
HAL Id: hal-01433718
https://hal.science/hal-01433718

Submitted on 12 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Active XML-based Web data integration
Rashed Salem, Jérôme Darmont, Omar Boussaid

To cite this version:
Rashed Salem, Jérôme Darmont, Omar Boussaid. Active XML-based Web data integration. Informa-
tion Systems Frontiers, 2013, 15 (3), pp.371-398. �10.1007/s10796-012-9405-6�. �hal-01433718�

https://hal.science/hal-01433718
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Active XML-based Web Data Integration

Rashed Salem · Omar Boussäıd · Jérôme Darmont

Received: date / Accepted: date

Abstract Today, the Web is the largest source of infor-

mation worldwide. There is currently a strong trend for

decision-making applications such as Data Warehous-

ing (DW) and Business Intelligence (BI) to move onto

the Web, especially in the cloud. Integrating data into

DW/BI applications is a critical and time-consuming

task. To make better decisions in DW/BI applications,

next generation data integration poses new requirements

to data integration systems, over those posed by tradi-

tional data integration.

In this paper, we propose a generic, metadata-based,

service-oriented, and event-driven approach for inte-

grating Web data timely and autonomously. Beside han-

dling data heterogeneity, distribution and interoperabil-

ity, our approach satisfies near real-time requirements

and realize active data integration. For this sake, we
design and develop a framework that utilizes Web stan-

dards (e.g., XML and Web services) for tackling data

heterogeneity, distribution and interoperability issues.

Moreover, our framework utilizes Active XML (AXML)

to warehouse passive data as well as services to inte-

grate active and dynamic data on-the-fly. AXML em-

bedded services and changes detection services ensure

near real-time data integration. Furthermore, the idea

of integrating Web data actively and autonomously re-

volves around mining events logged by the data integra-

tion environment. Therefore, we propose an incremen-

tal XML-based algorithm for mining association rules

from logged events. Then, we define active rules dy-

namically upon mined data to automate and reactivate

R. Salem, O. Boussäıd, J. Darmont
Université de Lyon (ERIC Lyon 2)
5 av. P. Mendès-France, 69676 Bron Cedex, France
Tel.: +33 (0)4 78 77 31 54
Fax: +33 (0)4 78 77 23 75
E-mail: rsalem@eric.univ-lyon2.com

integration tasks. Finally, as a proof of concept, we im-

plement a framework prototype as a Web application

using open-source tools.

Keywords Real-time Web data integration · meta-

data · integration services · active rules · event

mining

1 Introduction

Business intelligence (BI) is based on a set of appli-

cations and technologies for gathering, storing, analyz-

ing, and providing access to data in order to help en-

terprise users make better business decisions. BI appli-

cations include the activities of decision-support sys-

tems, querying and reporting, on-line analytical pro-

cessing (OLAP), statistical analysis, forecasting, and

data mining. BI applications typically use data stored

in a data warehouse or data marts extracted from the

data warehouse. A data warehouse is a central reposi-

tory for all or significant parts of the data that an enter-

prise’s various business systems collect. It provides the

base to perform refined reporting and analytics. Thus,

data warehousing (DW) is a vital aspect of BI, and

both DW/BI today play an important role in decision

making. DW processes include integrating, storing and

analyzing business data (Figure 1). Data integration is

a crucial task for DW/BI applications. It consumes a

large fraction of the effort (70% by some estimators).

Data integration systems consolidate data from vari-

ous data sources into a target warehouse, performing

extraction-transformation-loading (ETL) tasks.

Nowadays, the Web becomes a commonly accepted

development and delivery platform. Therefore, mod-

ern DW/BI applications currently have moved onto the

Web, e.g., to integrate Web data to make better deci-

sion, or benefit from cloud computing facilities. In the

2 R. Salem et al.

Fig. 1 Data warehousing/business intelligence process

cloud, BI is accessible via any browser; there is no need

to buy neither software nor hardware. With BI software

running in the cloud, data integration must be carried

out with back-end systems, far from end-users.

Moreover, the Web is the world’s largest source of

information. The Web is very rich with distributed and

heterogeneous data (e.g., semi-structured/unstructured

data, chat logs, e-mails, images, videos, feedback and

surveys). Other valuable data types include relational

databases (deep Web), HTML/XML documents, spread-

sheet files, RSS feeds, on-line transaction records, ex-

ternal data feeds, sensor and streaming data. We term

such data complex data. Data may be qualified as com-

plex if they are: diversely structured, represented in

various formats and models, originating from several

different sources, described through different perspec-

tives and/or changing in terms of definition or value

over time (Darmont et al., 2005).

One of major problematic issues that we address in

this paper is to warehouse complex data into a uni-

fied storage to be later analyzed for decision-support
purposes. Another problematic issue is that the data

flow in traditional data integration systems in one-way.

The dominant way of populating data warehouses and

data marts is to operate ETL processes off-line, in batch

mode, usually at regular interval of downtime (e.g., at

the end of a day, week, or month). However, demand

for fresh data in either DW or BI is strongly desired

in many businesses. Today’s requirements impose inte-

grating complex data in near real-time rather than with

traditional snapshot and batch ETL. For example, en-

terprises need to integrate real-time changing customer

needs, customer click stream data, up-to-minute inven-

tory and pricing data. Real-time acquisition of radar

stream and weather data is necessary for forecasting. E-

banks need to integrate real-time data to react against

fraudulent transactions. Therefore, “real-time” or “near

real-time” data should be integrated to minimize la-

tency delays between BI systems and business opera-

tions for better decision making. Since traditional data

integration systems are passive in nature, data integra-

tion tasks conform to a static scheduling plan, whereas

real-time and near real-time processing require more

active ETL processes. Therefore, today’s DW/BI ap-

plications must react in an intelligent, i.e., active and

autonomous way, to encountered changes in the data

integration environment, especially data sources.

In this paper, we propose an approach for integrat-

ing complex Web data in near real-time, actively and

autonomously. We indeed provide a generic metadata-

based, service-oriented and event-driven approach for

integrating Web data. The main contributions of our

approach follow.

Firstly, the complexity of Web data is handled us-

ing our metadata-based and service-oriented features

of our approach. For instance, heterogeneous Web data

are unified and integrated into a common repository by

exploiting the XML language. The XML language bears

several interesting features for representing, exchang-

ing and storing Web data. Moreover, data distribution

and interoperability are tackled using Web services. Be-

side exchanging data among different applications and

platforms, Web services provide transparent access to

a variety of relevant data sources as if they were a sin-

gle source. Additionally, Web data are integrated into a

unified repository of AXML documents. AXML docu-

ments are XML documents where some of the data are

given explicitly, while other parts are given implicitly

by embedding calls to Web services (Abiteboul et al.,

2008a; Phan et al., 2012). The AXML technology is

mainly used in peer-to-peer mediation, but we reuse it

in data warehousing.

Secondly, our service-oriented feature ensures inte-

grating data in near real-time using a bi-directional

strategy, i.e., forward integration (push) and backward

integration (pull). Beside employing integration services

to carry out traditional ETL tasks, some management

services (i.e., change detection services) are employed to

track data changes and push them to integration ser-

vices. Indeed, integration services (change consumers)

subscribe to change detection services (change providers)

to be notified with only relevant near real-time changes.

Moreover, by integrating data into an AXML reposi-

tory, not only data are warehoused, but also functions

(or services) for integrating data on-the-fly. In a pull

strategy, embedded AXML services are invoked implic-

itly or explicitly to enrich and refresh the repository

with data in near real-time.

Thirdly, we provide an event-driven approach for

integrating data actively and autonomously. The sim-

ple idea of this approach is to warehouse all logged

events that describe integration activities into an XML-

based event repository. Then, the warehoused events

Active XML-based Web Data Integration 3

are mined and analyzed to maintain, automate and re-

activate data integration tasks. Therefore, we propose

an efficient incremental algorithm for mining associa-

tion rules from logged events in XML format (Salem

et al., 2011). A novel compressed tree structure, namely

FXT (Frequency XML-based Tree), which contains most

critical information about logged events is proposed.

An FXT is built with a single-pass over logged event

and enables transaction insertion alongside transaction

deletion. Both frequent events and association rules are

discovered from FXT using XQuery. Furthermore, ac-

tive rules are incorporated to reactive data integration

tasks. Such rules are defined either explicitly by the

user or implicitly by querying frequent events and as-

sociation rules from the FXT.

Finally, to validate our approach for managing Web

data integration, we develop a high-level software frame-

work using open-source tools. The framework prototype

is implemented as Web application.

The rest of this paper is organized as follows. In

section 2, we review the state of the art of data integra-

tion, Web warehousing, real-time/active warehousing,

and AXML and active rules for XML. Section 3 in-

troduces our generic framework for complex Web data

integration. The role of active metadata in data integra-

tion is presented in section 4. Our service-oriented fea-

ture for near real-time data integration is presented in

section 5. Moreover, our event-driven feature that incor-

porates active rules to reactive data integration tasks is

discussed in section 6. Implementation issues are pre-

sented in section 7. Finally, we conclude and highlight

future trends in section 8.

2 State of the Art

In this section, we review and discuss the literature re-

lated to data integration approaches, Web warehousing,

active XML and active rules, and real-time/active data

warehousing.

2.1 Data Integration

Over the past decade, many data integration approaches

have been proposed, most of them being surveyed in

Halevy et al. (2006); Ziegler and Dittrich (2004). In

general, there are two main families of approaches to

integrate data: virtual views (mediation) and material-

ized views (warehousing).

2.1.1 Virtual data integration

In a virtual view approach, data are accessed from the

sources on demand when a user submits a query to

the information system. Examples of integration sys-

tems that use the virtual view approach are federated

database systems and mediated systems. A Federated

Database System (FDBS) is a collection of autonomous

database components that cooperate for sharing data

(Sheth and Larson, 1990). Mediated systems integrate

data from heterogeneous data sources by providing a

virtual view of all data sources, e.g., as in the TSIM-
MIS (Chawathe et al., 1994) and Ariadne (Knoblock

et al., 2001) projects. They handle not only operational

databases, but also legacy systems, web sources, etc.

Mediated systems provide the single mediated schema

to the user, and users pose their queries w.r.t. this

schema.

Moreover, Wu (2006) propose to build a virtual in-

tegration system over Deep Web sources, the sources

that are only accessible through their query interfaces.

The proposed integration system provides a uniform

access to sources, thus freeing users from the details

of individual sources. Additionally, the PAYGO archi-

tecture is proposed for achieving web-scale data inte-

gration, focusing on integrating structured data from

the Deep Web (Madhavan et al., 2007). Unlike in tra-

ditional data integration, PAYGO has not a single me-

diated schema since web scale requires everything to be

modeled. PAYGO has a repository of schemata that are

clustered by topic. Due to heterogeneity at Web-scale,

approximate schema mapping is supported by PAYGO
rather than semantic mapping between data sources.

Mechanisms that incrementally improve semantic rela-

tionships between data sources over time are also pro-

vided in PAYGO.

XML and Web services are also employed for in-

tegrating Web data in federated systems (Zhu et al.,

2004), and in peer-to-peer (P2P) and mediated sys-

tems, e.g., in the AXML project (Abiteboul et al., 2002,
2008a). Vidal et al. (2008) propose a framework for

generating AXML Web services for materializing the

dynamic content of Web sites whose primary goal is

publishing and integrating data stored in multiple data

sources. In this framework, the dynamic content of a

Web page is defined as a (virtual) view, and the view

is specified with the help of a set of correspondence as-

sertions, which specify the semantic mapping between

the XML view schema and the base sources schema.

Furthermore, mashup-based data integration provides

a programmatic, data-flow-like and service-oriented ap-

proach for Web data integration (Lorenzo et al., 2009).

In addition to the fact that mashup tools are mainly

designed for handling Web data, such tools are mostly

simple and do not develop advanced programmatic data

integration, e.g., to analyze large sets of Web data.

Therefore, Thor and Rahm (2011) present an advanced

script language that provides operators for data integra-

tion tasks such as query generation and entity match-

ing. This language is presented in CloudFuice, which fol-

4 R. Salem et al.

lows a mashup-like specification of advanced dataflows

for data integration in the cloud.

2.1.2 Data warehousing

In a materialized view approach, relevant data are fil-

tered from data sources and pre-stored (materialized)

into a repository (namely a warehouse) that can be

later queried by users (Kimball and Ross, 2002; Inmon,

2002). Although the materialized view approach pro-

vides a unified view of relevant data similar to a virtual

view, it physically stores these data in a data ware-

house. This approach is mainly designed for decision-

making purposes and supports complex query opera-

tions (Darmont and Boussäıd, 2006). Compared to vir-

tual data integration approaches, classical warehousing

approaches lack of data freshness when dealing with

data sources that may update their contents very fre-

quently. They cannot handle a large number of hetero-

geneous and distributed data sources that need to store

their data in a central repository and keep them always

up-to-date, either.

Beside relational data warehousing approaches, there

are a variety of approaches proposed for XML data

warehousing. The main purpose of such approaches is

to enable a native XML storage of the warehouse, and

allow querying it with XML query languages, mainly

XQuery. Several researchers address the problem of de-

signing and building XML warehouses. For instance,

the snowflake schema is adapted with explicit dimen-

sion hierarchies (Pokorný, 2002). Mahboubi et al. (2008)

also propose an architecture model to translate the clas-

sical constellation schema into XML. Hümmer et al.

(2003) propose a family of XML-based templates called
XCube to store, exchange and query data warehouse

cubes. Rusu et al. (2005) propose an XQuery-based

methodology for building a data warehouse of XML

documents. It transfers data from an underlying XML

database into an XML data warehouse. Boussäıd et al.

(2006) propose X-Warehousing for warehousing com-

plex data and preparing XML documents for future

analysis. Baril and Bellahsène (2003) introduce the View

Model for building an XML warehouse called DAWAX

(Data Warehouse for XML). Other authors propose a

conceptual design methodology to build a native XML

document warehouse, called xFACT (Nassis et al., 2005).

It is improved in GxFACT (Rajugan et al., 2005), a view-

driven approach for modeling and designing a Global

XML FACT repository.

2.2 Web Warehousing

The problem of warehousing Web data is not trivial,

mainly because data sources are dynamic and heteroge-

neous. In this context, some researchers focused on the

construction of dynamic warehouse for XML (Xyleme,

2001) or Web documents (Bhowmick et al., 2003). In

Xyleme (2001), a dynamic warehouse is built for mas-

sive volumes of XML data from the Web, several issues

have been addressed in this project such as: efficient

storage for huge quantities of XML data over the Web,

considering the repository for efficient updateable stor-

age of XML data; query processing with indexing at

the element level for such a heavy load of pages, by

implementing a complex algebraic model, named Pat-
ternScan that captures so-called tree queries; data ac-

quisition strategies to build the repository and keep it

up-to-date, by crawling the Web in search of XML data;

change control with services such as query subscription;

and finally, semantic data integration to free users from

having to deal with many specific DTDs when express-

ing queries. The Whoweda (Warehouse of Web Data)

project aims to design and implement a warehouse for

relevant data extracted from the Web (Bhowmick et al.,

2003). This project is mainly focused on the definition

of a formal data model and algebra to represent and

manage Web documents, their physical storage, and

change detection. In Whoweda project, the Web ware-

house consists of a collection of constructs, namely Web

tables, which represent sets of interlinked Web docu-

ments. The tuples of Web tables are multigraphs where

each node represents a document, and edges represent

hyper-links between documents (Pérez et al., 2008).

Kimball and Merz (2000) introduce the marriage

of data warehouse and the Web to build Web-enabled

data warehouse (or Webhouse). They address the prob-

lem of bringing data warehouse to the Web in order to

deliver Web information not only to managers, execu-

tives, business analysts, and other higher level employ-

ees, but also to customers, suppliers and other business

partners. They also discuss the importance of bringing

the Web to data warehouse. Moreover, Vrdoljak et al.

(2003) propose a semi-automated methodology for de-

signing Web warehouses from XML sources modeled by

XML Schemes. In this methodology, design is carried

out by first creating a schema graph, then navigating its

arcs in order to derive a correct multidimensional rep-

resentation. This approach was implemented through a

prototype that reads an XML schema and outputs the

logical star schema of the warehouse. Finally, several in-

novative approaches exploiting XML are proposed for

warehousing Web data (Boussaid et al., 2008; Bentayeb

et al., 2011). These approaches address Web data inte-

gration, multi-dimensional modeling and storage into

XML data warehouses, as well as enabling user-driven

analysis via coupling data mining and OLAP.

Active XML-based Web Data Integration 5

2.3 Active XML and Active Rules for XML

Active XML is considered as a useful paradigm for dis-

tributed data management on the Web. AXML doc-

uments are XML documents with embedded calls to

Web services. When one of these calls is invoked, its re-

sult is returned to enrich the original document (Abite-

boul et al., 2008a). There are several issues studied

in P2P architectures, such as distribution, replication

of dynamic XML data, semantics of documents and

queries, confluence of computations, terminations and

lazy query evaluation. Several performance and secu-

rity issues for Active XML are addressed (Milo et al.,

2003), e.g., the problem of guiding the materialization

process. Ruberg and Mattoso (2008) handle material-

ization performance issues, when the result of some ser-

vice calls can be used as input of other calls. Another

issue is continuous XML queries, which are evaluated

incrementally as soon as there are new data items in

any of their input streams (Abiteboul et al., 2008b).

Active rules are widely known in active databases

(Paton, 1999). They follow the Event-Condition-Action

(ECA) paradigm, which describes actions to be taken

upon encountering an event in a particular database

state. These rules are then associated with objects, mak-

ing them responsive to a variety of events. Active rules

are also proposed for XML. Bonifati et al. (2002b) pro-

pose an active extension of the Lorel and XSLT lan-

guages, for using active rules on the implementations

of e-services. Bailey et al. (2002) investigate ECA rules

in the context of XML data. Rekouts (2005) also de-

scribes a general form of active rules for XML based on

XQuery and previously defined update languages.

2.4 Active and Real-Time Warehousing

To improve data freshness and to realize real-time de-

cision support systems, Tho and Tjoa (2003) propose a

framework for building Zero-Latency Data Warehouses

(ZLDWs). They capture and load data from hetero-

geneous data sources using a continuous data integra-

tion technique. Moreover, they combine their integra-

tion technique with an Active Data Warehousing (ADW)

approach (Thalhammer et al., 2001). ADW exploits ac-

tive rules to achieve auto-decision-making by minimiz-

ing user intervention in processing a series of complex

analysis tasks, so-called analysis rules.

Moreover, Karakasidis et al. (2005) propose an ar-

chitectural framework for the implementation of ac-

tive data warehousing and develop a theoretical frame-

work for the problem, by utilizing queue theory for the

prediction of performance of the refreshment process.

Abiteboul et al. (2006) utilize Active XML and Web

service technologies to present an approach for building

and maintaining domain specific content warehouses,

which differs from classical data warehouses by man-

aging “content” and not only numerical data. Addi-

tionally, Polyzotis et al. (2007) address the problem of

refreshing active warehouses on-line to ensure a higher

degree of consistency between the stored information

and their latest update. The authors propose a novel

join operator called MESHJOIN for joining a fast stream

S of source updates with a large warehouse relation R
under the assumption of limited memory. Naeem et al.

(2011) extends MESHJOIN by designing an adaptive al-

gorithm called Extended Hybrid Join (X-HYBRIDJOIN)

that can adapt to data skew and stores parts of the

master data in memory permanently, reducing the disk

access overhead significantly.

Furthermore, Naeem et al. (2008) discuss an event-

based near real-time ETL for transferring and trans-

forming data from operational databases to a data ware-

house. The authors propose an event-driven and near-

real time architecture for ETL that uses a Database

Queues (DBQ), works on a push technology principle

and supports content enrichment. A detailed state of

the art study of near real-time ETL is discussed by

Vassiliadis and Simitsis (2009). The authors also de-

tail the infrastructure of near real-time ETL presenting

alternative topologies, issues related to parallelism and

partitioning techniques, and issues concerning the com-

munication of the different parts of the architecture.

Finally, several technological issues and considera-

tions when building real-time data warehouses are dis-

cussed by industrial communities (Oracle, 2010; Brobst

and Ballinger, 2003).

2.5 Discussion and Positioning

Although our approach is designed for warehousing sys-

tems, it is supplied with virtual approach features. Par-

ticularly, AXML documents consist of two types of XML

nodes. The first set of nodes is defined and stored ex-

plicitly to represent static and passive parts of the doc-

ument, but the second set of nodes is defined implicitly

by calling services to integrate data on the fly, virtu-

ally, to represent the dynamic and active part of the

document. It has virtual approach advantages of data

integration from a large number of heterogeneous and

distributed data sources that are likely to be updated

frequently, due to using AXML, but there are no prede-

fined or expected user queries. Indeed, calling informa-

tion of AXML services may or may not occupy larger

storage than their results, but they can certainly be

reused infinitely to refresh the repository. Unlike in the

virtual data integration approach, our approach gains

advantage from the data warehousing approach by stor-

ing relevant data into a unified repository. The target

6 R. Salem et al.

repository contains not only the integrated data but

also calls to integration services. Accordingly, better

performance can be achieved by saving response time

when querying data, especially if data sources are phys-

ically located far from the integration system. Beside

data historization facilities, the data warehousing ap-

proach enables complex analyses unlike in virtual and

mashup-based approaches. Therefore, we conclude that

our approach is a hybrid of virtual and warehousing

approaches.

Compared to existing Web integration approaches,

our approach aims at integrating not only XML data,

like in Xyleme (2001); Vrdoljak et al. (2003), but also

other types of complex data including Web data (e.g.,

structured, semi-structured, images, videos, textual data,

etc.), and unifying them into an XML format. While

Xyleme and Whoweda are very large-scale, requiring un-

bounded resources due to the increasing volumes of

XML documents and Web data, medium-scale or small-

scale Web data may need to be warehoused for a spe-

cific decision support system. Moreover, our approach

aims at integrating Web data in an innovative real-time

and autonomous manner, different than Abiteboul et al.

(2006); Wu (2006); Vidal et al. (2008).

Data warehousing, particularly in the analysis phase,

tends to satisfy active features (Thalhammer et al.,

2001), while the data integration phase tends to satisfy

real-time requirements (Tho and Tjoa, 2003; Naeem

et al., 2008). However, ZLDWs must update data fre-

quently to improve data freshness using push/pull tech-

nologies via a message queuing system. The ZLDW and

ADW approaches use traditional batch data integra-

tion to integrate data that do not need to be continu-

ously updated and integrated. There is no either men-

tion on how to handle heterogeneity and distributed is-

sues in data sources. These approaches use active rules

for automating routine analysis tasks, but feedback de-

cisions are always taken by analysts. The event-driven

data integration approach (Naeem et al., 2008) deals

mainly with operational data sources and does not han-

dle data complexity issues. Beside handling data com-

plexity issues thanks to a service-oriented feature, our

integration approach automates integration tasks via

an event-driven feature by mining and analyzing logged

events, which are incorporated with active rules. There-

fore, only initial or trained integration tasks need to be

integrated by the user via a Graphical User Interface

(GUI).

3 AXML-based Data Integration Framework

Data integration is the process of consolidating data

from heterogeneous and distributed sources into a uni-

fied repository as in data warehousing, or providing the

user with a unified view of these data as in virtual

data integration. We thus present a generic framework,

namely AX-InCoDa (Active XML-based framework for

Integrating Complex Data). Through AX-InCoDa we

validate our approach (i.e., metadata-based, service-

oriented and event-driven) for integrating complex data

including complex Web data (figure 2). Integrating Web

data for DW/BI poses different and new requirements

to data integration technologies, over those posed by

conventional data integration systems (Kimball and Ross,

2002; Inmon, 2002). Therefore, more than one tool is

required for combining, transforming, and organizing

data into a common syntax. Web standards (e.g., XML,

Web services and related technologies) can help enter-

prises to integrate such complex data. Typically, Web

standards are the core technologies that are utilized in

AX-InCoDa for integrating complex Web data. XML

is indeed the de facto standard for representing, ex-

changing, and modeling semi-structured data. Thus,

we exploit XML as a pivot language for standardiz-

ing data into a unified format. XML is also utilized

for modeling and storing complex data. Moreover, Web

services can solve the data distribution and interop-

erability problems by exchanging data between differ-

ent applications and different platforms. Web services

are self-contained, self-describing modular applications

that can be published, located, and invoked across the

Web. Indeed, a service provides transparent access to

a variety of relevant data sources as if they were a

single source (Erl, 2004; Zhu et al., 2004; Schlesinger

et al., 2005; Utomo, 2011). Moreover, according to infor-
matica1, Software-as-a-Service (SaaS) integrate cloud-

based data easily with on-premise systems to ensure

users can access accurate, complete, up-to-date data

whenever and wherever they need it. Integration-as-a-

Service (IaaS) is a flexible, scalable and reusable inte-

gration approach where the core integration technology

that performs integration functions, such as semantic

mediation, data migration, connectivity, and other core

integration facilities, is delivered from the Web as a ser-

vice (Linthicum, 2010).

Therefore, we employ metadata-based services to in-

tegrate data from distributed data sources. Embedding

calls to services into XML data results in so-called Ac-

tive XML (AXML). Typically, the goal of AXML is to

integrate information provided by any number of au-

tonomous, heterogeneous sources and to query it uni-

formly (Abiteboul et al., 2008a). Using XML and Web

service standards also provides a less expensive and

more efficient data integration infrastructure, typically

by leveraging services to extract and detect changed

1 http://www.informatica.com

Active XML-based Web Data Integration 7

Fig. 2 AXML data integration framework

data, providing transformation services to unify data,

as well as loading services to move data from sources

to targets (section 5). Integrated data are targeted to a

native-XML based repository, namely an AXML repos-

itory; while integration services integrate relevant data

from sources to target, description of different frame-

work activities are logged into event repository. Such

events are mined on-line in order to extract interesting

knowledge to self-maintain, self-manage and automate

the execution of integration services, specifically when

incorporating the framework with active rules paradigm

(section 6).

4 Metadata Management for Data Integration

Metadata are a critical element in effective data inte-

gration. They are considered as a potential integration

tool providing useful information that facilitates com-

munication between information systems. While meta-

data management was not considered as a significant

part in traditional data integration systems, today’s

metadata management plays a critical role in devel-

oping and maintaining current data integration envi-

ronments. Integration services in AX-InCoDa are based

on a metadata-driven approach for integrating relevant

data. The metadata-driven approach allows users to

specify “what” data need to be integrated, without re-

garding “how” to integrate them. Since AX-InCoDa is a

metadata-driven, we address in this section the active

role of metadata to facilitate data integration.

4.1 Active Metadata

4.1.1 Active metadata management

Traditionally, metadata are used passively and are cre-

ated and maintained as documentation about the struc-

ture, the development and the use of a data integration

system. However, there is now a trend in data inte-

gration toward metadata taking on a more active role

(William Inmon, 2008). In AX-InCoDa, metadata man-

agement helps deal with the heterogeneity, variety, and

complexity of data sources, as well as the automation of

data integration tasks. For example, specifying source-

to-target mappings (under the form of metadata) serves

as the basis for automating extraction and transfor-

mation tasks. The well-organized metadata, the eas-

ier administration of the data integration environment.

Therefore, metadata can minimize the efforts for de-

veloping and administrating a data integration plat-

form. Beside supporting and automating data integra-

tion, metadata improve the flexibility of the platform

and the reuse of existing integration services. Moreover,

metadata enforce security mechanisms by providing ac-

cess permission rules and user rights. When integrating

data, metadata can also improve data quality through

enforcing consistency, validation, accuracy, complete-

ness and business rules.

Furthermore, AX-InCoDa integration and manage-

ment services are metadata-driven. Such services need

metadata about data sources, targets, mapping and

rules to carry out their functionalities. Since these ser-

vices are metadata-driven, they can be reused for differ-

ent integration tasks and do not require re-engineering.

We indeed distinguish between reusable metadata-based

services and specific-domain services. Some examples

of metadata-based services include extracting HTML

table structure, XML patterns, image attributes, etc.

These services can be reused everywhere for the same

types of sources by changing the service arguments, i.e.,

source URL. Examples of specific-domain services in-

clude extracting a specific product specification, price,

review, etc. These services are designed to get their re-

sults from pre-determined sources. This does not mean

that they cannot be reused, but they can be reused for a

similar source structure and may require re-engineering

when the structure of the source changes. Moreover,

metadata management integration services (e.g., change

detection, logging, etc.) are usually reusable for any do-

main.

4.1.2 Active metadata repository

There are two main types of metadata repositories: ac-

tive repositories and passive repositories (William In-

mon, 2008). Metadata from an active repository inter-

act in an ongoing manner during development, main-

tenance, and/or query activities of the system. On the

other hand, metadata from a passive repository do not

interact in any direct way. In AX-InCoDa, we follow the

principles of active metadata by always querying the

metadata repository on-line when developing and main-

taining data integration tasks. For example, source-to-

target mapping can be queried continuously to deter-

mine which sources are mapped to integration services

and/or targets. An active metadata repository should

be always up-to-date with changes, unlike a passive

8 R. Salem et al.

metadata repository. Therefore, changes need to be re-

flected continuously in an active data repository to keep

up with the typical evolution and maintenance of the

data integration system. Figure 3 shows some examples

of metadata for different framework components. Ex-

amples of metadata include data about data sources,

integration services, target AXML repository, source-

to-target mappings, active rules, and event repository.

Fig. 3 Metadata samples of our data integration framework

4.1.3 Integration schema evolution

The integration schema specifies the structure of rele-

vant data sources, specifies the structure of target doc-

uments and lists integration services. Hence, the in-

tegration schema is considered as a catalog of input

sources, target structures and service descriptions. Be-

cause there is an explosive growth of information and

new data sources, particularly in the Web arena, these

new data or changes of data sources should be reflected

in to the data integration schema. However, only rel-

evant structures are stored into the data integration

schema. A detailed workflow that describes the sequence

of the framework processes is presented in Salem et al.

(2010). The workflow illustrates how relevant changes of

data sources are monitored and detected, and then how

these changes update the integration schema implicitly.

The data integration schema can be updated either ex-

plicitly (i.e., by user when adding/modifying a specified

data source), or implicitly (i.e., by applying change de-

tection service to notify the integration system with

data source structure changes). This schema can be

continuously queried during system development, for

instance to validate whether data source changes are

relevant or not.

4.2 Conceptual Data Model

In order to illustrate associations between our frame-

work’s entities, we present AX-InCoDa conceptual data

model in figure 4 as a UML class diagram. Classes in

this model represent metadata such as entity, attribute,

table, column, and index. This model describes the re-

lationships between the main entities of the framework,

such as data sources, integration services, AXML docu-

ment, and logged events. The Complex Source class con-

tains metadata descriptions of complex data sources.

Since we handle several types of data sources, each

data source follows a specific source type (e.g., rela-

tional database, XML, text, image, etc.). A data source

is composed of one or more objects, where each object

is composed of one or more fields. The Object class de-

scribes the metadata of objects. Object is an optional

entity and may not be available for non-relational data

sources. Finally, the Attribute class describes the meta-

data of attributes.

Fig. 4 The framework conceptual data model

Data sources, their objects and their attributes are

mapped with their associated integration services. The

Integration Service class contains metadata descriptions

of integration services. Moreover, integration services

are mapped with their target in AXML documents, ex-

plicit elements, and their implicit elements. Integration

services are composed of several operations, each bear-

ing one or more parameters. Metadata description of

service operations and operation parameters are spec-

ified in the Operation and Parameter classes, respec-

tively. The AXML Document class contains the descrip-

tion of AXML documents’ metadata. Such documents

are composed of explicit elements and implicit elements.

The Explicit Element and Implicit Element classes de-

scribe metadata of explicit and implicit elements, re-

spectively.

Active XML-based Web Data Integration 9

The Event class describes the logged events raised

when defining data sources, objects, fields, executing

integration services, and querying AXML documents.

Although there are several types of events (section 6),

an event superclass is specified for simplicity. Logged

events are exclusive; each event type has its own de-

scription. Events, conditions, and actions are mapped

together to form active rules. The Event, Condition and

Action classes contain the description of events, con-

ditions, and actions, respectively. Actions are always

associated to integration services.

5 Service-oriented, Near Real-time Integration

The Web has become a common platform for the de-

livery of business applications. In particular, Web ser-

vice technologies and their extensions, e.g., SaaS, IaaS,

Everything-as-a-Service (Li and Wei, 2012), etc., enable

the development of complex business applications on

the Internet/in the cloud by integrating and exchanging

Web services from different providers. In AX-InCoDa,

we present integration services as a set of reusable Web

services, which are designed for integrating data from

heterogeneous and distributed data sources. Due to the

heterogeneity of data sources, integration services uti-

lize several types of interfaces to extract data, trans-

port and store integrated data (Martens and Teuteberg,

2012). In addition to our custom interfaces for integrat-

ing Web data, we benefit from existing Web APIs2 and

exploit them for accessing different databases on the

Web, as well as integrating heterogeneous Web content.

Such Web APIs offer several formats of data, e.g., CSS,

GeoRSS, HTML, Text, XML, JSON, RDF, etc.

In this section, we begin by distinguishing between

different roles of integration services and data services.

We then present two complementary service-oriented

directional strategies to integrate data in near real-time.

Finally, we enumerate the functionalities of manage-

ment services along with services for integrating data

in near real-time, focusing on change detection services.

5.1 Data Services as Data Sources

We hereby distinguish between two main different cat-

egories of services: integration services and ready-data

services. On the one hand, integration services are de-

signed to integrate data and manage different activi-

ties of the data integration system. On the other hand,

data services are a set of Web services that help share

a provider’s ready-data with consumers, delivering so-

called Information-as-a-Service. Nowadays, an increas-

ing amount of enterprises implement their core business

and deploy their application services over the Internet.

2 http://www.programmableweb.com/apis/directory/

Thus, these data services can be considered as data

sources, and we term them third-party services in oppo-

sition to the internal services of AX-InCoDa. Such third-

party services have a direct access to their providers’

underlying data. Some common examples of external

services include currency exchange, products on stock,

news streams, weather reports, and stock quote reports.

Finally, beside re-usability of data services, they pro-

vide low-cost approach for integrating data from het-

erogeneous data sources.

5.2 Push/Pull Data Integration

In AX-InCoDa, there are two complementary service-

oriented directional strategies for integrating and re-

freshing the AXML repository in near real-time, i.e.,

push and pull strategies. The push direction means

that relevant data move from data sources toward the

AXML repository in a “push” way. In this strategy,

beside applying the traditional “initial data integra-

tion” using integration services, change detection ser-

vices play a significant role to incrementally refresh the

AXML repository with data in near real-time. Change

detection services are employed to capture data changes.

Using the subscription-notification paradigm, data inte-

gration services can subscribe to change detection ser-

vices to be notified with only near real-time changes.

Figure 5 illustrates the forward direction strategy for

pushing data in near real-time onto the AXML reposi-

tory.

Fig. 5 Push strategy for refreshing data

By contrast, in the pull direction strategy, the AXML

repository is refreshed with data in near real-time by

pulling data from sources (read figure 6 from right to

left). Pulling data is attained by invoking embedded

AXML services. Such embedded services are invoked

to refresh the repository with data in near real-time,

achieving on the fly data integration upon request. The

timing of invoking embedded services may be defined

explicitly (e.g., triggering temporal events), or implic-

itly (e.g., when querying AXML documents/fragments).

The pull direction strategy for integrating data in near

real-time heavily depends on the AXML language’s ca-

pabilities.

10 R. Salem et al.

Fig. 6 Pull strategy for refreshing data

5.3 Data Integration Services

Although data integration includes several processes,

ETL are still the most important services when inte-

grating data. In addition to extraction, transformation,

and loading services for performing ETL tasks, AX-
InCoDa includes other services for managing integration

tasks as follows.

– Metadata extraction services. Metadata extrac-

tion services are sets of services designed for gen-

erating metadata from heterogeneous data sources,

including metadata of Web services residing at data

sources, so-called third-party services. Metadata are

extracted using a library of adapters, each one deal-

ing with a specific type of data sources. Then, meta-

data extraction processes are deployed as Web ser-

vices. The metadata extraction process is an inter-

active process, where the data steward selects rel-

evant metadata from service results. According to

the selected metadata, other services are called to

retrieve further metadata details. Beside generating

metadata automatically using metadata extraction

services, some useful semantic metadata can be en-

riched using a GUI, such as source description, de-

limiters of textual sources, etc.

– Change detection services. Change detection ser-

vices are sets of services that monitor relevant data

sources for changes. We distinguish between two

types of change events, namely “structure changes”

and “content changes”. Structure changes are re-

lated to the structure of sources. Content changes

are related to the contents of data sources. Notice

that not all encountered changes at data sources are

relevant. Thus, change detection services can query

the integration schema to check the relevance of

changes. Only relevant changes are taken into con-

sideration to incrementally update integrated data.

Section 5.4 comes up with further details on how

change detection services work.

– Refreshing services. Refreshing services are sets

of services designed for incrementally updating inte-

grated data with data changes, detected by change

detection services. Therefore, these services act as

intermediate services between change detection ser-

vices and data integration services. Moreover, such

services follow the scheduling plan for refreshing

data integration.

– Logging services. Logging services are sets of ser-

vices that log description information about differ-

ent framework activities into the event repository.

These services are attached to all framework mod-

ules, dealing with message catalogs for each module,

and then logging the occurred events into the event

log repository using an XML streaming interface.

One challenge that faces logging services is where to

physically locate logged events, i.e., where to locate

the event repository. This challenge is raised because

AX-InCoDa is a service-oriented framework, which is

distributed across multiple systems. But since the

framework mines and analyzes logged events for self-

tuning and self managing purposes, the best loca-

tion for logged events in the framework on the server

that performs mining services.

– Mining services. Mining services are sets of ser-

vices that extract interesting knowledge from logged

events. Mining services are significant services that

are continuously invoked by other management ser-

vices, such as refreshing and reactive services. Min-

ing logged events heavily depends on handling and

structuring incremental logged events in an innova-

tive way (section 6), to be mined easily. Moreover,

such services can be scheduled to be explicitly in-

voked to self-configure the framework’s setting. It

is worth noting that mined information is evaluated

against sets of defined active rules, which are man-

aged by reactive services. In addition, mining ser-

vices use XQuery to extract the relevant knowledge

from the innovative new structure of logged events.

– Querying services. Querying services are a set

of services that query either metadata by other in-

tegration management services or query integrated

data by the business user. Thus, the first type of

queries is carried out implicitly, without any user

intervention. The second type of queries is explicitly

formulated by business users or an external analy-

sis module. Queried metadata and AXML data are

both in XML format. Therefore, querying services

use XQuery to query both the metadata and the

AXML repository. XQuery is presented as an inte-

gral part of the Web service infrastructure (Onose

and Siméon, 2004).

– Reactive services. Reactive services are sets of

services that apply the ECA paradigm to respond to

encountered events with appropriate actions. Reac-

tive services are able to manage active rules through

detecting events, evaluating conditions and invoking

actions. Therefore, such services can drive the be-

havior of the framework’s activities. Such services

Active XML-based Web Data Integration 11

can enhance the framework’s capabilities, providing

a mechanism that can be used to support the in-

teraction among different framework modules. For

instance, these services can be used to update the in-

tegration schema, validate integrity constraints, and

coordinate the workflow of services. Implementing

reactive rules is mainly based on XQuery triggers,

or Active XQuery (Bonifati et al., 2002a).

– Utility services. Utility services include services to

maintain the system. They include services to con-

figure different settings of the framework such as

the frequency of explicit invocation of AXML em-

bedded services, the frequency of executing change

detection services, the scheduling of integration ser-

vices, the repositories settings, the Web service secu-

rity protocol, etc. Utility also include versioning ser-

vices to deal with different versions of loaded data.

Finally, they include services to handle errors.

5.4 Change Detection Services

5.4.1 Back-end services

The common methods for capturing near real-time data

changes include applying triggers in relational or XML

databases, adding time-stamp attributes to database

records, scanning log files of transactions (log sniffing),

and/or monitoring transactions for changes and then

targeting these changes to a specific message queue.

These methods run on the back-end layer of data sources.

In AX-InCoDa, such methods are developed and ex-

posed as services, called back-end services. The data

steward defines the appropriate method for detecting

changes from each data source as part of metadata, i.e.,

metadata enrichment. Then, s/he maps data sources to

change detection services, and adapts scheduling con-

figurations for change detection. Scheduling configura-

tions can be different from one data source to another.

For instance, changes are detected implicitly when there

is a possibility to apply triggers, and changes are de-

tected recursively with more or less frequent intervals

according to changing nature of data source. Notice

that mining logged events can be employed to adapt

the scheduling configuration automatically.

5.4.2 Front-end services

Since AX-InCoDa integrates data from Web data sources,

we can assume that data source modifications (e.g., in-

sert, update, or delete contents of Web data sources)

can be conducted through a set of services. Such ser-

vices are installed at data sources’ as interface for mod-

ified data entries. The same modifiable services can be

subscribed by multiple consumers (i.e., data integration

services). These services then notify the consumers, in

near real-time, with only relevant data changes accord-

ing to the subscription policy. This method of wrapping

(or enveloping) data sources with services can be con-

sidered as a choice for capturing data changes. In prac-

tice, this choice requires modifying the design and im-

plementation of data sources. Thus, this choice is not al-

ways guaranteed to be applied for different data sources

where modifying data source design is not allowed.

5.4.3 Subscription-notification mechanism

Publish-subscribe and/or event-notification mechanisms

(Zhao and Liu, 2006) can play an important role in

integrating near real-time data changes. This mecha-

nism is applied in AX-InCoDa to integrate near real-

time changes. There is usually two components in the

distributed architectures that use publish-subscribe or

event-notification mechanisms, i.e., event sources and

event consumers. In AX-InCoDa, the Web services de-

signed to monitor different data sources for changes are

considered as event sources. Integration services, par-

ticularly extraction services and refreshing services, are

considered as event consumers. Change detection ser-

vices define change events and publish them whenever

a change occurs using the PUBLISH operation. A par-

ticular integration service can subscribe to one or more

interesting change events using the SUBSCRIBE opera-

tion identifying the event type to be subscribed. In ad-

dition, change events can also be subscribed by one or

more of integration services. Such integration services

are notified using the NOTIFY operation when their

subscribed events occur, in other words when published

events are matched with subscribed events. Figure 7 il-

lustrates change detection workflow with the publish-

subscribe-notify mechanism.

Fig. 7 Publish-subscribe-notify mechanism for detecting
changes

6 Event-driven Reactive Integration

Integrating data in an autonomous and reactive man-

ner is one of the major problems that we address in this

paper. We provide a solution by warehousing and min-

ing logged events on-line, and enriching the integration

system with active rules to activate integration services

when detecting specified events.

6.1 Event Warehousing

The event repository involves a variety of events that

are logged from different framework modules. It can be

12 R. Salem et al.

considered as part of metadata, because the adminis-

trator can query it to trace different framework activi-

ties. Events can arise from changing structures or con-

tents of data sources. Examples of structure changes

events include adding, altering, and/or dropping data

sources, objects, and/or fields. Nevertheless, examples

of content changes events include data manipulation

events such as inserting, updating, and/or deleting val-

ues at a specific data source. Such events of changes

are logged into the event repository. Integration ser-

vices log events about data sources that they extract,

transform, and load. Main event information includes

date processed, number of records read, written, input,

output, updated, errors encountered, and services car-

ried out. Another category of events is logged when

querying AXML documents. These events include infor-

mation about AXML documents, XQuery expressions,

XPaths expressions, as well as date of querying.

Since events are warehoused into the event reposi-

tory, the repository can be modeled and stored accord-

ing to a star schema model (Kimball and Ross, 2002),

where a single fact document represents all events (fig-

ure 8). However, there are multiple dimension docu-

ments (e.g., user dimension, machine dimension, ses-

sion dimension, data source dimension, AXML docu-

ment dimension, date and time dimension). Warehous-

ing events allows data steward to apply XML On-line

Analytical Processing (X-OLAP) (Park et al., 2005), in

order to explore and analyze logged events information.

Fig. 8 Logical star schema of event repository

6.2 Event Mining

6.2.1 Incremental event mining

AX-InCoDa logs a large amount of events incrementally

and continuously in XML format. Logged events are

essential to understand the activities of AX-InCoDa.

Discovering interesting knowledge from logged events,

which can be performed by data mining techniques,

helps understand relationships among events and pre-

dict upcoming events. Therefore, such knowledge can

be employed to self-maintain and activate the workflow

behavior of these systems, autonomously.

Mining logged events is the process of extracting

knowledge from continuously and rapidly logged events.

Extracting interesting knowledge from logged events is

an emerging need for auditing, maintaining, and self-

managing systems. One relevant data mining technique

in this context is association rule mining. Association

rule mining discovers interesting association and/or cor-

relation relationships among large sets of logged events,

and predicts upcoming events based on the occurrence

of previous ones. Mining association rules from incre-

mental XML-formatted logged events is different from

mining traditional static data, due to several specific is-

sues and challenges either related to data arrival (Gaber

et al., 2005; Jiang and Gruenwald, 2006; Yu and Chi,

2009), or the nature of the XML format (Feng and

Dillon, 2004; Zhao et al., 2006). When logging events,

events arrive continuously at moderate or high speed,

in unbounded amount, and with varying data distribu-

tions. Unlike in traditional data mining, there is not

enough time to rescan the whole database whenever

an update occurs. Therefore, a single-pass over events

is required. Logged events need to be processed incre-

mentally as fast as possible. Processing speed should

be faster than event arrival rate. Moreover, mined data

should not need to be recalculated each time they are

requested. The unbounded amount of logged events and

limited system resources, such as disk storage, mem-

ory usage, and CPU power, lead to the need for event

mining algorithms that adapt themselves to available

resources, otherwise result accuracy decreases. More-

over, traditional data mining techniques mine frequent

itemsets and discard non-frequent itemsets. This prop-

erty is not valid for logged events, where the frequency

of itemsets is changing over time. Finally, extracting

knowledge from XML data is more difficult than on

relational data, because of the flexible, irregular, and

semi-structured nature of XML.

To the best of our knowledge, there is no XML-

based algorithm in the literature to discover interest-

ing knowledge from incremental XML-formatted logged

events. Therefore, we propose an incremental algorithm

Active XML-based Web Data Integration 13

for this purpose. Our algorithm is composed of two

main phases. Firstly, we construct and populate a novel

tree structure, i.e., FXT, which stores the frequencies

of events to be mined. Secondly, we query frequent

event-sets and association rules efficiently from the con-

structed FXT using XQuery. Our algorithm handles

most logged event processing issues. It does a single-

pass over data transactions to construct the compact

FXT structure. Although the FXT is processed using

XML technologies and constructed in XML format, its

construction time is fast enough. Association rules with

different minimum supports are queried at any time

without re-constructing the FXT from scratch.

6.2.2 Event log sample

As an example, let us address an e-commerce support

system; one of its functionalities is to provide price

comparisons. It extracts product data from different

merchants, compares their prices and finally reports

the best price. The system logs events that usually

include much descriptive information about each ac-

tivity, e.g., event identification, event occurring time,

event source, event description, event origin activity,

etc. The event origin activity helps formulate dynamic

active rules (section 6.3) and their values are either

event, condition or action. Note that the more event in-

formation is logged, the more interesting knowledge can

be discovered. Events with origin activity “event” usu-

ally correspond to data modification operations (e.g.,

evt:addProduct, evt:modifyProduct, evt:deleteProduct,
evt:addMerchant, evt:modifyMerchant, evt:deleteMerchant,
etc.). Other events with origin activity “condition” usu-

ally denote Boolean queries (e.g., cnd:checkMerchant,
cnd:checkProduct, cnd:checkPrice, cnd:checkInStock, etc.).

Moreover, events with origin activity “action” are usu-

ally executing integration services, sending or notifying

messages (e.g., act:getProductInfo, act:getMerchantInfo,

act:getProductPrice, act:comparePrices, act:sendMessage,
act:notifySubscriber, etc.). The aforementioned events

and integration services are provided from application-

oriented perspective. However, there are metadata-based

services that can also be invoked (e.g., accessDeepDB,

retrieveDeepDB, retrieveXMLSchema, retrieveHTMLStruc-
ture, etc.). In order to apply our incremental event min-

ing algorithm, we need to pre-process logged events (fig-

ure 9) and organize them into transactions (figure 10).

Each transaction has an identifier, an occurring time,

and a set of items that represent framework events. The

set of events are assumed to be logged in a window-size

of time (time + window). The corresponding format of

logged transactions can be obtained from AX-InCoDa
by applying a pre-processing step for defining transac-

tions according to windows of time. The most impor-

<events>

<event id="A">

<dateTime>2012-02-14 09:16:03</dateTime>

<category>source structure</category>

<sourceID>s010</sourceID>

<userID>user001</userID>

<evtName>modifyProduct</evtName>

<originAcitivity>event</originAcitivity>

</event>

<event id="B">

<dateTime>2012-02-14 09:16:03</dateTime>

<category>source structure</category>

<sourceID>s010</sourceID>

<userID>user001</userID>

<evtName>addMerchant</evtName>

<originAcitivity>event</originAcitivity>

</event>

<event id="C">

<dateTime>2012-02-14 09:16:09</dateTime>

<category>integration services</category>

<sourceID>s010</sourceID>

<userID>user001</userID>

<evtName>getProductPrice</evtName>

<originAcitivity>action</originAcitivity>

</event>

<event id="D">

<dateTime>2012-02-14 09:16:15</dateTime>

<category>integration services</category>

<sourceID>s010</sourceID>

<userID>user001</userID>

<evtName>comparePrices</evtName>

<originAcitivity>action</originAcitivity>

</event>

<!-- more events -->

</events>

Fig. 9 Logged event sample

<transaction id="1" time="2012-02-14 09:16:00">

<item>A</item><item>B</item><item>C</item><item>D</item>

</transaction>

<transaction id="2" time="2012-02-14 09:16:20">

<item>C</item><item>E</item>

</transaction>

<transaction id="3" time="2012-02-14 09:16:40">

<item>B</item><item>C</item>

</transaction>

<transaction id="4" time="2012-02-14 09:17:00">

<item>C</item><item>D</item><item>E</item>

</transaction>

<transaction id="5" time="2012-02-14 09:17:20">

<item>B</item><item>C</item><item>D</item>

</transaction>

<transaction id="6" time="2012-02-14 09:17:40">

<item>A</item><item>C</item><item>E</item>

</transaction>

<transaction id="7" time="2012-02-14 09:18:00">

<item>A</item><item>B</item><item>D</item>

</transaction>

<transaction id="8" time="2012-02-14 09:18:20">

<item>E</item><item>F</item>

</transaction>

Fig. 10 Sample event transactions

14 R. Salem et al.

tant thing to our algorithm is to define the listing of

items of each transaction, which should be sorted al-

phabetically for performance purposes.

6.2.3 Frequency XML-based Tree (FXT)

In order to mine frequent itemsets or association rules,

the frequency of events (or items) needs to be calcu-

lated. Hence, we propose a novel tree structure named

Frequency XML-based Tree (FXT), which contains the

frequency of all logged items. Before introducing our

FXT structure, let us define I as a set of items (I =

{Ia, Ib,, Iz}) where letters (a, b and z) refer to item

ordering. In addition, we denote Ntrans the total num-

ber of transactions, Nk the count of any item k across

all logged transactions, and Nv|...|k ∀v, k ∈ [a, z] is the

conditional count of Iv given Ik descendants. There are

some facts can be deduced from the FXT structure, i.e.,

Ntrans ≥ Nk and Nk ≥ Nv|...|k.

FXT nodes, except the root node, consist of two

entries: item name and counter, where item name reg-

isters what item this node represents (e.g., Im), and

counter registers the number of transactions represented

by the portion of the path reaching this node (e.g., Nm

or Nm|...|i). FXT is composed of three main levels of

nodes (figure 11). Firstly, the Root node represents the

total number of logged transactions (Ntrans). This root

counter is used to calculate any item support. Secondly,

the Breadth nodes level refers to all children of the root.

It represents the count of each item in any logged trans-

action across all transactions (e.g., Ni). Note that the

occurrence frequency of an item is the number of trans-

actions that contain the item. This is also known, sim-

ply, as the frequency, support, or count of the item (Han

and Kamber, 2005). In this paper, frequency refers to

the number of occurrences of an item, and any item

support can be easily calculated via dividing item fre-

quency/counter by Ntrans. Thirdly, the Depth nodes

level refers to all root’s grandchildren nodes. It rep-

resents the relative or conditional count of a specific

item given other related items (e.g., Nm|...|i). Depth

nodes are represented as sets of paths, each path corre-

sponding to specific transaction itemsets. In figure 11,

straight lines annotated by a single slash “/” mean that

breadth nodes are children of the root node. Dashed

lines annotated by double slashes “//” mean that there

is zero or more descendant nodes in a specific depth

path. Further details on how the algorithm constructs

the FXT, and the performance study of the algorithm

are discussed in Salem et al. (2011). Figure 12 shows the

FXT constructed from the sample transactions given in

figure 10.

Finally, the constructed FXT in XML format is shown

in figure 13.

root N
trans

I
a

N
a

I
i

N
i

I
z

N
z

I
i

N
i|…|a

I
z

N
z|…|a

I
z

N
z|..|i|..|a

I
m

N
m|…|i

I
z

N
z|…|i

I
z

N
z|..|m|..|i

Root node

Breadth

nodes

Depth

nodes

// //// //

////

/ /
/

Fig. 11 FXT structure

Fig. 12 Sample FXT

<? xml version="1.0" encoding="UTF-8"?>

<root counter = "8">

<B counter = "2">

<C counter = "1">

<D counter = "1"/>

</C>

<D counter = "2"/>

<C counter = "2">

<E counter = "1"/>

</C>

<B counter = "3">

<C counter = "3">

<D counter = "2"/>

</C>

<C counter = "6">

<E counter = "3"/>

<D counter = "3">

<E counter = "1"/>

</D>

</C>

<D counter = "4"/>

<E counter = "4"/>

<F counter = "1"/>

</E>

<F counter = "1"/>

</root>

Fig. 13 Output FXT document

Active XML-based Web Data Integration 15

6.2.4 Discovering frequent events

The main objective of constructing the FXT is to mine

frequent itemsets and association rules easily using the

XQuery language3. Frequent itemsets are queried by

traversing the FXT from breadth nodes to specific nodes

(portion of paths), or to leaf nodes (complete paths).

Frequent itemsets are usually filtered using a statistical

measure called support. Support measures the propor-

tion of transactions that contains a specific item (or

itemset). A frequent itemset is an itemset whose sup-

port is greater than some user-specified minimum sup-

port. Frequent itemsets satisfy the Apriori property,

which states that if a given portion of path does not

satisfy minimum support, then neither will any of its

descendants (Agrawal and Srikant, 1994).

Let I be a set of items within a set of transactions S.

Transactions T (T ∈ S) contain the itemset X(X ⊂ T).

In addition, Y and Z are itemsets, where (Y ⊂ T) and

(Z ⊂ T). Support of itemsets X and Y measures the

proportion of transactions in S that contain both items

in X and Y . Support of any item can be obtained by

querying the counter attribute value of the specified

item at breadth nodes, then dividing it by Ntrans. Sup-

port of frequent itemsets can be obtained by querying

the counter attribute value of the last ordering item

of an interesting portion of path, or the leaf item of

the interesting path in depth nodes, then dividing this

value by Ntrans. Formulas for calculating the support

of sample items and itemset from the FXT follow.

Support(X) = root/X/@counter
root/counter

Support(X,Y, Z) = count(X∪Y ∪Z)
Ntrans

= root/X/Y/Z/@counter
root/counter

Figure 14 introduces the function for generating fre-

quent itemsets from the FXT of figure 13.

The result of calling function getFrequentItemsets on

document tree.xml from figure 13 with minimum sup-

port=0.25 is shown in figure 15.

6.2.5 Discovering association rules

Association rules have been first introduced in the con-

text of retail transaction databases (Agrawal and Srikant,

1994). An association rule is an implication of the form

X⇒Y, where X is the rule body, Y is the rule head and

X ∩ Y = φ. A rule X ⇒ Y states that the transactions

T that contain the items in X are likely to also con-

tain the items in Y. Beside support, association rules

are characterized by confidence. Confidence measures

the proportion of transactions in S containing items X

3 http://www.w3.org/TR/xquery/

declare variable $input := doc("tree.xml")/root;

declare variable $rootCounter := $input/@counter;

declare function local:getFrequentItemsets($parent as

xs:string, $element as element(*, xs:untyped),

$minSupport as xs:decimal) {

let $path := concat($parent,’/’,name($element))

where $element/@counter div $rootCounter>=$minSupport

return

(<frequent path="{$path}" count="{$element/@counter}"

support="{$element/@counter div $rootCounter}"/>,

for $child in $element/*

return

local:getFrequentItemsets ($path, $child, $minSupport))};

(: call the function :)

for $child in $input/*

return

local:getFrequentItemsets("", $child, 0.25)

Fig. 14 XQuery function for mining frequent itemsets

<frequent eventItemset="/A" support="0.375"/>

<frequent eventItemset="/A/B" support="0.25"/>

<frequent eventItemset="/A/B/D" support="0.25"/>

<frequent eventItemset="/A/C" support="0.25"/>

<frequent eventItemset="/B" support="0.5"/>

<frequent eventItemset="/B/C" support="0.375"/>

<frequent eventItemset="/B/C/D" support="0.25"/>

<frequent eventItemset="/C" support="0.75"/>

<frequent eventItemset="/C/E" support="0.375"/>

<frequent eventItemset="/C/D" support="0.375"/>

<frequent eventItemset="/D" support="0.5"/>

<frequent eventItemset="/E" support="0.5"/>

Fig. 15 Result of XQuery function for mining frequent item-
sets

that also contain items Y. Confidence(X ⇒ Y) can be

expressed as the conditional probability p(Y |X). Thus,

we define:

Support(X ⇒ Y) = count(X∪Y)
Ntrans

= root/X/Y/@counter
root/counter , (1)

Confidence(X ⇒ Y) = support(X⇒Y)
support(X)

= count(X∪Y)
count(X)

= root/X/Y/@counter
root/X/@counter . (2)

Figure 16 introduces the XQuery function for gener-

ating a set of association rules related to a given event

from the FXT constructed in figure 15.

The result of calling function getAssRules on docu-

ment tree.xml from figure 13 is shown in figure 17.

16 R. Salem et al.

declare function local:getAssRules($x as xs:string){

let $path_x := $input/*[name(.) = $x]

return

(for $y in $path_x/*

let $y_given_x := name($y)

let $supp_xy := $y/@counter div $rootCounter

let $supp_x := $path_x/@counter div $rootCounter

let $confidence := $supp_xy div $supp_x

return

<rule body="{$path_x/name()}" head="{$y_given_x}"

sup="{$supp_xy}" confidence="{$confidence}"/>) };

(: call the function :)

local:getAssRules("A")

Fig. 16 XQuery function for mining association rules

<rule body="/A" head="B" sup="0.25" confidence="0.667"/>

<rule body="/A" head="C" sup="0.25" confidence="0.667"/>

Fig. 17 Result of XQuery function for mining association
rules

6.3 Active rules

Active rules are incorporated into AX-InCoDa to en-

rich it with automatic, reactive and intelligent features.

These rules enable integration systems to respond au-

tomatically to encountered events. Once a given event

is detected, the associated rules are fired. Events can

be temporal events or data integration system events.

Events are either simple or composite. Simple events

(also called, primitive or atomic events) correspond to

a data modification operation, the execution of an in-

tegration service, or the query of an AXML document.

A composite event is a logical combination of simple

events or other composite events, defined by logical op-

erators such as disjunction (or), conjunction (and), se-

quence (and then), and negation (not). Conditions de-

note queries to one or several events and are expressed

in XPath or XQuery. Actions can be notifying the inte-

gration server when a data source changes, sending mes-

sage, or invoking integration service. Note that, evalu-

ating a condition and executing an action can be logged

as events. Although the general form of active rules con-

form to the ECA paradigm, other variations may occur.

For example, the omission of the condition part leads

to an Event-Action rule (EA-rule), where the condition

is considered to be always true. The omission of the

event part leads to a Condition-Action rule (CA-rule),

where the compiler generates the event definition. The

omission of both the event and condition parts is not

allowed for the same rule.

To formulate active rules, there are two types of ac-

tive rule definitions, i.e., static active rules and dynamic

active rules. Static active rules are defined by the data

steward, and their definitions are explicitly changed via

the data steward’s intervention. Dynamic active rules

are defined by the data steward using sets of query-

ing expressions on different components of the rule.

Dynamic active rule definitions are implicitly changed

from time to time according to the result of embedded

queries, as shown in the following example.

In this example, the active rule is formulated dy-

namically by mining frequent events and association

rules and by embedding AXML services into the ECA

paradigm (figure 18). We herein assume that the identi-

fiers of different events, conditions and actions are still

the same when they are logged as events, for simplicity.

For instance, if an action execution (e.g., with iden-

tifier C) is logged, its logged event identifier remains

C. We are also interested in formulating rules for fre-

quent events. Event frequency is checked using the is-
Frequent function (figure 19), e.g., with a minimum sup-

port equal to 0.05. The getAssRules function is called to

get the associated events of the detected one (figure 16),

e.g., with a minimum support equal to 0.1 and a mini-

mum confidence equal to 0.65. Then, the origins of de-

tected and associated events are tested to formulate the

active rule. In the action part, the confidence between

detected and associated events is set. For instance, if

confidence is equal to 1, the rule is formulated imme-

diately and saved into the rule repository. The user is

notified only if confidence is greater than 0.65. The ac-

tion is always invoking an AXML service.

6.4 Active Active XML (A2XML) Engine

We utilize active (or ECA) rules to activate AXML ser-
vice invocation. We merge the ECA paradigm into the

AXML language to control the flow behavior of the data

integration environment. We term the merging of both

technologies Active Active XML (for short A2XML).

The A2XML engine plays an important role to control

the evaluation of the active rules. It manages event trig-

gering, evaluates conditions, and executes actions. The

A2XML engine manages the evaluation of integration

services. All integration services are registered to the

A2XML engine. It is also supplied with business rules

to handle the flow and timely activation of services.

It also monitors querying the AXML documents, and

then invokes the embedded services of the queried doc-

uments to refresh them with up-to-date information.

Beside evaluating services implicitly when data are re-

quested, services can also be evaluated explicitly (e.g.,

daily, weekly or after occurring some events). Evalu-

ating services explicitly may depend on data update

frequency, which differs w.r.t. the nature of various ap-

plications. Moreover, the engine manages where service

Active XML-based Web Data Integration 17

<eca:rules>

<eca:variable name="eventID" lang="xpath" expr="./@ID"/>

{

if local:isFrequent($eventID,0.05)

{

for $rule in local:getAssRules($eventID, 0.1, 0.65)

let $ruleHead := data($rule/@head)

let $eventBodyOrigin := doc("events")

/event[@id=$eventID]/origin

let $eventHeadOrigin := doc("events")

/event[@id=$ruleHead]/origin

where $eventBodyOrigin="event" or $eventBodyOrigin

="condition"

return

<eca:rule>

{

if ($eventBodyOrigin="event") then

<eca:event id="{$eventID}"/>

else()

}

{

if ($eventBodyOrigin="condition") then

<eca:condition id="{$eventID}"/>

else if ($eventHeadOrigin="condition") then

<eca:condition id="{$ruleHead}"/>

else()

}

{

if ($rule/@confidence = 1 and $eventHeadOrigin

="action") then

<eca:action>

<axml:cs service="{$ruleHead}"/>

</eca:action>

else if ($rule/@confidence >= 0.65 and

$eventHeadOrigin ="action") then

<eca:action>

<axml:cs service="send-message">

<input-param value="The action {$ruleHead} is

suggested to be taken"/>

</axml>

</eca:action>

else ()

}

</eca:rule>

}

else()

}

</eca:rules>

Fig. 18 Formulating an active (ECA) rule with A2XML

declare variable $input := doc("tree.xml")/root;

declare variable $rootCounter := $input/@counter;

declare function local:isFrequent($element as element(*,

xs:untyped), $min_supp as xs:decimal) as xs:boolean {

let $path := $input/*[name(.) = $element]

let $evt_support := $element/@counter div $rootCounter

return

boolean ($evt_support >= $$min_supp)

};

Fig. 19 XQuery function for checking event frequency

results are written, either replacing the calling service

or appending to it.

7 Implementation and Validation

7.1 Implementation Issues

We implemented our framework prototype mostly us-

ing standard open-source software. It is implemented as

a Web-based application4 using Oracle, XML and Java

technologies. Figure 20 shows the deployment diagram,

which visualizes the hardware, middle-ware and soft-

ware used in our implementation. The diagram is com-

posed of multiple tiers: data source, integration man-

agement, Web, client and target tiers. The tiers com-

municate via several protocols and interfaces. The data

source tier enables accessing, defining, updating and

managing data sources. There are Web APIs and Java

APIs that we exploit in AX-InCoDa to facilitate extract-

ing metadata schema from heterogeneous data sources.

Relevant metadata schema of data sources can be eas-

ily determined via the application’s GUI. Recall that

AX-InCoDa integrates complex data including Web data

from heterogeneous and distributed data sources. Ex-

amples of supported data sources include database con-

nections (e.g., JDBC and ODBC), relational database

files, spreadsheets, CSV, XML, Web services, text, im-

ages, audios and videos.

The integration management tier is the main core

of our application. It is composed of two main sets

of cooperative components: application manager and

native XML database (management repository). The

integration manager components (i.e., change detec-

tion, ETL and A2XML engines) are implemented us-

ing Java. From an implementation viewpoint, using an
open source tool for performing ETL tasks saves imple-

mentation time. Our prototype utilizes the Java library

of Pentaho Data Integration (PDI)5. PDI is a power-

ful, metadata-driven ETL tool. The framework adapts

the structure of relevant data sources from the input

schema into XML files that can be handled by PDI tools

(e.g., Pan or Kitchen). Then, PDI tools are invoked to

execute transformations or jobs, which are described

in XML. The XML file of a specific transformation in-

volves metadata about the input data source and its de-

tailed characteristics, metadata about transformation

rules, and metadata about output targets. Such meta-

data describe the ETL operation. The XML database

is implemented using Sedna6, which supports XQuery

triggers. It involves several collections of databases, such

as metadata of framework components, defined and mined

4 http://eric.univ-lyon2.fr/~rsalem/axdi/
5 http://kettle.pentaho.com/
6 http://www.modis.ispras.ru/sedna/

18 R. Salem et al.

active rules, and logged events. Such databases are em-

ployed as utilities for application manager components.

Active rules are implemented, triggered and fired using

the XQuery trigger facility supported by Sedna.

Fig. 20 Deployment diagram of our Web platform

In the Web tier, integration services, dispatcher ser-

vices, and user interface components bindings are im-

plemented in Java. They are deployed to Oracle We-

bLogic server 11g. At the client tier, users can explore

our application via a web browser. The application’s

GUI is developed using components of Oracle Applica-

tion Development Framework (ADF) and Sun JavaServer

Faces (JSF). The user specifies interesting data sources,

and then extraction services bring out the metadata

from which to select a relevant schema. Beside defin-

ing data sources via the application’s GUI, users have

access to several functionalities such as mapping data

sources with integration services, scheduling the exe-

cution of integration services, mapping integration ser-

vices with targets, browsing and querying the AXML

repository, browsing changes of data sources, and defin-

ing ECA rules. The GUI also allows applying the gen-

eral settings of the framework, and applying the config-

uration of change detection and native-XML database.

Moreover, a demo of the AXML browser is implemented

in order to navigate AXML documents. The browser is

split to display the AXML documents before and after

invoking embedded services. Finally, the target of the

integration tasks is always a set of AXML documents

that are also stored in the native XML database.

7.2 Validation Example

To validate our framework prototype, we reconsider

the product pricing comparison example (section 6.2.2).

Fortunately, there are several Web APIs that gather

data from thousands of on-line stores, e.g., DataFeed-

File.com API, Amazon Product Advertising API, Shop-

ping.com (eBay) API, Shopzilla API, PriceGrabber API,

etc. Such APIs enable the data steward searching the

product using one of several criteria, e.g., keywords,

sku, upc or ISBN number. All these APIs can retrieve

product information including the price in XML for-

mat. In our prototype, we utilize such APIs to extract

product specifications, their merchants and their prices.

Additionally, we enrich the prototype with services for

retrieving customer reviews, images and videos of prod-

ucts. We develop Web services to compare prices from

different merchants returning the lowest and highest

prices. We also apply services exploiting DiffX7 to com-

pare resulting XML data and detect event of changes.

According to change events, the range of prices may

be changed from time to time. Our prototype supports

multiple adaptive strategies for refreshing the reposi-

tory with recent data either by change detection ser-

vices or invoking embedded AXML services.

In this example, we integrate product data from a

variety of on-line stores using the aforementioned Web

APIs and store these data into AXML documents. Fig-

ure 21 illustrates the target AXML document layout,

wherein hollow tag indicators refer to static elements

and solid tag indicators refer to service call (dynamic)

elements. Contents of AXML static elements are rarely

updated (e.g., product description, merchant logo and

merchant URL), while contents of dynamic elements

(i.e., call to services) are updated frequently, e.g., low-

est price, highest price and quantity in stock. A sample

of full target AXML document is provided in appendix

A, which shows the AXML document before and after

invoking embedded services, respectively.

7.3 Implementation Remarks

We herein discuss some remarks on the qualities of

our prototype implementation, e.g., maintainability, re-

usability, interoperability, scalability and performance.

AX-InCoDa is a metadata-driven framework that allows

a data steward to specify what data need to be inte-

grated, without regarding how to integrate them. Ac-

cordingly, it makes easy for the steward to maintain the

data integration environment for any application. How-

7 http://www.topologi.com/diffx/

Active XML-based Web Data Integration 19

<>Products
<>Product *

<>Product_sku

<>upc

<>isbn

<>idType

<>description
<>longDescription
<>productPhoto

<>productVideo
<>rating

<>cs:getRating(prod_id)

<>manufacturer
<>lowestPrice

<>cs:getLowestPrice(prod_id)
<>highestPrice

<>cs:getHighestPrice(prod_id)

<>lowestURL
<>cs:getLowestURL(mer_id)

<>merchant @id *
<>logo
<>merRating
<>URL
<>availability

<>cs:isAvailable(prod_id, mer_id)
<>condition
<>basePrice

<>cs:getBasePrice(prod_id, mer_id)

Fig. 21 AXML document layout

ever, a steward must still be a person who has enough

expertise in data integration and its processes. Further-

more, our prototype is service-oriented, and manages

its processes and integration tasks using the services

technology. These services are designed to be reused

by different applications. For instance, a specific ser-

vice can be reused to integrate the metadata of any

database object. Moreover, employing both XML and

Web services in developing our framework tackles inter-

operability problems among diverse systems. Since the

entire framework is services-oriented, it can also benefit

from the myriad of options offered by WS-Extensions.

For instance, the framework can be augmented with se-

curity and reliability services. It is advantageous to use

open-source and free software/pieces of software for im-

plementing our prototype. However, the scalability and

performance of our prototype is related to that of un-

derlying technologies, such as Sedna, PDI, and the We-

bLogic server infrastructure. Note that there are other

alternative technologies that may enhance performance.

Nevertheless, our choice of technologies bases on their

compatibility and satisfaction of our requirements. For

instance, oracle ADF components (user interface com-

ponents) run smoothly with the WebLogic server. Fi-

nally, we conclude that our prototype is implemented

efficiently enough to validate the concepts of integrat-

ing data from complex data sources in real-time and

autonomously.

8 Conclusions and Perspectives

In this paper, we propose an innovative metadata-based,

service-oriented, and event-driven data integration frame-

work meeting next generation data integration, for bet-

ter decision-making in Web-based DW/BI applications.

Our framework addresses three main issues of complex

Web data integration: 1) handling complexity issues of

Web data; 2) satisfying near real-time data integra-

tion; and 3) achieving autonomous and reactive data

integration. Our framework noticeably tackles limita-

tions of traditional data integration systems by uti-

lizing Web standards for performing data integration

tasks. For instance, it uses the XML language to handle

data heterogeneity, Web services to tackle data distri-

bution, and AXML to store integrated data. Employing

Web standards in data integration helps integrate real-

time data, for example by invoking embedded services

in the AXML documents to integrate real-time data

on the fly, or by applying the subscription/notification

paradigm to services responsible for detecting, captur-

ing, and notifying only real-time data changes. Further-

more, logged events in our framework are mined to dis-

cover interesting knowledge to help self-maintain, self-

configure, and automate data integration tasks. Active

rules are also enriched by the system to activate differ-

ent integration tasks. Finally, as a proof of concept, we

have implemented a Web application prototype that is

freely available on-line4.

Recall that different framework events are logged

and warehoused in a specified repository, called event

repository. Thus, OLAP tools and other data mining

techniques can be applied in the future to explore and

analyze logged event information. We also aim to carry

out machine learning and exploit argumentative reason-

ing to realize autonomous semantic mediation between

data sources, integration services and target data repos-

itories (Janjua et al., 2012). Therefore, we can ensure

achieving a more automated data integration workflow.

Although the XML-formatted event mining approach

proposed in this paper is feasible and efficient, the ac-

tual exploitation of the knowledge we mine in the in-

tegration process, and the evaluation of its efficiency,

currently remains a perspective of our work. Moreover,

integration service composition is important to meet

the complexity of business integration needs. We intend

to study service composition for more complicated busi-

ness data integration. We addressed in this paper the

concepts of Integration as a Service (IaaS); we intend

20 R. Salem et al.

in the future to address different challenges for deploy-

ing our framework in the cloud. Moreover, data quality

is another critical aspect to DW/BI applications and it

goes hand in hand with data integration. The right data

quality during the process of loading a data warehouse

leads to better informed and more reliable decisions.

Thus, addressing data quality is another interesting fu-

ture trend, and a critical one when data come from the

Web.

Acknowledgements The authors thank the anonymous re-
viewers of this paper for their thoughtful comments, which
greatly helped improving our present work.

References

Abiteboul S., Benjelloun O., Milo T. (2002). Web ser-

vices and data integration. In: Proceedings of the 3rd

International Conference on Web Information Sys-

tems Engineering, IEEE Computer Society, Washing-

ton, DC, USA, WISE ’02, pp. 3–6.

Abiteboul S., Nguyen B., Ruberg G. (2006). Building

an active content warehouse. In Processing and Man-

aging Complex Data for Decision Support (Darmont

and Boussäıd, eds), Idea Group .

Abiteboul S., Benjelloun O., Milo T. (2008a). The ac-

tive XML: an overview. In: VLDB Journal, pp. 1019–

1040.

Abiteboul S., Manolescu I., Zoupanos S. (2008b). Op-

timAX: Optimizing distributed activeXML applica-

tions. In: Schwabe D., Curbera F., Dantzig P. (eds.)

ICWE, IEEE, pp. 299–310.

Agrawal R., Srikant R. (1994). Fast algorithms for min-

ing association rules. Very Large DataBase, VLDB

pp. 487–499.

Bailey J., Poulovassilis A., Wood P. T. (2002). An

event-condition-action language for XML. In: The

12th International World Wide Web Conference,

WWW, Hawaaii, pp. 486–495.

Baril X., Bellahsène Z. (2003). Designing and manag-

ing an XML warehouse. In XML Data Management:

Native XML and XML-enabled Database Systems,

Addison Wesley pp. 455–473.

Bentayeb F., Maiz N., Mahboubi H., Favre C., Loud-

cher S., Harbi N., Boussaid O., Darmont J. (2011).

Innovative Approaches for efficiently Warehousing

Complex Data from the Web, Business Science Ref-

erence, pp. 26–52. Business Intelligence Applications

and the Web: Models, Systems and Technologies,

m. Zorrilla, J. Mazón, Ó. Ferràndez, I. Garrigós, F.

Daniel, J. Trujillo, Eds.

Bhowmick S. S., Madria S. K., Ng W. K. (2003).

Web Data Management: A Warehouse Approach.

Springer-Verlag New York Inc.

Bonifati A., Braga D., Campi A., Ceri S. (2002a).

Active XQuery. In: Proceedings of the 18th Inter-

national Conference on Data Engineering(ICDE’02),

San Jose, CA, p. 403.

Bonifati A., Ceri S., Paraboschi S. (2002b). Pushing re-

active services to XML repositories using active rules.

Computer Networks 39(5).

Boussäıd O., Messaoud R. B., Choquet R., Anthoard

S. (2006). X-warehousing: An XML-based approach

for warehousing complex data. 10th East-European

on Advances in Databases and Information Systems

(ADBIS’06), Thessaloniki, Greece pp. 39–54.

Boussaid O., Darmont J., Bentayeb F., Loudcher S.

(2008). Warehousing complex data from the web. In-

ternational Journal of Web Engineering and Technol-

ogy 4:408–433.

Brobst S., Ballinger C. (2003). Active data warehous-

ing: why Teradata warehouse is the only proven

platform. NCR Teradata, white paper URL http:

//whitepapers.zdnet.co.uk/.

Chawathe S. S., Garcia-Molina H., Hammer J., Ireland

K., Papakonstantinou Y., Ullman J. D., Widom J.

(1994). The TSIMMIS project: Integration of hetero-

geneous information sources. In: IPSJ, pp. 7–18.

Darmont J., Boussäıd O. (2006). Processing and man-

aging complex data for decision support. Idea Group

Inc (IGI).

Darmont J., Boussaid O., christian Ralaivao J., Aouiche

K. (2005). An architecture framework for complex

data warehouses. 7th International Conference on

Enterprise Information Systems (ICEIS’05), Miami,

USA pp. 370–373.

Erl T. (2004). Service-Oriented Architecture: A Field

Guide to Integrating XML and Web Services. Pren-

tice Hall.

Feng L., Dillon T. (2004). Mining interesting XML-

enabled association rules with templates. Springer.

Gaber M. M., Zaslavsky A. B., Krishnaswamy S.

(2005). Mining data streams: A review. ACM SIG-

MOD Record 34(2):18–26.

Halevy A. Y., Rajaraman A., Ordille J. J. (2006). Data

integration: The teenage years. In: Dayal U., Whang

K.-Y., Lomet D. B., Alonso G., Lohman G. M., Ker-

sten M. L., Cha S. K., Kim Y.-K. (eds.) Proceedings

of VLDB, pp. 9–16.

Han J., Kamber M. (2005). Data Mining: Concepts and

Techniques, Second Edition. Morgan Kaufmann Pub-

lishers Inc. San Francisco, CA, USA.

Hümmer W., Bauer A., Harde G. (2003). Xcube: XML

for data warehouses. 6th International Workshop on

Data Warehousing and OLAP (DOLAP’03), New

Orleans, USA pp. 33–40.

Active XML-based Web Data Integration 21

Inmon W. H. (2002). Building the data warehouse, Sec-

ond Edition. New York: John Wiley & Sons.

Janjua N., Hussain F., Hussain O. (2012). Se-

mantic information and knowledge integration

through argumentative reasoning to support intel-

ligent decision making. Information Systems Fron-

tiers pp. 1–26, URL http://dx.doi.org/10.1007/

s10796-012-9365-x, 10.1007/s10796-012-9365-x.

Jiang N., Gruenwald L. (2006). Research issues in

data stream association rule mining. ACM SIGMOD

Record 35(1):14–19.

Karakasidis A., Vassiliadis P., Pitoura E. (2005). ETL

queues for active data warehousing. In: Proceedings

of 2nd international workshop on Information Qual-

ity in Information Systems (IQIS’05), Baltimore,

USA, pp. 28–39.

Kimball R., Merz R. (2000). The Data Webhouse

Toolkit: Building the Web-Enabled Data Warehouse.

John Wiley & Sons.

Kimball R., Ross M. (2002). The data warehouse

toolkit: The complete guide to dimensional model-

ing, Second Edition. New York: John Wiley & Sons.

Knoblock C. A., Minton S., Ambite J. L., Ashish N.,

Muslea I., Philpot A. G., Tejada S. (2001). The

ariadne approach to web-based information integra-

tion. International Journal of Cooperative Informa-

tion Systems 10(1 & 2):145–169.

Li G., Wei M. (2012). Everything-as-a-service platform

for on-demand virtual enterprises. Information Sys-

tems Frontiers pp. 1–18, URL http://dx.doi.org/

10.1007/s10796-012-9351-3, 10.1007/s10796-012-

9351-3.

Linthicum D. S. (2010). Approaching SaaS integration

with data integration best practices and technology.

White paper URL http://www.informaticacloud.

com/images/whitepapers/WP-Approaching\

_SaaS_Integration.pdf.

Lorenzo G. D., Hacid H., Paik H.-Y., Benatallah

B. (2009). Data integration in mashups. SIGMOD

Record 38(1):59–66.

Madhavan J., Cohen S., Dong X. L., Halevy A. Y., Jef-

fery S. R., Ko D., Yu C. (2007). Web-scale data inte-

gration: You can afford to pay as you go. In: CIDR,

www.crdrdb.org, pp. 342–350.

Mahboubi H., Hachicha M., Darmont J. (2008). XML

warehousing and OLAP. Encyclopedia of Data Ware-

housing and Mining, 2nd Edition, IGI Publishing,

USA pp. 2109–2116.

Martens B., Teuteberg F. (2012). Decision-making

in cloud computing environments: A cost and

risk based approach. Information Systems Frontiers

14:871–893, URL http://dx.doi.org/10.1007/

s10796-011-9317-x, 10.1007/s10796-011-9317-x.

Milo T., Abiteboul S., Anman B., Benjelloun O.,

Ngoc F. (2003). Exchanging intentional XML data. In:

Proceedings of International ACM Special Interest

Group for the Management of Data (SIGMOD’03),

pp. 289–300.

Naeem M., Dobbie G., Weber G. (2011). X-hybridjoin

for near-real-time data warehousing. In: Fernandes

A., Gray A., Belhajjame K. (eds.) Advances in

Databases, Lecture Notes in Computer Science, vol.

7051, Springer Berlin / Heidelberg, pp. 33–47.

Naeem M. A., Dobbie G., Webber G. (2008). An event-

based near real-time data integration architecture.

In: Proc. 12th Enterprise Distributed Object Com-

puting Conf. Workshops, pp. 401–404.

Nassis V., Rajugan R., Dillon T., Rahayu J. (2005).

Conceptual and systematic design approach for XML

document warehouses. International Journal of Data

Warehousing & Mining 1(3):63–86.

Onose N., Siméon J. (2004). XQuery at your web ser-

vice. In: Feldman S. I., Uretsky M., Najork M.,

Wills C. E. (eds.) WWW, ACM, pp. 603–611, URL

http://doi.acm.org/10.1145/988672.988754.

Oracle W. P. (2010). Real-time data integra-

tion for data warehousing and operational

business intelligence. Oracle White Paper

p. 17, URL http://www.oracle.com/us/

products/middleware/data-integration/

goldengate11g-realtimedw-wp-168215.pdf.

Park B., Han H., Song I. (2005). XML-OLAP: A multi-

dimensional analysis framework for XML warehouses.

7th International Conference on Data Warehous-

ing and Knowledge Discovery (DaWaK’05), Copen-

hagen, Denmark pp. 32–42.

Paton N. (1999). Active Rules in Database Systems.

Springer, New York.

Pérez J. M., Llavori R. B., Aramburu M. J., Peder-

sen T. B. (2008). Integrating data warehouses with

web data: A survey. IEEE Trans Knowl Data Eng

20(7):940–955.

Phan B., Pardede E., Rahayu W. (2012). On the

improvement of active xml (axml) representation

and query evaluation. Information Systems Fron-

tiers pp. 1–20, URL http://dx.doi.org/10.1007/

s10796-012-9363-z, 10.1007/s10796-012-9363-z.

Pokorný J. (2002). XML data warehouse: Modelling

and querying. 5th International Baltic Conference

(BalticDB&IS’02) pp. 267–280.

Polyzotis N., Skiadopoulos S., Vassiliadis P., Simitsis

A., Frantzell N. (2007). Supporting streaming up-

dates in an active data warehouse. 23rd Interna-

tional Conference Data Engineering(ICDE’07), Is-

tanbul, Turkey pp. 476–485.

22 R. Salem et al.

Rajugan R., Chang E., Dillon T. (2005). Conceptual de-

sign of an XML FACT repository for dispersed XML doc-

ument warehouses and XML marts. 5th International

Conference on Computer and Information Technol-

ogy (CIT’05), Shanghai, China pp. 141–149.

Rekouts M. (2005). Incorporating active rules process-

ing into update execution in XML database systems.

16th International Workshop on Database and Ex-

pert Systems Applications(DEXA’05), Copenhagen,

Denmark .

Ruberg G., Mattoso M. (2008). XCraft: Boosting the

performance of active XML materialization. 11th In-

ternational Conference on Extending Database Tech-

nology (EDBT’08), Nantes, France pp. 299–310.

Rusu L. I., Rahayu J. W., Taniar D. (2005). A method-

ology for building XML data warehouses. International

Journal of Data Warehousing & Mining 1(2):67–92.

Salem R., Boussäıd O., Darmont J. (2010). Conceptual

workflow for complex data integration using AXML.

In: International Conference on Machine and Web

Intelligence (ICMWI 10), Algiers, Algeria.

Salem R., Darmont J., Boussäıd O. (2011). Efficient in-

cremental breadth-depth xml event mining. In: 15th

International Database Engineering & Applications

Symposium (IDEAS’11), Lisbon, Portugal, ACM.

Schlesinger L., Irmert F., Lehner W. (2005). Supporting

the ETL-process by web service technologies. Int J of

Web and Grid Services 1:31–47.

Sheth A. P., Larson J. A. (1990). Federated database

systems for managing distributed and autonomous

databases. ACM Computing Surveys pp. 183–236.

Thalhammer T., Schrefl M., Mohania M. (2001). Active

data warehouses: Complementing OLAP with active

rules. Data and Knowledge Engineering 39(3):241–

269.

Tho M. N., Tjoa A. (2003). Zero-latency data ware-

housing for heterogeneous data sources and continues

data streams. In: Proceedings of 5th International

Conference on Information and Web-based Appli-

cations Services (iiWAS’03), Jakarta, Indonesia, pp.

55–64.

Thor A., Rahm E. (2011). Cloudfuice: A flexible cloud-

based data integration system. In: Auer S., Dı́az O.,

Papadopoulos G. A. (eds.) ICWE, Springer, Lecture

Notes in Computer Science, vol. 6757, pp. 304–318.

Utomo W. H. (2011). B2B integration based on SOA

using web service. Foundation of Computer Science

(FCS) (2).

Vassiliadis P., Simitsis A. (2009). Near real time etl. In:

Kozielski S., Wrembel R. (eds.) New Trends in Data

Warehousing and Data Analysis, Annals of Informa-

tion Systems, vol. 3, Springer US, pp. 1–31.

Vidal V., Lemos F., Feitosa F. (2008). Towards au-

tomatic generation of AXML Web services for dy-

namic data integration. 3rd International Workshop

on Database Technologies for Handling XML In-

formation on the Web (DataX-EDBT’08), Nantes,

France pp. 43–50.

Vrdoljak B., Banek M., Rizzi S. (2003). Designing Web

warehouses from XML schemas. 5th International Con-

ference on Data Warehousing and Knowledge Discov-

ery (DaWaK’03), Prague, Czech pp. 89–98.

William Inmon G. N. Derek Strauss (2008). DW 2.0:

The Architecture for the Next Generation of Data

Warehousing. MORGAN KAUFMANN.

Wu W. (2006). Integrating deep web data sources. PhD

thesis, Champaign, IL, USA.

Xyleme L. (2001). A dynamic warehouse for XML data of

the Web. International Database Engineering & Ap-

plications Symposium(IDEAS’01), Grenoble, France

pp. 3–7.

Yu P. S., Chi Y. (2009). Association rule mining

on streams. In Encyclopedia of Database Systems,

Springer US pp. 136–139.

Zhao B., Liu C. (2006). Efficient SIP-specific

event notification. In: ICN/ICONS/MCL,

IEEE Computer Society, p. 1, URL http:

//doi.ieeecomputersociety.org/10.1109/

ICNICONSMCL.2006.85.

Zhao Q., Chen L., Bhowmick S. S., Madria S. K. (2006).

XML structural delta mining: Issues and challenges.

Data Knowl Eng 59(3):627–651.

Zhu F., Turner M., Kotsiopoulos I. A., Bennett K. H.,

Russell M., Budgen D., Brereton P., Keane J. A.,

Layzell P. J., Rigby M., Xu J. (2004). Dynamic data

integration using web services. In: Zhu et al. (2004),

pp. 262–269.

Ziegler P., Dittrich K. R. (2004). Three decades of data

integration - all problems solved? In: Jacquart R.

(ed.) IFIP Congress Topical Sessions, Kluwer, pp. 3–

12.

Active XML-based Web Data Integration 23

Appendix A

<products xmlns:axml="http://axml.net" xmlns:cs="http://axml.net/call_service">
<product>
<product_sku/>
<upc>8806071418728</upc>
<isbn/>
<idType>upc</idType>
<category>smartphones</category>
<description>Samsung i9100 Galaxy S II - BLACK </description>
<longDescription>Samsung i9100 Galaxy S II Unlocked GSM Smartphone with 8MP Camera,
Android OS, 16GB Internal Memory, Touchscreen, Wi-Fi, and GPS (Noble Black)

</longDescription>
<productPhoto>http://localhost:17101/resources/images/products/smartphones/samsung-galaxy-S2-black.png</productPhoto>
<productVideo>http://localhost:17101/resources/videos/products/smartphones/samsung-galaxy-S2-black.mov</productVideo>
<rating>
<axml:cs serviceURL="http://localhost:17101/services/rating?WSDL"
serviceName="rating" methodName="getRating" mode="Replace" frequency="86400000">
<parameters>
<param name="product_id" value="/upc/text()"/>

</parameters>
</axml:cs>

</rating>
<manufacturer>Samsung</manufacturer>
<lowestPrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getLowestPrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="/upc/text()"/>

</parameters>
</axml:cs>

</lowestPrice>
<highestPrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getHighestPrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="/upc/text()"/>

</parameters>
</axml:cs>

</highestPrice>
<lowestURL>
<axml:cs serviceURL="http://localhost:17101/services/merchants?WSDL"
serviceName="merchants" methodName="getLowestURL" mode="Replace" frequency="3600000">
<parameters>
<param name="merchant_id" value="/merchant[basePrice=/lowestPrice]/@id"/>

</parameters>
</axml:cs>

</lowestURL>
<merchant id="2973">
<logo>http://www.amazon.com/ref=gno_logo</logo>
<merRating>6.7/10</merRating>
<URL>http://www.amazon.fr/dp/B0052EWH32</URL>
<availability>
<axml:cs serviceURL="http://localhost:17101/services/availabilty?WSDL"
serviceName="availabilty" methodName="isAvailable" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</availability>
<condition>New</condition>
<basePrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getBasePrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</basePrice>
</merchant>

Fig. 22 Sample AXML document before invoking embedded AXML services (1 of 2)

24 R. Salem et al.

<merchant id="6538">
<logo>http://www.pixmania.com/fr/fr/home.html</logo>
<merRating>6.4/10</merRating>
<URL>http://www.pixmania.com/fr/fr/11676708/art/samsung/
i9100g-galaxy-s-ii-androi.html?srcid=17</URL>

<availability>
<axml:cs serviceURL="http://localhost:17101/services/availabilty?WSDL"
serviceName="availabilty" methodName="isAvailable" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</availability>
<condition>New</condition>
<basePrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getBasePrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</basePrice>
</merchant>
<merchant id="55119">
<logo>http://www.darty.com/static/r4u3/img/logo.gif</logo>
<merRating>7.2/10</merRating>
<URL>http://www.darty.com/nav/achat/telephonie/telephone_mobile/mobile/
samsung_galaxy_s_ii_noir.html</URL>

<availability>
<axml:cs serviceURL="http://localhost:17101/services/availabilty?WSDL"
serviceName="availabilty" methodName="isAvailable" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</availability>
<condition>New</condition>
<basePrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getBasePrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</basePrice>
</merchant>
<merchant id="53657">
<logo>http://www.fnac.com/</logo>
<merRating>5.8/10</merRating>
<URL>http://www.fnac.com/Samsung-Galaxy-S2-sous-Android-Noir/a4044819/
w-4?Origin=CMP_CLUBIC</URL>

<availability>
<axml:cs serviceURL="http://localhost:17101/services/availabilty?WSDL"
serviceName="availabilty" methodName="isAvailable" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</availability>
<condition>New</condition>
<basePrice>
<axml:cs serviceURL="http://localhost:17101/services/pricing?WSDL"
serviceName="pricing" methodName="getBasePrice" mode="Replace" frequency="3600000">
<parameters>
<param name="product_id" value="./upc/text()"/>
<param name="merchant_id" value="/merchant/@id"/>

</parameters>
</axml:cs>

</basePrice>
</merchant>

</product>
</products>

Fig. 23 Sample AXML document before invoking embedded AXML services (2 of 2)

Active XML-based Web Data Integration 25

<products>

<product>

<product_sku/>

<upc>8806071418728</upc>

<isbn/>

<idType>upc</idType>

<category>smartphones</category>

<description>Samsung i9100 Galaxy S II - BLACK </description>

<longDescription>Samsung i9100 Galaxy S II Unlocked GSM Smartphone with 8MP Camera,

Android OS, 16 GB Internal Memory, Touchscreen, Wi-Fi, and GPS (Noble Black)

</longDescription>

<productPhoto>http://localhost:17101/resources/images/products/smartphones/

samsung-galaxy-S2-black.png</productPhoto>

<productVideo>http://localhost:17101/resources/videos/products/smartphones/

samsung-galaxy-S2-black.mov</productVideo>

<rating>8.9/10</rating>

<manufacturer>Samsung</manufacturer>

<lowestPrice>465 TTC</lowestPrice>

<highestPrice>577 TTC</highestPrice>

<lowestURL>http://www.amazon.fr/dp/B0052EWH32</lowestURL>

<merchant id="2973">

<logo>http://www.amazon.com/ref=gno_logo</logo>

<merRating>6.7/10</merRating>

<URL>http://www.amazon.fr/dp/B0052EWH32</URL>

<availability>Yes</availability>

<condition>New</condition>

<basePrice>465 TTC</basePrice>

</merchant>

<merchant id="6538">

<logo>http://www.pixmania.com/fr/fr/home.html</logo>

<merRating>6.4/10</merRating>

<URL>http://www.pixmania.com/fr/fr/11676708/art/samsung/

i9100g-galaxy-s-ii-androi.html?srcid=17</URL>

<availability>Yes</availability>

<condition>New</condition>

<basePrice>577 TTC</basePrice>

</merchant>

<merchant id="55119">

<logo>http://www.darty.com/static/r4u3/img/logo.gif</logo>

<merRating>7.2/10</merRating>

<URL>http://www.darty.com/nav/achat/telephonie/telephone_mobile/mobile/

samsung_galaxy_s_ii_noir.html</URL>

<availability>Yes</availability>

<condition>New</condition>

<basePrice> 492 TTC</basePrice>

</merchant>

<merchant id="53657">

<logo>http://www.fnac.com/</logo>

<merRating>5.8/10</merRating>

<URL>http://www.fnac.com/Samsung-Galaxy-S2-sous-Android-Noir/a4044819/

w-4?Origin=CMP_CLUBIC</URL>

<availability>Yes</availability>

<condition>New</condition>

<basePrice> 529 TTC</basePrice>

</merchant>

</product>

</products>

Fig. 24 Sample AXML document after invoking embedded
AXML services

