Skip to main content

Advertisement

Log in

Investments in information systems: A contribution towards sustainability

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Empirical research has determined that information systems (IS) can abate far more emissions than they produce. By using its transformative power, Green IS can build energy efficiency along the entire business value chain and thus contribute to sustainable development that goes well beyond that of Green Information Technology (Green IT). However, from a business perspective there is still prevailing uncertainty with regard to the economic viability and optimal extent of Green IS investments. In this paper, we conceptualize a decision model for an IS investment that increases a company’s energy efficiency. We analyze and compare the costs associated with the investment and the realized energy cost savings. Furthermore, we examine the influence of fluctuating energy prices on investment decisions. By integrating risk and return into one decision calculus, we determine an optimal degree of investment, which avoids over-investment while promoting energy efficiency, and therefore establishes the long-term coherence of economic and environmental sustainability. Finally, we demonstrate that reduced exposure to risky energy prices results in comparatively larger investments, thereby implying a higher optimal investment degree, assuming the involvement of risk-averse decision-makers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Sustainability can be defined as the triple bottom line of economic, social, and environmental performance (Porter and Kramer 2006, p. 82). In this paper, we confine ourselves to addressing the economic and environmental impact of IS.

  2. In the following text, we consider IT to be a proper subset of the general term IS.

  3. For matters of modeling and without loss of generality, we abstain from a more realistic discrete range of project sizes.

  4. \( {\sigma_n}=\sqrt{{\mathop{\sum}\limits_{i=1}^n\sigma_i^2+\mathop{\sum}\limits_{i=1}^n\mathop{\sum}\limits_{j=1}^n{\rho_{ij }}{\sigma_i}{\sigma_j}}} \) is the equation for calculating the overall standard deviation. As the reduced energy price fluctuations \( {{\widetilde{X}}_t} \) are stochastically independent, \( \sigma \left( {{{{\widetilde{X}}}_t}} \right) \) can be added up for all time periods t without taking into account the correlations ρ ij .

  5. This can be shown by comparing and q*: The difference between the two equations originates from \( R{{\widetilde{C}}_T} \), which is only considered in the equation for q*. Since \( R{{\widetilde{C}}_T} > 0 \) for all possible values and α > 0, q* ≥  holds.

  6. In order to indicate the decision-maker’s risk aversion, the risk averse parameter is chosen in such a manner that the risk is weighted twice compared to the expected return.

References

  • Allenby, B. R., Compton, W. D., & Richards, D. J. (2001). Informations Systems and the Environment (1st ed.). Washington, DC: National Academy Press.

    Google Scholar 

  • Bamberg, G., & Spremann, K. (1981). Implications of Constant Risk Aversion. Mathematical Methods of Operations Research, 25(7), 205–224.

    Article  Google Scholar 

  • Bernoulli, D. (1954). Exposition of a New Theory on the Measurement of Risk. Econometrica, 22(1), 23–36.

    Article  Google Scholar 

  • Berns, M., Townend, A., Khayat, Z., Balagopal, B., Reeves, M., Hopkins, M. S., et al. (2009). The Business of Sustainability. MIT Sloan Management Review, 51(1), 20–6.

    Google Scholar 

  • Boudreau, M., Chen, A. J., Huber, M., & Watson, R. T. (2007). Green IS: Building Sustainable Business Practices. Athens, Georgia: Global Text Project, University of Georgia.

    Google Scholar 

  • Brynjolfsson, E., & Hitt, L. (1996). Paradox Lost? Firm-level Evidence on the Returns to Information Systems. Management Science, 42(4), 541–558.

    Article  Google Scholar 

  • Buhl, H.U., Gaugler, T., Mette, P. (2011). Determining the Optimal Investment Amount of an Intelligent House - Potentials of Information and Technology to Combine Ecology and Economy. In Proceedings of the 19th European Conference on Information Systems, Helsinki, Finland.

  • Chen, A.J., Watson, R.T., Boudreau, M., Karahanna, E. (2009). Organizational Adoption of Green IS & IT: An Institutional Perspective. In Proceedings of the 30th International Conference on Information Systems, Phoenix, AZ.

  • Choi-Granade, H., Creyts, J., Derkach, A., Farese, P., Nyquist, S., Ostrowski, K. (2009). McKinsey Global Energy and Materials: Unlocking Energy Efficiency in the U.S. Economy. http://www.mckinsey.com/client_service/electric_power_and_natural_gas/latest_thinking/unlocking_energy_efficiency_in_the_us_economy. Accessed 25 September 2012.

  • Chwelos, P., Ramirez, R., Kraemer, K. L., & Melville, N. P. (2010). Does Technological Progress Alter the Nature of Information Technology as a Production Input? New Evidence and New Results. Information Systems Research, 21(2), 392–408.

    Article  Google Scholar 

  • Copeland, T. E., Weston, J. F., & Shastri, K. (2005). Financial Theory and Corporate Policy (4th ed.). Boston, MA: Pearson Education Inc.

    Google Scholar 

  • Cule, P., Schmidt, R., Lyytinen, K. J., & Keil, M. (2000). Strategies for Heading Off is Project Failure. Information Systems Management, 17(2), 1–9.

    Article  Google Scholar 

  • Devaraj, S., & Kohli, R. (2003). Performance impacts of information technology: Is actual usage the missing link? Management Science, 49(3), 273–289.

    Article  Google Scholar 

  • Dos Santos, B. L. (2003). Information Technology Investments: Characteristics, Choices, Market Risk and Value. Information Systems Frontiers, 5(3), 289–301.

    Article  Google Scholar 

  • Erdmann, L., Hilty, L., Goodman, J., Arnfalk, P. (2004). The Future Impact of ICTs on Environmental Sustainabiliy. European Comission Joint Research Centre. http://www.oecd.org/sti/interneteconomy/40832957.pdf. Accessed 25 September 2012.

  • Federal Statistical Office of Germany (2011). Data on energy price trends - Long-time series. http://www.destatis.de/jetspeed/portal/cms/Sites/destatis/Internet/DE/Content/ Publikationen/ Fachveroeffentlichungen/Preise/Energiepreise/EnergyPriceTrends, templa-teId = renderPrint.psml. Accessed 25 September 2012.

  • Flath, C.M., Gottwalt, S., Ilg, J.P. (2012). A Revenue Management Approach for Efficient Electric Vehicle Charging Coordination. In Proceedings of the 45th Hawaii International Conference on System Sciences, Maui, HI.

  • Fridgen, G., Mueller, H. (2009). Risk/Cost Valuation of Fixed Price IT Outsourcing in a Portfolio Context. In Proceedings of the 30th International Conference on Information Systems, Phoenix, AZ.

  • Geman, H. (2005). Commodities and Commodity Derivatives: Modelling and Pricing for Agriculturals, Metals and Energy (1st ed.). West Sussex, UK: John Wiley & Sons.

    Google Scholar 

  • Hansen, S., Lyytinen, K., Avital, M. (2009). Project Innovation Through Exploration and Exploitation: Requirements Practice in Large-Scale IS Development Environments. In Proceedings of the 30th International Conference on Information Systems, Phoenix, AZ.

  • Hitt, L. M., & Brynjolfsson, E. (1996). Productivity, business profitability, and consumer surplus: Three different measures of information technology value. MIS Quarterly, 20(2), 121–142.

    Article  Google Scholar 

  • Jarke, M. (2009). Perspectives of the Interplay Between Business and Information Systems Engineering and Computer Science. Business & Information Systems Engineering, 1(1), 70–74.

    Article  Google Scholar 

  • Jenkin, T. A., Webster, J., & McShane, L. (2011). An agenda for ‘Green’ information technology and systems research. Information and Organization, 21(1), 17–40.

    Article  Google Scholar 

  • King, A., & Lenox, M. (2002). Exploring the Locus of Profitable Pollution Reduction. Management Science, 48(2), 289–299.

    Article  Google Scholar 

  • Kohli, R., & Grover, V. (2008). Business Value of IT: An Essay on Expanding Research Directions to Keep up with the Times. Journal of the Association for Information Systems, 9(1), 23–39.

    Google Scholar 

  • Kranz, J., Picot, A. (2011). Why are Consumers going Green? The Role of Environmental Concerns in private Green-IS Adoption. In Proceedings of the 19th European Conference on Information Systems, Helsinki, Finland.

  • Krcmar, H., Lanzinner, S., Leimeister, J.M. (2008). Toward IT Value Mapping - An Approach to Value-Based IT Management. In Proceedings of the 14th Americas Conference on Information Systems, Toronto, Ontario.

  • Kulk, G. P., Peters, R. J., & Verhoef, C. (2009). Quantifying IT estimation risks. Science of Computer Programming, 74(11–12), 900–933.

    Article  Google Scholar 

  • Lubin, D. A., & Esty, D. C. (2010). The Sustainability Imperative. Harvard Business Review, 88(5), 42–50.

    Google Scholar 

  • Lucia, J. J., & Schwartz, E. S. (2002). Electricity Prices and Power Derivatives: Evidence from the Nordic Power Exchange. Review of Derivatives Research, 50(1), 5–50.

    Article  Google Scholar 

  • Melville, N. P. (2010). Information Systems Innovation for Environmental Sustainability. MIS Quarterly, 34(1), 1–21.

    Google Scholar 

  • Melville, N. P., Kraemer, K., & Gurbaxani, V. (2004). Review: Information Technology and Organizational Performance: An Integrative Model of IT Business Value. MIS Quarterly, 28(2), 283–322.

    Google Scholar 

  • Mittal, N., & Nault, B. R. (2009). Investments in Information Technology: Indirect Effects and Information Technology Intensity. Information Systems Research, 20(1), 140–154.

    Article  Google Scholar 

  • Molla, A., Cooper, V.A., Pittayachawan, S. (2009). IT and Eco-Sustainability: Developing and Validating a Green IT Readiness Model. In Proceedings of the 30th International Conference on Information Systems, Phoenix, AZ.

  • Nevo, S., & Wade, M. R. (2010). The Formation And Value Of IT-Enabled Resources: Antecedents And Consequences Of Synergistic Relationships. MIS Quarterly, 34(1), 163–183.

    Google Scholar 

  • Nidumolu, R., Prahalad, C. K., & Rangaswami, M. R. (2009). Why Sustainability Is Now The Key Driver Of Innovation. Harvard Business Review, 87(9), 56–64.

    Google Scholar 

  • Porter, M. E., & Kramer, M. R. (2006). Strategy & Society: The Link Between Competitive Advantage and Corporate Social Responsibility. Harvard Business Review, 84(12), 78–92.

    Google Scholar 

  • Pratt, J. W. (1964). Risk Aversion in the Small and in the Large. Econometrica, 32(1), 122–136.

    Article  Google Scholar 

  • Roemer, B., Reichhart, P., Kranz, J., & Picot, A. (2012). The role of smart metering and decentralized electricity storage for smart grids: The importance of positive externalities. Energy Policy, 50, 486–495.

    Article  Google Scholar 

  • Schmidt, N., Kolbe, L., Erek, K., & Zarnekow, R. (2009). Sustainable Information Systems Management. Business & Information Systems Engineering, 1(5), 400–402.

    Article  Google Scholar 

  • Schmidt, N., Schmidtchen, T., Erek, K., Kolbe, L., Zarnekow, R. (2010). Influence of Green IT on Consumers’ Buying Behavior of Personal Computers: Implications from a Conjoint Analysis. In Proceedings of the 18th European Conference on Information Systems, Pretoria, South Africa.

  • The Climate Group (2008). Smart2020: Enabling the Low Carbon Economy in the Information Age. http://www.smart2020.org/_assets/files/02_Smart2020Report.pdf. Accessed 25 September 2012.

  • Verhoef, C. (2002). Quantitative IT portfolio management. Science of Computer Programming, 45(1), 1–96.

    Article  Google Scholar 

  • Wallace, L., & Keil, M. (2004). Software project risks and their effect on outcomes. Communications of the ACM, 47(4), 68–73.

    Article  Google Scholar 

  • Watson, R. T., Boudreau, M., & Chen, A. J. (2010). Information Systems and Environmentally Sustainable Development: Energy Informatics and New Directions for the IS Community. MIS Quarterly, 34(1), 23–38.

    Google Scholar 

  • Watson, R. T., Corbett, T., Boudreau, M. C., & Webster, J. (2012). An Information Strategy for Environmental Sustainability. Communications of the ACM, 55(7), 28–30.

    Article  Google Scholar 

  • Zimmermann, S., Katzmarzik, A., Kundisch, D. (2008). IT Sourcing Portfolio Management for IT Service Providers - A Risk/Cost Perspective. In Proceedings of the 29th International Conference on Information Systems, Paris, France.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Hertel.

Appendix

Appendix

1.1 Appendix A: Analysis under Certainty

The investment’s NPV (see (1)) is composed of the following elements:

$$ NPV(q)={R_T}(q)-{C_T}(q) $$
(6)
$$ {C_T}(q)=\mathop{\sum}\limits_{t=0}^T\frac{{{c_t}(q)}}{{{{{\left( {1+i} \right)}}^t}}}=\mathop{\sum}\limits_{t=0}^T\frac{{{q^{\beta }}\cdot {c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}} $$
(7)
$$ {R_T}(q)=\mathop{\sum}\limits_{t=0}^T\frac{{{r_t}(q)}}{{{{{\left( {1+i} \right)}}^t}}}=\mathop{\sum}\limits_{t=0}^T\frac{{{q^{\gamma }}\cdot {r_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}} $$
(8)
$$ {r_t}_{,max }={v_t}_{,max }+{e_t}_{,max } $$
(9)
$$ {e_t}_{,max }={s_t}_{,max}\cdot {P_t} $$
(10)
$$ {R_T}(q)=\mathop{\sum}\limits_{t=0}^T\frac{{{q^{\gamma }}\cdot \left( {{v_{t,max }}+{e_{t,max }}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}=\mathop{\sum}\limits_{t=0}^T\frac{{{q^{\gamma }}\cdot \left( {{v_{t,max }}+{s_{t,max }}\cdot {P_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}} $$
(11)

1.2 Appendix B: Derivation of q′ for the optimization under certainty

In order to determine the project size that maximizes the NPV (see (1)) of the IS investment, the first derivative test (δNPV(q)/δq = 0) and the second derivative test (δ 2 NPV(q)/δq 2 < 0) are used.

$$ \max NPV(q)={q^{\gamma }}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{t,max }}+{s_{t,max }}\cdot {P_t}}}{{{{{\left( {1+i} \right)}}^t}}}-{q^{\beta }}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{t,max }}}}{{{{{\left( {1+i} \right)}}^t}}} $$
(12)

First derivative of (1):

$$ \frac{{\partial NPV(q)}}{{\partial q}}=\gamma {q^{{\left( {\gamma -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{t,max }}+{s_{t,max }}\cdot {P_t}}}{{{{{\left( {1+i} \right)}}^t}}}-\beta {q^{{\left( {\beta -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{t,max }}}}{{{{{\left( {1+i} \right)}}^t}}} $$
(13)

The first order condition requires \( \frac{{\partial \mathrm{NPV}(q)}}{{\partial q}}\mathop{=}\limits^{\mathrm{def}}0 \):

$$ \begin{array}{*{20}{c}} {\gamma {{q}^{{\left( {\gamma - 1} \right)}}}\sum\limits_{{t = 0}}^{T} {\frac{{{{v}_{{t,\max }}} + {{s}_{{t,\max }}}\cdot {{P}_{t}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} - \beta {{q}^{{\left( {\beta - 1} \right)}}}\sum\limits_{{t = 0}}^{T} {\frac{{{{c}_{{t,\max }}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} = 0} \\ { \Leftrightarrow \gamma {{q}^{{\left( {\gamma - 1} \right)}}}\sum\limits_{{t = 0}}^{T} {\frac{{{{v}_{{t,\max }}} + {{s}_{{t,\max }}}\cdot {{P}_{t}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} = \beta {{q}^{{\left( {\beta - 1} \right)}}}\sum\limits_{{t = 0}}^{T} {\frac{{{{c}_{{t,\max }}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} } \\ {\mathop{ \Leftrightarrow }\limits^{{for\,q \ne 0}} \frac{{{{q}^{{\left( {\beta - 1} \right)}}}}}{{{{q}^{{\left( {\gamma - 1} \right)}}}}} = {{q}^{{\left( {\beta - \gamma } \right)}}} = \frac{{\gamma \sum\nolimits_{{t = 0}}^{T} {\frac{{{{v}_{{t,\max }}} + {{s}_{{t,\max }}}\cdot {{P}_{t}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} }}{{\beta \sum\nolimits_{{t = 0}}^{T} {\frac{{{{c}_{{t,\max }}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} }}} \\ { \Leftrightarrow = {{{\left[ {\frac{{\gamma \sum\nolimits_{{t = 0}}^{T} {\frac{{{{v}_{{t,\max }}} + {{s}_{{t,\max }}}\cdot {{P}_{t}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} }}{{\beta \sum\nolimits_{{t = 0}}^{T} {\frac{{{{c}_{{t,\max }}}}}{{{{{\left( {1 + i} \right)}}^{t}}}}} }}} \right]}}^{{\frac{1}{{\beta - \gamma }}}}}} \\\end{array} $$
(14)

Second derivative of (1):

$$ \frac{{{\partial^2}NPV(q)}}{{\partial {q^2}}}=\gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{t,max }}+{s_{t,max }}\cdot {P_t}}}{{{{{\left( {1+i} \right)}}^t}}}-\beta \left( {\beta -1} \right){q^{{\left( {\beta -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{t,max }}}}{{{{{\left( {1+i} \right)}}^t}}} $$
(15)

The second order condition for a maximum requires \( \frac{{{\partial^2}NPV(q)}}{{\partial {q^2}}} < 0 \):

When analyzing the second derivate (see (14)) of the objective function, we recall that q ∊ [0; 1] with q ≠ 0, γ ∈]0; 1[,β > 1, c t, max > 0, (v t, max +s t, max ·P t ) = r t, max > 0. We conclude:

$$ \underbrace{{\underbrace{{\gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}}}_{<0}\underbrace{{\mathop{\sum}\limits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot {P_t}}}{{{{{\left( {1+i} \right)}}^t}}}}}_{>0}}}_{<0}\underbrace{{-\underbrace{{\beta \left( {\beta -1} \right){q^{{\left( {\beta -1} \right)}}}}}_{>0}\underbrace{{\mathop{\sum}\limits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}}}_{>0}}}_{<0 } $$
(16)

As both summands are negative, we can conclude that the sum, i.e. the second derivative, is negative. Hence, the NPV (see (1)) has a local maximum at q′ for q ≠ 0:

$$ q\prime :=\min \left\{ {{{{\left[ {\gamma \cdot {{{\left( {\mathop{{\mathop{{\mathop{\sum}\nolimits}}\limits_{t=0 }}}\limits^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot {P_t}}}{{{{{\left( {1+i} \right)}}^t}}}} \right)}} \left/ {\beta } \right.}\cdot \left( {\mathop{{\mathop{{\mathop{\sum}\nolimits}}\limits_{t=0 }}}\limits^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}} \right)} \right]}}^{{\frac{1}{{\beta -\gamma }}}}};1} \right\} $$
(17)

1.3 Appendix C: Analysis under uncertainty

Formalization of the risk component:

$$ {{\widetilde{RC}}_T}=-\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{{q^{{2\gamma }}}\cdot s_{{t,\max}}^2\cdot {\sigma^2}\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}=-{q^{\gamma }}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot {\sigma^2}\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}} $$
(18)

1.4 Appendix D: Derivation of q * for the optimization under uncertainty

In order to determine the project size that maximizes the raNPV (see (4)) of the IS investment, the first derivative test (δraNPV(q)/δq = 0) and the second derivative test (δ 2 raNPV(q)/δq 2 < 0) are used.

$$ \begin{array}{*{20}c} {\max raNPV(q)={q^{\gamma }}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}-{q^{\beta }}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}} \\ {-\alpha \left( {-{q^{\gamma }}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}} \right)} \\\end{array}$$
(19)

First derivative of (4):

$$ \begin{array}{*{20}c} {\frac{{\partial raNPV(q)}}{{\partial q}}=\gamma {q^{{\left( {\gamma -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}-\beta {q^{{\left( {\beta -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}} \\ {+\alpha \gamma {q^{{\left( {\gamma -1} \right)}}}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}} \\\end{array}$$
(20)

The first order condition requires \( \frac{{\partial \mathrm{raNPV}(q)}}{{\partial \mathrm{q}}}\mathop{=}\limits^{\mathrm{def}}0 \):

$$ \begin{array}{*{20}c} {\gamma {q^{{\left( {\gamma -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}-\beta {q^{{\left( {\beta -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}+\alpha \gamma {q^{{\left( {\gamma -1} \right)}}}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}=0} \\ {\Leftrightarrow {q^{{\left( {\gamma -1} \right)}}}\left[ {\gamma \mathop{\sum}\limits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}+\alpha \gamma \sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}} \right]=\beta {q^{{\left( {\beta -1} \right)}}}\mathop{\sum}\limits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}} \\ {\mathop{\Leftrightarrow}\limits^{{for\,q\ne 0}}\frac{{{q^{{\left( {\beta -1} \right)}}}}}{{{q^{{(\gamma -1)}}}}}={q^{{\left( {\beta -\gamma } \right)}}}=\frac{{\gamma \mathop{\sum}\nolimits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}+\alpha \gamma \sqrt{{\mathop{\sum}\nolimits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}}}{{\beta \mathop{\sum}\nolimits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}}}} \\ {\Leftrightarrow q={{{\left[ {\frac{{\gamma \mathop{\sum}\nolimits_{t=0}^T\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}+\alpha \gamma \sqrt{{\mathop{\sum}\nolimits_{t=0}^T\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}}}{{\beta \mathop{\sum}\nolimits_{t=0}^T\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}}}} \right]}}^{{\frac{1}{{\beta -\gamma }}}}}} \\\end{array}$$
(21)

Second derivative of (4):

$$ \frac{{{\partial^2}raNPV(q)}}{{\partial {q^2}}}=\gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}\sum\limits_{t=0}^T {\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^2}}}} -\beta \left( {\beta -1} \right){q^{{\left( {\beta -1} \right)}}}\sum\limits_{t=0}^T {\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}+\alpha \gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}\sqrt{{\sum\limits_{t=0}^T {\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {\widetilde{{{X_t}}}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}} }}} $$
(22)

The second order condition for a maximum requires \( \frac{{{\partial^2}\mathrm{raNPV}\left( \mathrm{q} \right)}}{{\partial {{\mathrm{q}}^2}}} < 0 \):

When analyzing the second derivate (see (22)) of the objective function, we recall that q ∊ [0; 1] \( with\ q\ne 0,\ \gamma \in \left] {0;1} \right[,\ \beta >1,\ {c_{t,max }} > 0,\ \left( {{v_{t,max }}+{s_{t,max }}\cdot {P_t}} \right)={r_{t,max }} > 0,\ \alpha >0 \). We conclude:

$$ \underbrace{{\underbrace{{\gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}}}_{<0}\underbrace{{\sum\limits_{t=0}^T {\frac{{{v_{{t,\max }}}+{s_{{t,\max }}}\cdot E\left( {{{{\widetilde{P}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}} -}}_{>0}}}_{<0}\underbrace{{\underbrace{{\beta \left( {\beta -1} \right){q^{{\left( {\beta -1} \right)}}}}}_{>0}\underbrace{{\sum\limits_{t=0}^T {\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}}}}_{>0}}}_{<0 }+\underbrace{{\underbrace{{\alpha \gamma \left( {\gamma -1} \right){q^{{\left( {\gamma -2} \right)}}}}}_{<0}\underbrace{{\sqrt{{\sum\limits_{t=0}^T {\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {\widetilde{{{X_t}}}} \right)}}{{{{{\left( {1+i} \right)}}^2}}}}}}}}_{>0}}}_{<0 } $$
(23)

As all three summands are negative, we can conclude that the sum, i.e. the second derivative, is negative. Hence, the raNPV has a local maximum at q * for q ≠ 0:

$$ {q^{*}}:=\min \left\{ {{{{\left[ {{{{\gamma \cdot \left( {\sum\limits_{t=0}^T {\frac{{{v_{{t,\max +{S_{{t,\max }}}}}}\cdot E\left( {\widetilde{{{P_t}}}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}} } \right)+\alpha \sqrt{{\sum\limits_{t=0}^T {\frac{{s_{{t,\max}}^2\cdot \sigma_t^2\left( {\widetilde{{{X_t}}}} \right)}}{{{{{\left( {1+i} \right)}}^2}}}} }}}} \left/ {{\beta \cdot \left( {\sum\limits_{t=0}^T {\frac{{{c_{{t,\max }}}}}{{{{{\left( {1+i} \right)}}^t}}}} } \right)}} \right.}} \right]}}^{{\frac{1}{{\beta -\gamma }}}}};1} \right\} $$
(24)

1.5 Appendix E: Uncertain investment costs

Formalization of the risk component including uncertain investment costs:

$$ \widetilde{R}{C_T}=-{q^{\gamma }}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{s_{t,max}^2\cdot {\sigma^2}\left( {{{{\widetilde{X}}}_t}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}}+{q^{\beta }}\sqrt{{\mathop{\sum}\limits_{t=0}^T\frac{{{\sigma^2}\left( {{{{\widetilde{c}}}_{t,max }}} \right)}}{{{{{\left( {1+i} \right)}}^t}}}}} $$
(25)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hertel, M., Wiesent, J. Investments in information systems: A contribution towards sustainability. Inf Syst Front 15, 815–829 (2013). https://doi.org/10.1007/s10796-013-9417-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-013-9417-x

Keywords

Navigation