
The adequacy of languages for representing
interaction mechanisms

Remco M. Dijkman & Teduh Dirgahayu &

Dick A. C. Quartel

Published online: 18 July 2007
Springer Science + Business Media, LLC 2007

Abstract This paper presents criteria for the adequacy of
languages to represent interaction mechanisms. It then uses
these criteria to analyse the adequacy of UML.We focus on the
interaction mechanisms provided byWeb Services technology
and by CORBA for request/response, callback, polling and
(multicast) message passing. We argue that the criteria for
adequacy of a design language are that the language should:
(1) be expressive enough to represent the mechanisms; (2) be
easy to use when expressing them; (3) be platform independent
in the sense that it does not force implementation decisions for
a mechanism; and (4) behave corresponding to the mecha-
nisms that it represents. We show that these criteria follow
logically from the use of a design language in the design
process. For UML we evaluate the first three criteria in a
qualitative manner. To evaluate the fourth criteria, we present
Coloured Petri Nets that capture the behaviour of both the
mechanisms precisely and the UML constructs that represent
them. Subsequently, we check the correspondence of their
behaviour.

Keywords Design language . Design concept .

Communication patterns . Middleware

1 Introduction

Middlewares are defined to make the lives of developers
easier, by providing re-usable implementations of advanced
interaction mechanisms. Examples of such mechanisms are:
remote procedure calls, transactions, publish/subscribe
mechanisms, negotiations and long-running business-to-
business interactions. Similarly, design languages could
make the lives of designers easier, by providing re-usable
design concepts that represent these advanced interaction
mechanisms. Such design concepts help to:

– simplify designs, by providing a single concept, or a
small collection of concepts to represent an advanced
interaction mechanism;

– transform designs to implementations, by providing
abstract (platform independent) concepts of which the
transformation to (various) middlewares is clear; and

– analyse the correctness of the design in early stages of
the design process.

To be able to analyse the correctness of a design the
design concepts must properly reflect the relevant proper-
ties of the represented interaction mechanisms. In contrast,
if concepts do not reflect the properties of their middleware
counterparts faithfully, this may lead to wrong conclusions
during analysis. For example, the concept of reliable
message passing does not behave like message passing
middleware, in which message passing is typically unreli-
able. This may cause designers to conclude wrongly that a
message will always be received by the receiving side and
therewith that the implemented business transaction will be

Inf Syst Front (2007) 9:359–373
DOI 10.1007/s10796-007-9040-9

This work is part of the Freeband A-MUSE project. Freeband
(http://www.freeband.nl) is sponsored by the Dutch government under
contract BSIK 03025.

R. M. Dijkman (*)
Eindhoven University of Technology,
P.O. Box 513, 5600 MB Eindhoven, The Netherlands
e-mail: r.m.dijkman@tm.tue.nl

T. Dirgahayu :D. A. C. Quartel
University of Twente,
P.O. Box 217, 7500 AE Enschede, The Netherlands

T. Dirgahayu
e-mail: t.dirgahayu@utwente.nl

D. A. C. Quartel
e-mail: d.a.c.quartel@utwente.nl

http://www.freeband.nl

successfully completed. This leads to problems if the
concept is used in designs in which reliability is an issue
(such as the design of a banking system).

The first goal of this paper is to present and motivate the
criteria for adequacy of advanced interaction design
concepts (and design concepts in general) and to show
how these criteria can be checked. The second goal of the
paper is to evaluate the adequacy of UML for representing
advanced interaction mechanisms, based on the criteria.

To motivate the criteria for adequacy of design concepts,
we analyse the role that design concepts play in the design
process.

To analyse the adequacy of UML for representing
advanced interaction mechanisms, we analyse interaction
mechanisms implemented in existing middleware and the
concepts that UML 2.0 (OMG 2003; OMG 2004) provides
to represent interaction mechanisms. To capture their
properties precisely, we define both the interaction mech-
anism and the concepts using Coloured Petri Nets.
Subsequently, we evaluate the adequacy of the design
concepts from UML 2.0 for representing the analysed
interaction mechanisms, based on the criteria that are the
result of the first step.

We focus on the mechanisms that CORBA (OMG
2002b) and Web Services (W3C 2004) provide for
request/response, callback, polling and (multicast) message
passing.

This paper is further structured as follows. Section 2
explains the basic properties of a design process and
motivates the criteria that design concepts in the design
process should meet. Section 3 analyses interaction mech-
anisms in CORBA, and models them in terms of Coloured
Petri Nets. We refer to Dijkman et al. (2006a) for a similar
analysis of Web Services interaction mechanisms. Section 4
analyses the UML 2.0 model elements to represent
interactions and models them in Coloured Petri Nets.
Section 5 evaluates if and how the interaction mechanisms
from Sections 3 and 4 can be represented using UML 2.0.
Section 6 presents related work and Section 7 discusses our
conclusions and future work.

2 Criteria for design concepts

We derive the criteria for design concepts from the role that
design concepts play in a design process. Figure 1
illustrates a typical design process. During a design process
we gradually transform a set of requirements into a design
that is detailed enough to be implemented. The process
starts out with an initial design, which is a rough sketch of
the properties of the implementation, taking only the most
important requirements into account. We refine this design
by taking more requirements into account. Based on these

requirements we decide on other properties of the imple-
mentation. However, properties that we already decided on
should not be violated. We say that a design is at a lower
level of abstraction than another design if it considers more
implementation properties. We say that it is at a higher level
of abstraction if it considers less implementation properties.

We can construct a design at each level of abstraction by
composing instances of available design concepts. A design
concept is an abstraction of some common and essential
properties of the implementation. Hence, design concepts
determine which implementation properties we can repre-
sent and how well we can represent them. Therefore, design
concepts must:

1. be expressive enough to represent the properties that we
consider relevant at the level of abstraction at which we
want to use them;

2. represent these properties in a suitable manner (i.e.:
allow a designer to represent properties in a manner
that is easy to use and understand);

3. be platform independent in the sense that they do not
favour some design decisions over others;

4. be faithful to the implementations that they are meant to
represent (i.e. do not cause a designer to represent an
implementation in a way that the implementation does
not behave).

We discuss each of these criteria below in more detail.
We also provide operationalizations of the criteria: ‘rules of
thumb’ to check if a set of concepts meets the criteria.

2.1 Expressiveness of design concepts

To decide if a set of concepts is expressive enough, we
must answer the question which properties are ‘relevant’ at
a certain level of abstraction. For a part this is up to the
designer to decide. However, ‘best design practices’ exist
that suggest that certain properties are used at a certain level

ConceptsRequirements

Design

used to

construct

refined, based on requirements

Implementation

mapped onto

Design

Design

Concepts

used to

construct

Concepts

used to

construct

Requirements

refined, based on requirements

Constructs

used to

construct

Requirements initial design based

on requirements

Fig. 1 Interaction concepts and design

360 Inf Syst Front (2007) 9:359–373

of abstraction. Hence, we can look for these best practices
to discover relevant properties. We consider two forms
of recording best design practices: design patterns and
middleware implementation constructs.

In the terminology that we use here, a design pattern is a
well-known set of properties that satisfies a given require-
ment. The ability of a set of design concepts to represent
such patterns, or compositions of properties, is often used
as a criterion for the expressiveness of a language.

A design process is executed with the goal of eventually
implementing the design. Therefore, at least in theory, a
level of abstraction exists at which the design can be
mapped onto an implementation. Design concepts at this
level of abstraction can be mapped automatically onto
implementation constructs. Such a level of abstraction may
only exist in theory, because a design may never actually be
constructed at this level. The design process may end at a
level of abstraction at which refinement is still needed to
construct an implementation. However, even if this is the
case, there always is a (refinement) relation between the
concepts at the lowest level of abstraction that is actually
used and the implementation constructs.

Operationalization Check if the concepts can represent the
most common interaction patterns: ‘synchronous request/
response’, ‘asynchronous request/ response: callback’,
‘asynchronous request/ response: polling’, ‘one-to-one
message passing’ and ‘multicast message passing’. Often
the names of the concepts will reveal if the interaction
mechanism is considered. For example, if a concept with the
name request/response exists, the (synchronous) request/
response mechanism can be represented. Note that at this
stage we are only concerned with the question whether a
concept can be represented, not whether a concept can be
represented properly. The other criteria will deal with that.

Optionally, support for other interaction patterns from
literature (Barros et al. 2005; Hohpe and Woolf 2004; Ruh
et al. 2001) or from a particular middleware can be
checked. Also, support requirements can be adapted for a
particular organization or design project.

2.2 Suitability of design concepts

A set of concepts is suitable for representing some property
if that property can be represented using one concept or a
small composition of concepts. In contrast, we say that a set
of concepts is unsuitable for representing a property if a
composition of a large number of concepts is needed to
represent that property. Such a set of concepts is unsuitable,
because it leads designs that are unnecessarily complex,
even to the extent that they become impossible to
understand.

As an example consider a set of design concepts that
only supports message passing as an interaction concept. In
this case, if a designer wants to represent an advanced
interaction, such as a polling interaction, the designer has to
represent that interaction using a composition of message
passing concept instances. Moreover, the designer has to
use this representation for each polling interaction. This
yields unnecessarily large designs that become hard to
understand because of their size.

To have a more suitable set of design concepts, a design
language can allow for the definition of composite
concepts. A composite concept is a concept that consists
of other concepts (Quartel et al. 2005). Using composite
concepts, we can introduce a single concept to represent a
composition of a large number of other concepts. Hence,
making the set of concepts more suitable.

Operationalization Check if each relevant interaction pat-
tern (identified under the first criterion) can be represented
by a single concept or a suitable composition of concepts.
As a rule of thumb a suitable composition consists of up to
four concept instances. However, in case we can use a
‘composite concept’, the number of concepts can be
arbitrary.

2.3 Platform independence of design concepts

A set of design concepts is platform independent (at a
certain level of platform independence) if it does not force
the designer to make design decisions that he does not (yet)
want to make. A set of design concepts can force a designer
to make certain design decisions, by:

1. limiting design choice;
2. encouraging a certain design decision, while discour-

aging another;
3. forcing the designer to make a design decisions in

combination.

We say that a set of concepts limits the design choice of
a designer, if there is no concept that represents some
property of a certain pattern or implementation construct.
Such a set of concepts limits design choice, because it is
likely that the designer will not use the property. An
example of a limitation of the design choice of a designer
exists in the UML component model, because the UML
component model does not allow ports of a component to
be created independently of the creation of the component
itself. This at least discourages a designer from creating a
design in which ports of a component are created
independently of that component (say for each connection
that a client establishes with that component). It also

Inf Syst Front (2007) 9:359–373 361

discourages an implementer from using middleware con-
structs that allow for the creation of ports independently of
a component. Such constructs are, for example, allowed in
the CORBA Component Model (CCM; OMG 2002a).

We say that a set of concepts encourages a designer to
make certain design choices if representing some design
patterns or implementation constructs is more easy than
representing others. We claim that design concepts should
be neutral with respect to what the designer wants to
represent. Of course this is only possible to a certain extent;
design patterns and implementation constructs that are more
involved are typically harder to represent as well. This is a
problem of the design patterns and implementation con-
structs themselves, not a problem of the design concepts
that represent them.

We say that a set of design concepts forces a designer to
make certain design choices in combination if the designer,
by using some concepts to represent some properties,
necessarily has to specify other properties as well, while
he did not want to commit to these properties yet.

We argued in previous papers that different levels of
platform independence can be distinguished, depending on
the choices that have been made with respect to the target
platform (Andrade Almeida et al. 2006). For example, at
some level of platform independence, the designer may
want to specify that an interaction is implemented using a
publish/subscribe mechanism, but not yet the specific
middleware that will be used. However, at a higher level
of abstraction, the designer may want to specify that a
multicast message passing interaction is required, but not
yet the mechanism that will be used to provide that
interaction (e.g. publish/subscribe can be used, but also a
multicast mechanism in which the message sender specifies
the set of desired recipients).

Operationalization This criterion should be checked for
each concept, by careful comparison of the concepts and
the properties (of the interaction mechanism) that it
represents. A rule of thumb cannot be given here.

2.4 Faithfulness of design concepts

We say that a design concept is faithful, if it behaves like
the implementation construct onto which it is mapped or
the design pattern that it represents. In case a design
concept is related to an implementation construct or design
pattern by refinement, it must behave as an abstraction (the
inverse of refinement) of that construct or pattern.

Although a designer may not always have a mapping in
mind, design concepts can be suggestive with respect to
their potential mapping. For example, a design concept
representing a remote operation call suggests that it is
mapped onto an implementation construct that has a similar

behavioural pattern (i.e. a request is sent in one direction
after which a response can be sent in the other direction).
Moreover, some mapping must be possible for a design
concept, but we will show below that this is not always the
case.

We say that a concept is unfaithful to a mapping if it
does not behave according to the implementation construct
or design pattern to which it is related. A problem
associated with this mismatch is that, if a concept is
unfaithful to its mapping, analysis of a design that uses the
concept leads to wrong conclusions about the implementa-
tion. For example, if a message-passing concept assumes
that communication is reliable, while the implementation
construct onto which it is mapped implements unreliable
communication, then the designer can draw incorrect
conclusions of whether a message arrives at the receiver
or not. If a concept is unfaithful to a mapping, the problem
can be solved either by changing the behaviour of the
concept or by changing the mapping.

We say that a concept is unfaithful to any mapping if it is
impossible to construct a mapping onto an implementation
construct that behaves according to the concept. This
problem exists for concepts that represent reliable message
passing, because it has been shown that reliable message
passing cannot be implemented (Lamport et al. 1982).

In this paper we check faithfulness of UML 2.0
concepts to middleware implementation constructs in
CORBA and Web Services, by constructing formal
models of implementation constructs and the UML using
Coloured Petri Nets. Subsequently, we employ the formal
notion of refinement that we developed in previous work
(Dijkman et al. 2006b; Quartel et al. 2002) to check the
relation between the concepts and the constructs.

Operationalization Check faithfulness of each design con-
cept to the interaction mechanism that it represents, by
checking whether the interaction mechanism is a correct
refinement of the design concept (proving or disproving
that the concept is a correct abstraction of the mechanism).
To be able to do this you need a formalization and a notion
of refinement.

3 CORBA interaction mechanisms

CORBA specifies re-usable mechanisms for interaction
between software entities. We focus on the mechanisms that
it provides for:

– synchronous request/response communication;
– asynchronous request/response communication, based

on callback;
– asynchronous request/response communication, based

on polling;

362 Inf Syst Front (2007) 9:359–373

– one-to-one message passing (also called one-way
operations in CORBA);

– multicast message passing, based on publish/subscribe
(also called the Notification Service in CORBA).

We represent the externally observable behaviour of each
of these mechanisms, as it is observed by the entities that
use them to interact, abstracting from how the middleware
implements these mechanisms.

3.1 Synchronous request/response

In request/response communication, we distinguish a client,
which sends a request and receives a response, and a server,
which receives a request and sends a response. A response

can either be a normal response or an exception that notifies
the client that some exceptional situation has occurred.
Exceptions can either be returned by the server (in which
case we call it a user exception), notifying the client that the
server could not process the request, or by the middleware
(in which case we call it a system exception), notifying the
client that a problem occurred in the communication. In
case a system exception occurs, the middleware notifies
the client whether the server completed processing (got to
the point where it returns a response). For that purpose the
middleware returns a ‘yes’, ‘no’ or a ‘maybe’. The ‘maybe’
represents that it cannot be sure.

Figure 2 presents a Coloured Petri Net that represents the
observable behaviour of a synchronous request/response
mechanism. ‘C_KIND’ represents the kind of exception

Fig. 2 CORBA request/response

Inf Syst Front (2007) 9:359–373 363

returned. It can take the values: ‘C_NO’ representing that
the server did not complete processing; ‘C_YES’ represent-
ing that the server did complete processing; ‘C_MAYBE’
representing that the client cannot be sure if the server
completed processing; or ‘C_USR’ representing that the
server returned a user exception.

At the client-side, a client sends a request, which is
associated with an id (‘c_id’) and an address at which the
server can be located (‘t_id’). The client’s request is either
sent (‘req_tr’) to the server as a request (‘REQ’) message or
an exception is returned to the client (‘clt_exc_no’),
notifying the client that the request could not be sent. The
request message is annotated with the client’s address, to
which the response can be directed by the server. Once the
request is sent, the client-side waits for a response or
exception message from the server. The reception of a
response or exception results in an internal event that
represents: the reception of a response (‘rsp’); the reception
of a server-side system exception (‘svr_exc_no’); the
occurrence of a client-side system exception upon receiving
the response or exception (‘exc_yes’); or the reception of a
server-side user exception (‘exc_usr’). If a response or
exception was not received within some timeout, the client-
side middleware generates an exception (‘exc_may’). This
exception disables the reception of a response or exception
for the request/response invocation.

At the server-side, a request message is received by the
server. The address to which the message is targeted must
match the server’s address. If the message could not be
processed an exception is generated (‘exc_no’) and returned
to the client. Otherwise, the request is delivered to the
server, which either responds with a response or with an
user exception.

(Multiple) clients and servers can be connected by
connecting the ‘client-side’ and ‘server-side’ parts from
Fig. 2 to the same ‘transport’. The transport is unreliable
and may deliver messages in a different order than the order
in which they were sent (the CORBA specification
explicitly states that “end-to-end ordering guarantees cannot
be made” (OMG 2002b; page 22–55).

3.2 Asynchronous request/response: Callback

In CORBA, for asynchronous Request/Response mecha-
nisms, nothing changes at the server-side. At the client-side,
using the callback mechanism, the client sends a request
with which it passes an address at which it expects the
response. At this address a reply-handler must be active that
receives the response. After the client has sent the request,
it can continue processing. Sending the request may cause a
system exception at the client-side. CORBA does not

Fig. 3 CORBA callback

364 Inf Syst Front (2007) 9:359–373

automatically provide the threading mechanisms that ensure
that the reply-handler is ready to handle a response at the
same time that a client is handling a request. Therefore, the
implementer must implement appropriate threading strate-
gies. In terms of the model: the client-side and the reply-
handler side from Fig. 3 can operate independent of each
other, but the implementer must make sure that they do.

Figure 3 presents a Coloured Petri Net that represents the
observable behaviour at the client-side and the reply-
handler side. The Petri Net is similar to the Petri Net from
Fig. 2, but split-up into a client and a reply-handler part.
When sending a request, the client side passes the address
of the reply-handler (‘r_id’) as the address where the
response should be directed. The client-side middleware
then notifies the client whether the request was sent
(‘snd_req_succ’) or not (‘rcv_exc’). ‘maybe’ exceptions
are not handled for callback invocations.

(Multiple) clients, reply-handlers and servers can be
connected by connecting the ‘client-side’ and ‘reply-

handler’ parts from Fig. 3 and the ‘server-side’ part from
Fig. 2 to the same ‘transport’.

3.3 Asynchronous request/response: Polling

At the client-side, using the polling mechanism, the client
sends a request, upon which it receives an instance of an
abstract data type that it can poll for the response. Figure 4
presents a Coloured Petri Net that represents the observable
behaviour at the client-side. The figure shows that after the
client sends a request, the client-side middleware notifies
the client whether the request was sent (‘snd_req_succ’) or
not (‘rcv_exc_req’). With a success notification, the client
is returned an identifier (‘c_id’) for the invocation with
which it can poll (‘poll’) for the response. If the client polls
for a response, it can receive: a notification (‘poll_timeout’)
that the response could not be obtained within some
timeout period; a notification (‘poll_noobject’) that the
response was already obtained by the client; a notification

Fig. 4 CORBA polling

Inf Syst Front (2007) 9:359–373 365

(‘rcv_rsp’) carrying the response; or a notification
(‘rcv_exc_rsp’) carrying an exception.

3.4 One-to-one message passing

In one-to-one message passing mechanisms, one party can
send messages to another.

In CORBA, this mechanism is implemented using ‘one-
way’ request/response communication. For this mechanism,
nothing changes in the server represented in Fig. 2.
However, the server will not send a response upon
receiving a request for ‘one-way’ communication. At the
client side, mechanisms for dealing with responses and
exceptions that occur after the request was sent, can be
removed.

3.5 Multicast message passing

CORBA implements multicast message passing using a
publish/subscribe mechanism. Publishers can either ‘push’
messages to a broker themselves, or the broker can
continuously ‘pull’ messages from the publisher. Similarly,
subscribers can ‘pull’ messages from the broker themselves,
or have the broker ‘push’ messages to them as soon as they
are available.

Figure 5 represents the behaviour of the publishers and
subscribers in CORBA. A publisher can either ‘push’ an
event to a channel. After this the publisher can either
receive an exception (‘rcv_exc’), representing that there
was an exception sending the event to the channel, or a
response (‘rcv_rsp’), representing that the event was
successfully delivered to the channel. A ‘pull’ can also be
initiated by the channel. After this the publisher can
respond by sending the event to the channel (‘snd_rsp’),
or by indicating that an event cannot be sent to the channel
(‘snd_exc’). Even if an event is sent by the publisher, the
event may be lost on its way to the channel.

Similarly, the channel can initiate a ‘push’ on the
subscriber. After this the subscriber can respond by
indicating that he received the event (‘snd_rsp’), or by
indicating that he does not want to receive the event
(‘snd_exc’). Also, the client can try to ‘pull’ an event from
the channel. This can result in a notification from the
channel that no events could be pulled (‘rcv_exc’), or a
notification with the pulled event (‘rcv_rsp’).

4 UML interaction concepts

This section represents the behaviour of the UML concepts
that we can use to represent: request/response and one-to-

Fig. 5 CORBA multicast message passing

366 Inf Syst Front (2007) 9:359–373

one message passing. UML also has a mechanism for
broadcast message passing. However, we do not consider
this mechanism, because broadcast is not addressed by the
middlewares that we investigated (only multicast is).

The UML 2.0 provides two different ways to represent
request/response and one-to-one message passing: by signal
passing and by operation call. An operation call can be
either asynchronous or synchronous.

The UML defines the properties of the communication
medium that transports the requests, responses and mes-
sages as a semantic variation point. These properties
include transmission delays, loss of requests, reordering
and duplication. In this paper we choose an unreliable
medium that does not preserve ordering, because those
properties are common properties for communication
mechanisms underlying the request/response and message
passing mechanisms.

4.1 Signal passing

Sending a signal can only be done asynchronously. Figure 6
presents a Coloured Petri Net that represents the behaviour
of sending and receiving a signal. A sender sends a request
message as a signal to a receiver by executing a
SendSignalAction. The ‘SendSignal’ transition represents
this action. This action creates a ‘SIGNAL’ message that
contains input parameters supplied by the sender ‘par’ and
the receiver’s identity ‘oid’; and sends the signal to the
receiver through some communication or transport medium.
The action then completes immediately. The transport
medium transports the request from the sender to receiver,
but may lose the message. To receive the signal, the
receiver executes an AcceptEventSignal. The ‘Accept-

Event’ transition represents this action. This action waits
for the occurrence of an event. In this case, the action waits
for a signal reception event that meets the receiver’s
identity. The receiver’s identity is stored on the place with
the initial marking ‘oid1’. When a matched event is
detected, the action completes and produces outputs
describing the occurrence of the event and the values
carried by the signal ‘par’.

4.2 Asynchronous operation call

Figure 7 presents a Coloured Petri Net that represents the
behaviour of an asynchronous remote operation call. To
make an asynchronous operation call, a sender executes a
CallOperationAction with attribute isSynchronous sets
false. The ‘CallOperation’ transition represents this action.
This action creates a ‘CALL’ message that contains an
indication whether the call is synchronous ‘sync’, the input
parameters supplied by the sender ‘par’ and the receiver’s
identity ‘oid’. The action then sends the message to the
receiver through some transport medium and completes
immediately.

To accept an asynchronous operation call, the receiver
executes an AcceptEventAction. The ‘AcceptEvent’ transi-
tion represents this action. This action waits for the
occurrence of an event. In this case, the action waits for
an asynchronous call reception event that meets the
receiver’s identity. The identity is stored on the place with
the initial marking ‘oid1’. This action cannot be used to
receive a synchronous operation call. When a matched
event is detected, the action completes and produces
outputs describing the occurrence of the event and the
values carried by the message ‘par’.

Fig. 6 Sending and receiving a signal

Fig. 7 Asynchronous remote
operation call

Inf Syst Front (2007) 9:359–373 367

4.3 Synchronous operation call

Figure 8 presents a Coloured Petri Net that represents the
behaviour of a synchronous remote operation call. To
make a synchronous operation call, a sender executes a
CallOperationAction with attribute isSynchronous sets
true to make the action waits for a reply or an exception
after sending a request. The ‘CallOperation_snd’,
‘CallOperation_rcv’ and ‘CallOperation_exc’ transitions
represent this action. The ‘CallOperation_snd’ transition
handles the sending of a request message, while the
‘CallOperation_rcv’ and ‘CallOperation_exc’ handle the
reception of a reply and an exception message respectively.

This CallOperationAction creates a ‘CALL’ message
that contains an information ‘REQ’ to indicate that the
message is a request, the identity of the call ‘cid’, an
indication whether the call is synchronous ‘sync’, the
input parameters supplied by the sender ‘par’, the
receiver’s identity ‘roid’ and the sender’s identity ‘soid’.
The action sends the request to the receiver through
some transport medium and then waits for a reply or an
exception from the receiver. To correlate a reply or an
exception message with a request message, the identity
of the call ‘cid’ is stored.

To accept a synchronous operation call, the receiver
executes an AcceptCallAction. The ‘AcceptCall’ transition
represents this action. This action waits for the occurrence
of a synchronous call reception event that meets the
receiver’s identity. The identity is stored on the place with
the initial marking ‘oid1’. When a matched event is
detected, the action completes and produces outputs
describing the occurrence of the event, the values carried
by the message ‘par’ and information necessary for
returning a reply to the sender.

This action can also be used to receive an asynchronous
operation call, but no corresponding reply or exception can
be sent for this operation call.

To send a reply, the receiver executes a ReplyAction.
The ‘Reply’ transition represents this action. This action
receives input parameters ‘par’ and, by using information
provided from its corresponding request, this action creates
a reply message to be sent to the sender. An information
‘RSP’ is used to indicate that the call message is a reply.

If the execution of the called operation raises an
exception, an exception message is transmitted back to the
caller. The ‘send exception’ transition represents the
sending of the exception message to the caller. It should
be noted that the UML 2.0 does not specify how exception
messages are transmitted to the caller. Thus the transition
does not correspond to any action in the UML 2.0.

After sending a request message, the CallOperationAc-
tion waits for a reply reception event that meets the request
sender’s identity and a call identity ‘cid’. The sender’s
identity is stored on the place with the initial marking
‘oid3’. When a matched event is detected, the action
completes and produces outputs describing the occurrence
of the event and the values carried by the message ‘par’.
When an exception message is received, it raises an
exception in the execution of the CallOperationAction.

5 Representing interactions in UML

In this section we discuss the adequacy of UML for
representing the CORBA interaction mechanisms analysed
above and the Web Service interaction mechanisms
explained by Dijkman et al. (2006a). To analyze the
faithfulness of the UML model elements with respect to the

Fig. 8 Calling a synchronous operation call and receiving a reply or an exception

368 Inf Syst Front (2007) 9:359–373

interaction mechanisms, we check if the UML model
elements are a correct abstraction of the model elements.
To perform this check we use the Petri nets from the
previous sections and from Dijkman et al. (2006a) and the
refinement theory explained by Dijkman et al. (2006b) and
Quartel et al. (2002). Although Dijkman et al. (2006a)
provide algorithms for checking refinement directly on Petri
nets, we explain the refinement checks using the execution
traces of the Petri nets, because explaining the algorithms for
checking refinement is out of the scope of this paper.

5.1 Representing request/response

We represent request/response interactions, using the UML
synchronous operation call that communicates through an
unreliable medium. The models for that interaction are
presented in Section 4.3. We claim that this is the suggested
mapping from the UML synchronous operation call onto
the CORBA and Web Services request/response constructs.
What else should the UML synchronous operation call with
unreliable transport be mapped onto?

A UML operation does not support the notification of
communication failure. Hence, it is unfaithful to an
interaction mechanism that notifies such failures, such as
a mechanism that throws exceptions when a request cannot
be sent or when a request or response is lost. In the Petri net
execution traces this becomes apparent, because the
CORBA request/response allows for the trace: ‘snd_req’,
‘clt_exc_no’, ‘rcv_exc’, in which a request is directly
followed by an exception, because the request could not
be sent via the communication medium. This trace from the
CORBA model corresponds to the following trace from the
UML model: ‘Call Operation_snd’, ‘Call Operation_rcv’.
However, UML does not allow this trace nor other traces in
which system exceptions are returned. Similar conflicts
exist for cases in which a response cannot be received and
for cases in which a request or response cannot be (de-)
marshalled.

We can solve the unfaithfulness problem by modelling a
timeout mechanism that detects message loss after a certain
timeout (Quartel et al. 2005). However, explicitly model-
ling this mechanism limits the suitability, because it
requires that the mechanism is modelled for each interac-
tion, leading to extensive models. It also limits the platform
independence of UML, because it reveals implementation
details about how communication failures are detected,
namely by a time-out mechanism, while communication
failures may be detected in other ways.

5.2 Representing callback

To represent callback we use a composition of asynchro-
nous UML operations, one that represents the request and

one for each possible response and exception. The request
has to carry the address of the object that will handle the
response. The modeller has to ensure that requests and
responses can be dealt with simultaneously in the UML
model, in this way modelling a threading strategy, like the
implementer has to ensure this threading strategy for the
CORBA implementation. We consider this way of repre-
senting the callback mechanism suitable, because only a
small collection of UML concepts is needed to represent the
callback mechanism.

This way of representing can limit faithfulness, because
it allows the trace: ‘Call Operation (..., server)’, ‘Accept
Event’, ‘Call Operation(..., client)’, ‘Accept Event’, ‘Call
Operation(..., client)’, ‘Accept Event’, This trace could
be useful, for example, for a client to announce its address
to the server and for the server to subsequently stream a
video to the client. However, the trace cannot be performed
by the CORBA nor by the Web Services callback
mechanism. Hence, to allow for a faithful mapping, the
behaviour of the server in the UML model must be
restricted, such that it does not perform this trace.

Also, we claim that this representation limits platform
independence, because:

1. user exceptions and responses cannot be declared as
such, but have to be specified as asynchronous
operation calls, meaning that in UML we encourage
an implementation onto multiple asynchronous opera-
tion calls and discourage an implementation onto a
middleware’s callback mechanism; and

2. it requires the server-side to be aware that it is being
called using a callback operation, while in the CORBA
implementation this is not necessary.

To solve problem 1 we can stereotype the operations.
However, then we do not have a ‘pure’ UML model
anymore.

5.3 Representing polling

We represent the remote polling mechanism in UML by a
UML synchronous operation call. The operation call must
have an additional parameter to specify the ‘id’ of the
response for which we are polling. We cannot distinguish
this representation of remote polling from a regular remote
operation call, unless we use a stereotype. Hence, it limits
platform independence.

To represent local polling we need to model an
intermediary object that:

1. accepts a call from the client to send the request;
2. sends the desired request to the server;
3. returns control to the client;
4. awaits the response from the server;

Inf Syst Front (2007) 9:359–373 369

5. accepts a poll from the client to return the response;
6. upon a poll, sends the response if it is available.

We claim that, similar to the callback mechanism, this
representation limits platform independence. However, the
problem with the polling mechanism is more serious,
because the designer has to make choices regarding the
implementation of the intermediary object. These choices
do not necessarily reflect the choices that are made by Web
Services or CORBA. Hence, there may be a mismatch
between the implementation and the design. The choices
that we made to represent the polling mechanism are that:

1. the intermediary object exists locally at the client side
and invokes the server that is remote;

2. the intermediary object sends a request to and receives
a response from the server by performing synchronous
call; and

3. the intermediary object implements some threading
mechanism to allow the client to continue processing,
while it processes the synchronous request/response to
the server.

Another drawback of this solution is that the call from
the client does not address the server, but the intermediary
object. We can construct a solution in which the client
directly addresses the server and the intermediary object
only handles the response. However, this solution has the
drawback that the client must obtain both the address of the
intermediary object and the address of the server object.
Also it has the drawback that the server has to change,
because it has to obtain requests from the client and send
responses to the intermediary object.

Moreover, modelling a complete mechanism causes the
model to expand, leading to unsuitability of the resulting
model. The benefit of modelling a complete mechanism is
that (provided the modelling language is expressive
enough) it can be modelled to be completely faithful to
the mechanisms that it represents.

5.4 Representing one-to-one message passing

We can represent one-to-one message passing in UML by
the UML asynchronous operation call. However, this
representation is unfaithful to mechanisms that notify
communication failures.

5.5 Representing multicast message passing

UML has no single concept to represent multicast message
passing. Therefore, to represent the multicast mechanism, we
must introduce an intermediary object that deals with the
pushing and pulling of messages to and from the publishers
and subscribers.

We claim that this representation limits platform indepen-
dence, because it forces the designer to make implementation
choices regarding the implementation of the multicast
mechanism. These choices include that the mechanism is
implemented using a centralized intermediary object and
threading mechanisms employed in the intermediary object.

Moreover, we argued that modelling a complete mecha-
nism leads to unsuitability of a model.

5.6 Conclusion and discussion

We can conclude that UML can represent all the interaction
mechanisms that we discussed.We consider UML suitable for
representing synchronous request response, callback and one-
to-one message passing, if the mapping from UML elements
to interaction mechanisms that we explained above is used.
We also consider UML platform independent with respect to
synchronous request response and one-to-one message pass-
ing in CORBA and Web Services, because it maps equally
well to both. We claim that UML is not platform independent
with respect to callback, because it cannot distinguish a
callback operation from two asynchronous operations. Hence,
favouring a mapping onto two remote operation calls rather
than on the callbackmechanisms provided by the middleware.
Also, UML requires the server to be aware that it is processing
a callback, while CORBA does not require this. Also, we
claim that UML is unfaithful with respect to representing
system exceptions, because it does not consider them. One
could argue that system exceptions have to be considered at
a lower level of abstraction than the level at which UML
should be used. However, this means that at the level at
which UML is used, communication failure is not detected,
making UML unsuitable for modelling reliable systems.

One can choose to increase the faithfulness of the UML
elements, by explicitly modelling the mechanisms to detect
communication failure. However, this would limit the level of
suitability (because it means that more modelling elements
must be used to represent each interaction) and platform
independence (because the mechanism to detect communica-
tion failure represents design choice).

We consider UML unsuitable for representing polling and
one-to-many message passing, because the interaction mech-
anisms to perform polling and one-to-many message passing
must be modelled explicitly in UML; UML has no model
elements that can be used to represent such interactions. Since
modelling the mechanisms means revealing implementation
details, this also restricts the level of platform independence.
Table 1 summarizes our conclusions.

5.7 Example

Figure 9 illustrates our argument with a simple example.
The example shows a chat application, which allows a user

370 Inf Syst Front (2007) 9:359–373

to join a conversation, then send and receive messages and
leave the conversation again. When a communication
failure occurs, the user is notified and the client exits. A
publish/subscribe mechanism is used to implement com-
munication between clients.

The example illustrates two problems with the adequacy
of UML. Firstly, should UML provide concepts to represent
multicast interaction, Fig. 9a would suffice as a specifica-
tion. However, UML does not provide multicast concepts.
Therefore, the modeller must include a specification of the
multicast mechanism, like the one shown in Fig. 9b.
Therewith the modeller reveals unnecessary implementa-
tion detail hence making the specification less platform
independent and less suitable. Secondly, UML does not
consider communication exceptions. Therefore, although
Fig. 9a models a communication exception (‘commError’),
this event has no special semantics and can occur at any
time, even if no communication action was taken before.
Hence, the model is not faithful to any implementation.

6 Related work

This paper shows a technique to evaluate the adequacy of
existing concepts for interaction design, based on how well
they can represent interaction patterns. To the best of our
knowledge such a technique does not yet exist in this area.
However, similar techniques do exist in the area of
workflow concepts (van der Aalst et al. 2003; van der
Aalst and ter Hofstede 2002) and service description
concepts (Wohed et al. 2003). With the evaluation of
service description concepts being closest to our, since
service description also involves interaction design.

There is a long history of research towards concepts for
interaction design at various stages in a design process.
Interaction design concepts have been studied in the area of
reference models (such as ITU-T 1995, 1999), design
languages (such as Bastide et al. 2000; ITU-T 2002; OMG
2003, 2004; Quartel et al. 2002; van Sinderen et al. 1992)
and architectural description languages (such as Allan and
Garlan 1997; Luckham and Vera 1995). The work
presented in this paper is not meant to be another set of
interaction design concepts. Rather, we present criteria to
evaluate already existing concepts and we use these criteria
to propose changes to existing concepts. These criteria form
the contribution of our work. Although criteria for ‘good’
design concepts were implicitly used, and in some cases
even made explicit, a thorough evaluation of these criteria
has not been attempted before.

More recently, interaction patterns are being studied
(Barros et al. 2005; Hohpe and Woolf 2004; Ruh et al.
2001). We use these interaction patterns to evaluate design
concepts. In addition to that, we present interaction patterns

Fig. 9 Example UML behavior models. a Client behaviour. b Event server behaviour

Table 1 Adequacy of UML for representing interaction mechanisms

Expressiveness Suitability Platform
independence

Faithfulness

Synch. req/
rsp

+ + + −

Callback + + − −
Polling + − − +
1-to-1
messaging

+ + + −

1-to-n
messaging

+ − − +

Inf Syst Front (2007) 9:359–373 371

that are directly derived from existing middleware imple-
mentations of interaction mechanisms.

7 Conclusions and future work

In this paper we provided criteria for adequate interaction
design concepts. We also provided an in depth analysis of
the interaction mechanisms implemented by Web Services
and CORBA and the UML 2.0 model elements for
representing these interaction mechanisms.

Based on the criteria and the analysis of UML and the
interaction mechanisms, we evaluated the adequacy of
UML for representing these mechanisms. From this
evaluation, we conclude that UML is unfaithful with
respect to the representation of communication failure and
unsuitable for representing polling and message passing
mechanisms. This means that UML is not adequate for the
design of reliable systems and for systems that use
interaction mechanisms other than synchronous request/
response, callback and one-to-one message passing.

In the context of the project in which this work is
embedded, we aim to define concepts that are adequate for
representing advanced interaction mechanisms (such as
one-to-many message passing, transactions and negotia-
tion) and reliable systems. In this paper we focused on
design at the lowest level of abstraction before choosing a
particular middleware platform (Web Services or
CORBA). In future work we will also consider higher
levels of abstraction and middleware platforms and
develop concepts for those levels. Also, we will develop
concepts to represent other aspects of interaction mecha-
nisms, such as: threading mechanisms and creation and
destruction of bindings between communicating parties
(e.g. event channel subscriptions).

References

Allan, R., & Garlan, D. (1997). A formal basis for architectural
connection. ACM Transactions on Software Engineering and
Methodology, 6(3), 213–249.

Andrade Almeida, J. P., Dijkman, R. M., van Sinderen, M. J., Quartel,
D. A. C., & Ferreira Pires, L. (2006). Model driven design,
refinement and transformation of abstract interactions. International
Journal of Cooperative Information Systems, 15(4), 599–632.

Barros, A., Dumas, M., & ter Hofstede, A. H. M. (2005). Service
interaction patterns. In Proc. of the 3rd International Conference
on Business Process Management (pp. 236–251).

Bastide, R., Sy, O., & Palanque, P. (2000). A formal notation and tool
for the engineering of CORBA systems. Concurrency: Practice
& Experience, 12, 1379–1403.

Dijkman, R. M., Dirgahayu, T., & Quartel, D. A. C. (2006a). Towards
advanced interaction design concepts. In: Proc. of EDOC 2006
(pp. 331–342).

Dijkman, R. M., Quartel, D. A. C., & van Sinderen, M. J. (2006b).
Consistency in multi-viewpoint architectural design of enterprise
information systems (BETA Working Paper WP-188). Eind-
hoven, The Netherlands: Eindhoven University of Technology.

Hohpe, G., & Woolf, B. (2004). Enterprise integration patterns:
Designing, building, and deploying messaging solutions. Boston,
MA, USA: Addison Wesley.

ITU-T (1995). Open distributed processing reference model (specifi-
cation 901.4). Geneva, Switzerland: ITU-T.

ITU-T (1999). Information technology—open distributed processing
reference model—enterprise language (specification 911). Gene-
va, Switzerland: ITU-T.

ITU-T (2002). Specification and description language (specification
Z.100). Geneva, Switzerland: ITU-T.

Lamport, L., Shostak, R., & Pease, M. (1982). The Byzantine generals
problem. ACM Transactions on Programming Languages and
Systems, 4(3), 382–401.

Luckham, D. C., & Vera, J. (1995). An event-based architecture
definition language. IEEE Transactions on Software Engineering,
21(9), 717–734.

OMG (2002a). CORBA component model 3.0 (specification formal/
2002-06-65). Needham, MA, USA: Object Management Group.

OMG (2002b). Common object request broker architecture: Core
specification, version 3.0 (specification formal/02-12-06). Need-
ham, MA, USA: Object Management Group.

OMG (2003). UML 2.0 infrastructure specification (specification ptc/
03-09-15). Needham, MA, USA: Object Management Group.

OMG (2004). UML 2.0 superstructure specification (specification ptc/
04-10-02). Needham, MA, USA: Object Management Group.

Quartel, D. A. C., Dijkman, R. M., & van Sinderen, M. J. (2005).
Extending profiles with stereotypes for composite concepts. In
Proc. of MODELS 2007 (pp. 232–247).

Quartel, D. A. C., Ferreira Pires, L., & van Sinderen, M. J. (2002). On
architectural support for behavior refinement in distributed
systems design. Journal of Integrated Design and Process
Science, 6.

Ruh, W. A., Maginnis, F. X., & Brown, W. J. (2001). Enterprise
application integration: A Wiley tech brief. New York, NY, USA:
Wiley.

van der Aalst, W. M. P., & ter Hofstede, A. H. M. (2002). Workflow
patterns: On the expressive power of (Petri-net-based) workflow
languages. In Proc. of CPN 2002 (pp. 1–20).

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., &
Barros, A. P. (2003). Workflow patterns. Distributed and Parallel
Databases, 14(1), 5–51.

van Sinderen, M. J., Ferreira Pires, L., & Vissers, C. A. (1992).
Protocol design and implementation using formal methods. The
Computer Journal, 35, 478–491.

W3C (2004). Web services architecture (specification NOTE-ws-arch-
20040211). Sophia-Antipolis Cedex, France: W3C.

Wohed, P., van der Aalst, W. M. P., Dumas, M., & ter Hofstede, A. H.
M. (2003). Analysis of web services composition languages: The
case of BPEL4WS. In Proc. of the 22nd International Conference
on Conceptual Modelling.

372 Inf Syst Front (2007) 9:359–373

Teduh Dirgahayu is a Ph.D. candidate in Computer Science at the
University of Twente. He has a Master’s degree in Telematics from the
University of Twente in The Netherlands. His research interests

include design methods, architectures for distributed systems, service-
oriented design, and model-driven engineering.

Dick A.C. Quartel is an Assistant Professor at the University of
Twente, The Netherlands. His research interests include design
methods and service architectures for networked systems, business
process and service modelling, and semantic service interoperability.
He is currently a Workpackage Leader in the Dutch Freeband A-
MUSE project (BSIK 03025) on service design and semantic
interoperability. He received his Master’s and Ph.D. degrees in
Computer Science from the University of Twente, The Netherlands.

Remco M. Dijkman is an Assistant Professor at Eindhoven
University of Technology in The Netherlands. He specializes in
design methods and modelling techniques for business processes and
enterprise information systems. He has written several scientific
publications and served on program committees and organizing
committees of several conferences. Previously he has been a
consultant at Ordina, a Dutch IT consulting firm. He holds a Ph.D.
degree and a Master’s degree from the University of Twente in The
Netherlands.

Inf Syst Front (2007) 9:359–373 373

	The adequacy of languages for representing interaction mechanisms
	Abstract
	Introduction
	Criteria for design concepts
	Expressiveness of design concepts
	Suitability of design concepts
	Platform independence of design concepts
	Faithfulness of design concepts

	CORBA interaction mechanisms
	Synchronous request/response
	Asynchronous request/response: Callback
	Asynchronous request/response: Polling
	One-to-one message passing
	Multicast message passing

	UML interaction concepts
	Signal passing
	Asynchronous operation call
	Synchronous operation call

	Representing interactions in UML
	Representing request/response
	Representing callback
	Representing polling
	Representing one-to-one message passing
	Representing multicast message passing
	Conclusion and discussion
	Example

	Related work
	Conclusions and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

