 <0.001 0.176
Stoplist 0.405 4 0.101 3.965 0.0032 0.000
Stemmer 12.726 2 6.363 248.871 <0.001 0.002
QPP model 349.503 15 23.300 911.343 <0.001 0.044
Error 7607.031 297534 0.026
Total 11280.263 298799

6 The topic with the minimal number of query formulations had 5 formulations.
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The model MD0fmicro extends model MD0micro by including � j(i) , the effect of the j-th for-
mulation of the i-th topic. Note that Topic, Stoplist, Stemmer, and QPP model are crossed 
since each of them can be used in combination with all the others. This is not the case for 
the multiple formulations of a topic. A formulation can represent only the topic used to 
create it. Therefore, we cannot treat the formulation as a crossed factor, and so query for-
mulations are nested for each Topic factor. This ensures the variance produced by different 
query formulations contribute only to the variance of the topic they represent.

Table 4 presents the results of the ANOVA when using model MD0fmicro . In order to 
differentiate the case where a Formulation factor is nested in a Topic from our previous 
models, we use the term “Formulation (Topic)”. When examining Table 4, observe that 
the effect of the performance of both the Topic and Formulation is a large-sized effect. 
For formulations of a topic, a good formulation can dramatically change the performance 
of a QPP model. The effect of the QPP model observed in Table  4 is still small-sized, 
but has a relative increase of 22.2% when compared against Table  3. Such observations 
highlight the importance of introducing query formulations into the analysis, both in our 
data and in the ANOVA model, allowing us to learn more about a predictor. Note that the 
model MD0fmicro still results in a high SS error. This indicates that the model may ben-
efit from further modification to model the data more tightly. However, this will require 
additional efficiency improvements to be made for running multi-factor ANOVA algo-
rithms on large data collections. The current techniques used to compute the models in this 
work already require substantial memory and computational resources, and successfully 

yijqrs = � + �i + �j(i) + �q + �r + �s + �ijqrs
(
MD0fmicro

)

Table 5  MD1
micro

 ANOVA applied on Robust04 collection

�2 for non-significant factors is ill-defined and thus not reported. When compared against Faggioli et  al. 
(2021), a different set of random formulations for the topics is used: which leads small differences in the 
results – the Sum of the Squares being the largest. Nevertheless, the magnitude of the effects and the p-val-
ues, which are the focus in an ANOVA, are the same as those in  Faggioli et al. (2021)

Source SS DF MS F p-value �̂�2

⟨fact⟩

Topic 1653.019 248 6.665 1186.233 < 0.001 0.496
Formulation (Topic) 1657.578 996 1.664 296.182 < 0.001 0.496
Stoplist 0.405 4 0.101 18.041 < 0.001 0.001
Stemmer 12.726 2 6.363 1132.393 < 0.001 0.008
QPP model 349.503 15 23.300 4146.715 < 0.001 0.172
Topic*Stoplist 39.333 992 0.040 7.057 < 0.001 0.020
Topic*Stemmer 147.087 496 0.297 52.776 < 0.001 0.079
Topic*QPP model 2297.031 3720 0.617 109.892 < 0.001 0.575
Frm.*Stoplist 85.596 3984 0.021 3.824 < 0.001 0.036
Frm.*Stemmer 292.736 1992 0.147 26.154 < 0.001 0.144
Frm.*QPP model 3215.366 14940 0.215 38.302 < 0.001 0.651
Stoplist*Stemmer 0.041 8 0.005 0.918 0.5000 –
Stoplist*QPP model 0.840 60 0.014 2.492 < 0.001 <0.001
Stemmer*QPP model 4.509 30 0.150 26.749 < 0.001 0.003
Error 1524.492 271312 0.006
Total 11280.263 298799
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increasing the complexity of the model, or using additional data, is unlikely using any 
of the currently available hardware and software at either of our universities. We run the 
above-describe ANOVA via Matlab (version 2017b) on a server with 72 Intel(R) Xeon(R) 
Gold 6140M CPU 2.30GHz. The largest analysis occupied 250GB of RAM and it required 
approximately 200 hours to fit the whole model.

One of the most interesting aspects of our framework is the ability to compute the effect 
size for the interactions between factors. This is possible since the relative performance of 
a QPP model for each topic can be computed using sARE, and multiple query formulations 
were introduced as a nested factor. The resulting ANOVA model MD1micro includes com-
ponent level interactions, and is defined as: 

 This model extends MD0fmicro to include all possible two-way interactions.
Table  5 presents the ANOVA summary statistics for the model  MD1micro . The table 

empirically shows that the largest differences in QPP performance are due to the topics, 
and their formulations. While the importance of topics is a well-known phenomenon, our 
model is able to explicitly quantify the magnitude of this effect. The effect for the QPP fac-
tor is medium-sized (medium-sized effects are associated with �2 between 6% and 14%). It 
is important to note that the dimension of the effect is due to the wide variety of QPP mod-
els (and their performance) that are taken into account. For example, a practitioner wishing 
to evaluate new QPP models may observe a smaller �2 for the QPP model factor if the rela-
tive performance differences between the models being compared is less substantial.

The effect sizes of different stoplists and stemmers are both small, but still significant. 
This suggests that stemmers and stoplists may affect overall prediction quality, and practi-
tioners should consider all possible factors when comparing and contrasting QPP perfor-
mance for a corpus.

yijqrs = � + �i + �j(i) + �q + �r + �s + (��)iq + (��)ir + (��)is + (��)j(i)q

+ (��)j(i)r + (�� )j(i)s + (��)qr + (�� )qs + (�� )rs + �ijqrs
(
MD1micro

)

(a) topics (b) predictors

(c) stoplists (d) stemmers

Fig. 10  Main effects observed using model MD1
micro

 with multiple topic formulations (Color figure online)
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We are now in a position to explore the interaction between topics (and their query for-
mulations) and the predictors. The large effect size indicates that important differences 
between QPP model performance exist within reformulations of a single topic. Identifying 
the QPP model where interactions are smallest is valuable in practice, as this corresponds 
to be choosing a model that is the most robust to query reformulation. Additionally, this 
approach enables a series of additional analyses, such as a failure analysis for topics to 
determine which QPP model has the largest interactions with another factor.

There are many additional factors that can influence the performance of the QPP 
method, beyond the ones tested in the current model. For example, other ranking algo-
rithms or evaluation measures can also be used with sMARE, and could provide new 
experimental evidence and insights into performance differences between various QPP 
models in the future.

Figure 10 shows the main effects observed using the multiple formulations. Compar-
ing the plot with Fig.  9, we can see that overall, the results tend to be more uniform 
when multiple formulations are included. Formulations tend to have large performance 
variability: such variability is responsible for the flattening of relative predictor perfor-
mance. Nevertheless, they give additional power to statistical techniques, allowing the 
obtaining of more precise results that better generalize to reality. Comparing Figs. 10a 
to 9a we observe that the main effects for the topics tend to be more stable, with a 
smaller variance. We still have two outliers – the biggest outlier is ‘356’, which also 
had the biggest effect in MD0micro . The second is ‘344’, with the title formulation 
“Abuses of E-Mail”. These two topics have sMARE of 0.6463 and 0.6016, respec-
tively. Observing that the topic ‘356’ remains particularly complex suggests that the 
problem is likely linked to the semantic gap between the topic formulations and the 
relevant documents for that topic. In contrast to what was observed in Fig. 9a, the topic 
‘679’ is not an outlier anymore. This corroborates what was observed in Table  5, 
showing the importance of the query formulations: different formulations might help 
the predictors to estimate the query difficulty.

Figure 10b shows an interesting pattern when compared to Fig. 8. In particular, we 
observe that the distribution of the main effects contains much more evident steps if we 
include multiple query formulations. While the overall order of predictors is close to 
the one that we observed previously, using multiple formulations we are better able to 
distinguish between clusters of systems. In particular, SCQ performance suggests that it 
belongs to its own cluster of quality. VAR, avgSCQ, avgIDF and maxIDF form a distinct 
cluster, and so do maxSCQ, avgVAR and maxVAR. We then have two clusters of post-
retrieval predictors: the first includes the original form of all the predictors, while the 
second includes the UEF version.

Figure 10c and d show the main effect for stoplists and stemmers respectively, when 
multiple formulations are included in the analysis. The post-hoc analysis shows that all 
the stoplists are statistically significantly different from the no-stop approach, indicating 
the importance of applying a stoplist in the QPP scenario. Nevertheless, they are all in 
the same equivalence class. This empirically suggests that what makes the difference in 
the QPP setting is either removing stopwords or not, but the stoplists are overall equiva-
lent. Similar conclusions can be drawn for stemmers: in Fig. 10d) both stemmers (Porter’s 
and Lovins’) are statistically better than the no-stemming approach, but the two stemming 
approaches do not differ statistically significantly.

Figure 11 shows the interaction plots for the model MD1micro . We report the interac-
tion between the predictors and topic, stoplist and stemmer factors. The predictors are 
further separated into pre- and post-retrieval approaches, shown one the left and right, 
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respectively. Figure 11a and b describe the interaction between topics and predictors. Note 
that, to ease the readability, we report the interaction of the systems with 50 randomly 
sampled topics. Similar results where observed with different topic samplings. Both plots 
exemplify the strong interaction between the predictors and the topics, showing several 
cross-overs between lines and lines tending not to be parallel. This in general confirms 
what was observed in Table 5. Nevertheless, we observe that lines for the post-retrieval 
predictors (Fig. 11b) are more stable (a similar conclusion can be reached also by looking 
at Fig. 10b). This means that i) different post-retrieval predictors tend to perform more sim-
ilarly than pre-retrieval predictors; and ii) the interaction between topics and post-retrieval 
predictors is lower compared to that between pre-retrieval predictors and topics.

Concerning the stoplist and stemmer components, Fig. 11c and  e illustrate how much 
they interact with the pre-retrieval predictors. In both cases, the interaction between the 
component and the predictor is light, with parallel lines overall. The only exception to this 
is avgIDF and maxIDF, which show a swift drop in performance when used in combi-
nation with the nostem approach. Figure  11d reports the interaction between the differ-
ent post-retrieval QPP models with the stoplist component. The choice of stoplist does not 
interact particularly with the post-retrieval methods, as also shown in Table 5. The QPP 

(a) topics – pre-retrieval predictors (b) topics – post-retrieval predictors

(c) stoplists – pre-retrieval predictors (d) stoplist – post-retrieval predictors

(e) stemmers – pre-retrieval predictors (f) stemmers – post-retrieval predictors

Fig. 11  Interaction effects observed using model  MD1
micro

 with multiple topic formulations. We report 
interactions between pre-retrieval (left) and post-retrieval (right) models, with topics (top), stoplists (center) 
and stemmers (bottom) (Color figure online)
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approach most affected by the different stoplists is Clarity, both in its traditional and UEF 
versions. This indicates that, if the practitioner intends to use Clarity, it is important to vali-
date its performance over different stoplists. On the other hand, the WIG model (both tra-
ditional and UEF versions) is the most stable. Concerning the choice of stemmer, Fig. 11f 
shows that the stemmer interacts slightly with predictor performance, similar to what was 
observed for pre-retrieval QPP approaches. All of the QPP models appear to be overall sta-
ble across different stemmers, with small interaction with the stemmer used. In particular, 
most QPP models suffer when query terms are not stemmed. The traditional version of 
WIG is the most stable QPP approach for this: it does not benefit if the stemmer is used or 
not.

4  Potential applications

The evaluation approach presented in this paper supports a range of new possible perfor-
mance analyses. As an example of what might be done in the future, we conduct a pre-
liminary analysis to explore the relationship between query effectiveness and the quality 
of prediction. For several years, there has been a well-known problem observed in the 
QPP community where a deep measure such as AP tends to be amenable to high quality 
predictions which early precision measures, such as nDCG or Expected Reciprocal Rank 
(ERR), with a cutoff of, say, 5 or 10, tend to have worse overall performance when com-
pared directly in a single collection. Indeed, we can see a somewhat similar trend when 
looking at performance per query. Figure 12a and b present several scatter plots for sARE 
when using AP and nDCG@10, respectively. Using only the title queries, we can observe 
different trends across different QPP methods, indicating that the effectiveness of the query 
has a varying effect on different QPP methods. Specifically, the SCQ method which has the 
worst prediction quality, tends to make greater errors on queries with higher effectiveness 

Fig. 12  Scatter plot of error (sARE) versus effectiveness (AP and nDCG@10), using only title queries 
(Color figure online)
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(measured both by AP and nDCG@10). On the other hand NQC, which has a significantly 
better prediction quality, shows the opposite trend, tending to make smaller mistakes on 
queries with high effectiveness.

Figure  13 shows the corresponding scatter plots when all query variants are used. 
Overall, the observed trends are slightly smaller for AP, and almost completely erased 
for nDCG@10. However, we can observe an interesting difference in the distribution of 
the points in the two evaluation measures. Interestingly, a visual comparison of these 
plots side-by-side for multiple predictors consistently exhibit the performance difference 
trend between AP and nDCG@10 alluded to previously. The “dips” in the graph w.r.t 
the evaluation measure are where the median score for all the queries occur. Since this 
is the midpoint of the rank ordering, the mid error can never be greater than 0.5 at this 
point. That is, a rank ordering error can only be 1.0 for queries at the top or the bottom 
of the ranking, as they are the ones that can be inverted (i.e., an AP query with a score 
of 1.0 might be predicted to be the worst query in the set, and such cases are where the 
error is the greatest). Consider the following concrete example: For (a,b,c) the errors 
for each item would be: a ∈ {1∕3, 2∕3}, b ∈ {1∕3}, c ∈ {1∕3, 2∕3} in that case b is the 
median query and the maximal error it can achieve is 0.5 ∗ maximal_error . The median 
nDCG@10 is 0.3718 and AP is 0.1491.

When studying the AP plots, we can see a strong trend where the performance gets 
better as AP increases. However, for nDCG@10, this is not as consistent. So, we can 
see that for nDCG@10 the predictors can have very poor performance for high and 
low performing queries more often. In fact there are a number of reasons such a trend 
might exist related to differences in gain function in the measures. Overall, while we 
cannot say why such behavior exists in current predictors, it is a valuable start in a com-
prehensive failure analysis in QPP prediction behavior. What we can say is that such 
performance differences warrant further study, and we intend to explore this problem 

Fig. 13  Scatter plot of the error (sARE) versus the effectiveness (AP and nDCG@10) (Color figure online)
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in greater detail in the future. Here, we wanted one small example of what is possible 
using the framework introduced in this paper.

The new methodology also allows us to determine which topics are “harder” for QPP 
methods. In Fig. 14 we plot the topics that had the “worst" query variants, as measured 
by sARE. In order to visualize this, we extract 1% of all queries that have the high-
est absolute error (sARE) for each predictor (if the boundary query was tied, then all 
queries with the same tied error level were included). So, for each predictor we show 
at least 32 queries with the largest error. Next, the queries are grouped by topic, and for 
each topic we count the number of the queries that appear in the worst 1% list. Finally, 
the topics are ordered by the total number of queries for all of the predictors.

In Fig.  14, we can see that some topics immediately stand out – which represent the 
topics with many hard queries for all predictors. This indicates that some topics are 
indeed harder than others to accurately predict. This further corroborates the results of our 
ANOVA analysis, where the topic factor was found to have a large effect size. Similar to 
previous observations, the two topics that stand out as the “hardest” for the majority of the 
QPP methods are topic number 344 and topic 356. These trends will be explored further 
in future work.

5  Conclusion

In this paper we have presented a novel evaluation framework for QPP. The framework 
estimates the performance of QPP on every topic as the distance between its predicted rank 
(computed using a particular QPP approach) and the expected rank (measured using AP, or 
any other traditional IR effectiveness measure). Such approaches allow us to obtain a dis-
tribution of performance for the QPP over the different topics. Furthermore, our framework 
can leverage multiple query formulations for each topic to enhance the power of the analy-
sis. Together, the use of multiple query formulations and the distributional representation 

Fig. 14  Heat map of the hardest 1% of all query variants (by sARE-APvalue), grouped by topic. For read-
ability, the plot is constrained to show the 1/3 of the full set of topics that had the highest number of hard 
queries (Color figure online)
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of the performance enables carrying out more precise studies. In particular, we show that 
it is possible to rely on the statistical properties of ANOVA and additional post-hoc pro-
cedures such as Tukey’s HSD test to better identify statistically significant differences 
between QPP approaches. The proposed framework also enables the analysis of interaction 
effects for QPP models and topics, supporting failure analyses and a deeper understand-
ing of how a QPP model works. Our framework can be extended and adapted to different 
investigation needs. For example, in an academic setting, it may be useful to add further 
factors to the model such as tokenizers, query expansion components, or ranking func-
tions, to further deepen the investigation into the factors that influence QPP performance. 
In industrial deployment settings, comparisons between competing QPP techniques may 
require an ANOVA model consisting of only two factors: topics and QPP approaches. This 
simple two-way ANOVA is sufficient to determine if QPP models are significantly differ-
ent, and has the added benefit of relying on a statistically sound and easy to deploy frame-
work. In future work, we plan to study additional components of the evaluation framework, 
such as the impact of using different ranking methods to establish “ground truth” perfor-
mance; new factors that influence QPP systems such as the ranking approach used in the 
post-retrieval QPP approaches; and the effects of using multiple corpora, in order to more 
comprehensively model and understand corpus and QPP interactions. To support the repro-
ducibility of our results, the code for our evaluation framework has been made publicly 
available.7

Appendix A: Kendall’s � formulation derivation

Given the formulation of Kendall’s � as defined in 1, if we define C and D as:

The general Kendall’s � formula (as defined in Eq. 1) becomes:

And therefore:

We can observe that:

Thus C = � + (1 − C) = � + 1 − C . Therefore, 2C = � + 1 and thus C =
�+1

2
.

C =
number of concordant pairs

total number of pairs
,

D =
number of discordant pairs

total number of pairs
;

� =
number of concordant pairs

total number of pairs
−

number of discordant pairs

total number of pairs

� = C − D,

C + D = 1;

C = � + D,

D = 1 − C;

7 https:// github. com/ Zende lo/ QPP- Enhan cedEv al.

https://github.com/Zendelo/QPP-EnhancedEval
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Note that this is the original version of Kendall’s � (Kendall, 1938), the actual formula 
applied in the correlation calculations throughout the paper is a later version, which is 
commonly known as �b ( �s in the original paper) (Kendall, 1945). The correlation coeffi-
cient �b is extending the original formula to treat ties.
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