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Abstract With prosperity of applications on smart-

phones, energy saving for smartphones has drawn in-

creasing attention. In this paper we devise Phone2Cloud,

a computation offloading-based system for energy sav-

ing on smartphones in the context of mobile cloud com-

puting. Phone2Cloud offloads computation of an appli-

cation running on smartphones to the cloud. The ob-

jective is to improve energy efficiency of smartphones

and at the same time, enhance the application’s per-

formance through reducing its execution time. In this

way, the user’s experience can be improved. We imple-

ment the prototype of Phone2Cloud on Android and

Hadoop environment. Two sets of experiments, includ-

ing application experiments and scenario experiments,

are conducted to evaluate the system. The experimen-

tal results show that Phone2Cloud can effectively save
energy for smartphones and reduce the application’s

execution time.
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1 Introduction

Smartphones have become increasingly popular in our

daily life. They offer users more powerful processors,

larger memory, multi-network interfaces and a wide va-

riety of operating systems such as Apple iOS, Android

and Windows Phone. Not only have the processor speed

and memory size of smartphone increased significantly,

but also the resolution of screen and the quality of the

available sensors [1]. The smartphone’s processor speed

has grown enormously in recent years as well as mem-

ory size, which have arrived at the same level as note-

books of five years ago. Furthermore, cellular network-

ing technology grows from GSM networks to current

4G networks, which significantly increases bandwidth

of wireless networks.

As processors are getting faster, memory is getting

larger, screens are getting sharper and devices are equipped

with multiple sensors [2], a large spectrum of novel and

innovative applications have appeared. They are rang-

ing from mobile games, to multimedia applications, so-

cial networking services and more [3]. Currently, users

can easily get applications from market places, like Ap-

ple App Store and Google Play. Additionally, users are

more likely to run resource-demanding applications, such

as rich media applications using multiple inputs like

cameras and sensors [4]. These applications imply a

heavy workload on processors, wireless network inter-

faces and display, which causes a significant energy cost

[5].

To sum up, smartphones provide multi-core proces-

sors, sharper screens, larger memory, multiple sensors

and radios as well as enormous applications. These to-

gether put a heavy burden on battery’s energy con-

sumption [1]. In the meantime, advances in battery

technology and energy saving solutions have not kept
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pace with rapidly growing energy demands [6]. Fur-

thermore, smartphones are getting thinner and smaller,

which implies smaller batteries and less battery capac-

ities. Therefore, the energy consumption has always

been primary bottleneck for smartphones.

Many researchers and engineers have made great

efforts [7,8,9,10,11,12,13] on saving energy to extend

lifetime of batteries. One popular approach of energy

saving for mobile devices is computation offloading: ap-

plications take advantage of resource-rich infrastruc-

tures by migrating computation to these infrastructures

[2]. Recently, researchers have recognized offloading com-

putation via networks to cloud can help reduce power

consumption of smartphones [12,13,14,15,16,17].

In this paper, we develop a computation offloading-

based system for energy saving on smartphones, called

Phone2Cloud. It offloads all or part of an application

running on smartphones to cloud to achieve energy con-

servation, reduce the application’s execution time and

improve user’s experience, i.e. meet user’s delay-tolerance

threshold as described in [18].

Here we make the following contributions. First,

we develop the Phone2Cloud system for energy saving

on smartphones. Second, we propose and implement a

modified offloading-decision making algorithm based on

[14,19,20] in our system, and a new element - user’s

delay-tolerance threshold is involved in the offloading-

decision making algorithm. Finally, we conduct two types

of experiments on our system, and the results demon-

strate the superiority of our system.

The rest of the paper is organized as follows. In next

section, we review related works on reducing power con-

sumption for smartphones, especially on those taking

advantage of computation offloading. Section 3 presents

the architecture of the Phone2Cloud system. In Section

4, the major algorithms employed in Phone2Cloud are

described. Evaluation and analysis of Phone2Cloud are

conducted in Section 5. We conclude the paper and dis-

cuss extensions to our system in Section 6.

2 Related work

In this section, we briefly review four basic approaches

for energy conservation and extending battery lifetime

in smartphones.

Smart battery models and energy cost mod-

els. To efficiently and effectively use a battery, it is im-

portant to treat the battery as a measurable resource

whose attributes are available to the operating system

and applications. For this purpose, smart battery mod-

els and energy cost models have been presented to model

battery’s attributes. A number of battery models [21]

such as ideal model, stochastic model, diffusion model

and so forth have been proposed. As to energy cost

models, for instance, Kim et al. [22] present a low-level

energy cost model for fast estimation of software energy

consumption in off-the-shelf processor. Mahmud et al.

[23] have proposed a high-level energy cost model for

predicting energy consumption in the wireless network

access portion of a handheld device equipped with mul-

tiple radio interfaces. Moreover, a system-level energy

model is proposed by Palit et al. in [24].

Avoiding energy waste. In this line of research,

the whole system or individual component is put into

sleep state to save energy. Brakmo et al. [25] present an

energy reduction technique for handheld devices, called

µSleep. It tries to put processor in sleep mode for short

periods to save energy without affecting the user’s ex-

perience. However, it is hard to precisely predict when

to enter sleep state. Shih et al. [26] propose an energy

saving strategy, called wake on wireless, to reduce the

phone’s idle power. They power off the phone and its

radio interfaces when the phone is not being used, and

the phone is powered only when there is on-going traffic.

Nevertheless users will completely lose network connec-

tion when the phone is not used.

Communication related energy saving. Many

works [27,28,29] on reducing the energy of network

communications have been done. Zhang et al. [27] present

and evaluate a system-level power management method

for a mobile device to dynamically shut down its Wi-Fi

interface. However, the idle state of Wi-Fi radio inter-

face is hard to be predicted. Since Bluetooth causes

much less energy than Wi-Fi, Pering et al. [28] develop

a system called Coolspots that automatically switch be-

tween Wi-Fi and Bluetooth to increase battery lifetime.

However, the system needs to modify the infrastructure.

Blue-Fi [29] uses a combination of Bluetooth contact-

patterns and cell-tower information to predict the avail-

ability of the Wi-Fi connectivity, thus it avoids the long

periods in idle state of Wi-Fi interface and significantly

reduces the number of scans for Wi-Fi discovery. How-

ever, it cannot work very well outside due to short range

of Bluetooth.

Computation offloading-based energy saving.

The main idea in computation offloading is to migrate

computation-intensive tasks from mobile device to a

server or cloud via network in order to save energy on

the mobile device. Quite a lot of works have been done

on computation offloading, for example, [1,14,15,16,

17,19,30,31,32,33]. Most of them deal with offloading

computation from mobile device to a desktop computer

or server on the network. For example, Gu et al. [30]

develop an adaptive offloading system. It dynamically

partitions an application and efficiently offloads part
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of the application to be executed on a nearby server.

However, they need to modify JVM to support trans-

parent migration of objects between mobile device and

server. In [1], Cuervo et al. present MAUI, a system

enabling fine-grained energy-aware offloading of mobile

code to the infrastructure. Although MAUI’s energy

savings and performance are impressive, it still needs to

partition applications and incurs extra overhead. Some

others focus on offloading computation to cloud via net-

work. For instance, Kumar and Lu [14] conduct a quali-

tative analysis on whether cloud computing can extend

battery lifetime for users. They believe cloud comput-

ing can potentially save energy for mobile users. Kemp

et al. [15] study how smartphones can benefit from the

resources available in cloud. They are building a frame-

work for applications to be offloaded to cloud. However,

there is not any quantitative analysis in these papers.

In [16], Miettinen and Nurminen provide a quantita-

tive analysis of the critical factors affecting the energy

consumption of mobile clients in cloud computing. Ag-

garwal et al. [17] also conduct a quantitative analysis

on mobile communication using cloud support. How-

ever, extensive quantitative analysis is still missing, and

users’ requirements, such as delay-tolerance threshold,

are yet to be considered.

In contrast to the above state-of-the-art works, we

focus on developing a computation offloading-based sys-

tem and conducting a fully quantitative analysis on en-

ergy saving of the system. In addition, users’ delay-

tolerance threshold will be considered in our work.

3 System architecture

An illustration of the architecture of Phone2Cloud is

provided in Fig. 1. Phone2Cloud consists of seven key

components, including a bandwidth monitor, a resource

monitor, an execution time predictor, an offloading de-

cision engine, a local execution manager, a remote ex-

ecution manager and an offloading proxy that ties the

offloading decision engine and remote execution man-

ager together. Among these components, the offloading

decision engine is the core and the area of extensibil-

ity in the architecture. Offloading decision mechanisms

can be easily added or removed from the framework.

We will describe these components in the following sub-

sections.

3.1 Bandwidth monitor and resource monitor

In order to support making an offloading decision, we

need to monitor current bandwidth usage of the net-

work and status of the smartphone, such as CPU work-

Fig. 1 Architecture of Phone2Cloud

load. Therefore we employ the bandwidth monitor and

the resource monitor. The former periodically moni-

tors bandwidth of current network to predict average

bandwidth when making an offloading decision. The

latter is used to monitor the status of smartphone. For

sake of simplicity, we leverage it to monitor CPU work-

load of smartphone and predict the average CPU work-

load when offloading computation from smartphone to

cloud. These two monitors serve the offloading deci-

sion engine and the execution time predictor separately,

which will be discussed in detail below.

3.2 Execution time predictor

The execution time predictor is one of the key parts

in Phone2Cloud. It is used to predict average execu-

tion time of an entire application on smartphone. Many

works [34,35,36,37] have been conducted on execution

time prediction. In order to simplify the complexity of

Phone2Cloud, we use a simple history-based method

to predict execution time of an application running

on smartphone. Given an application, firstly, it gets

the input size of the application and triggers the re-

source monitor to get predicted average CPU workload;

secondly, it leverages the input size and the average

CPU workload to search the log L to find two nearest

points in distance, and then returns the mean of the

two points’ execution times as the average execution

time of the application. Here, the log L is the execution

history log and can be easily got by using a simple tool

which repeatedly runs applications on smartphone. Be-

sides, it is full of data in fixed form (Application, Input

size, Average CPU workload, Execution time), and we

see entries of a specified application in log L as points

in a three-dimension space of input size, average CPU

workload and execution time.
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3.3 Offloading decision engine

In this component, Phone2Cloud decides whether to

offload the whole or part of an application to cloud,

namely, whether to offload computation of the applica-

tion from smartphone to cloud. Given an application,

it calls the bandwidth monitor to get average band-

width of current network, triggers the execution time

predictor to get average execution time of the applica-

tion, and then uses the offloading-decision making al-

gorithm described in Section 4.3 to make an offloading

decision. When it decides to run the application locally,

it calls local execution manager to execute the applica-

tion. Otherwise, it invokes offloading proxy to handle

offloading computation to cloud.

3.4 Offloading proxy

The offloading proxy sends required input data to the

remote execution manager, receives the results returned

by the remote execution manager, and delivers the re-

sults to the application. However, due to the fact that

the application on smartphone cannot be directly run

on cloud, we need to manually modify the application

to make it possible not only to be run on cloud, but

also to receive results from the offloading proxy. As we

can see, Phone2Cloud is a semi-automatic offloading

system.

3.5 Local execution manager and remote execution

manager

The local and remote execution managers are mainly

used to manage execution of the application in Phone2-

Cloud. The local execution manager is designed to ex-

ecute the application on smartphones, simply invoking

smartphone’s operating system, such as Android and

iOS, to run the application and logs the execution infor-

mation into log L. When the remote execution manger

gets required input data from the offloading proxy, it

executes offloading computation on cloud, and returns

results to the offloading proxy.

4 Algorithms

In this section, we will describe the key methods used

in Phone2Cloud, including CPU workload prediction

in the resource monitor, bandwidth prediction in the

bandwidth monitor, and the offloading-decision making

algorithm.

4.1 CPU workload prediction

As discussed above, we propose a naive history-based

method to predict average execution time of an applica-

tion on smartphone. It leverages average CPU workload

got from the resource monitor and input size of the ap-

plication to predict execution time using the history log

L.

As to CPU workload prediction, the resource moni-

tor uses the basic exponential moving average algorithm

(EMA for short) [38] to predict the average CPU work-

load of smartphone. It records the CPU workload ct
in database in form (Timestamp, CPU workload) peri-

odically. Given current time period t, the EMA value

for CPU workload is calculated recursively by (1), (2)

and (3), where Ct is the value of the EMA at any time

period t, coefficient α represents the degree of weight-

ing decrease and N is the number of time periods. We

simply use the EMA value Ct as the average CPU work-

load.

C1 = c1 (1)

Ct = α · ct + (1 − α) · Ct−1 (2)

α = 2/(N + 1) (3)

4.2 Bandwidth prediction

To predict average bandwidth, EMA is also used in the

bandwidth monitor when making an offloading deci-

sion. Moreover, it uses (4), (5) and (6) to recursively

calculate EMA value Bt for bandwidth at current time

period t, where bt is the bandwidth recorded by band-

width monitor periodically, coefficient β has the same

meaning with α, and N is also the number of time pe-

riods.

B1 = b1 (4)

Bt = β · bt + (1 − β) ·Bt−1 (5)

β = 2/(N + 1) (6)
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Fig. 2 Workflow of offloading-decision making algorithm

4.3 Offloading-decision making algorithm

Offloading-decision making is the core of Phone2Cloud.

It decides whether or not to offload computation of the

application from smartphone to cloud, which is mainly

used in the offloading decision engine. Fig. 2 shows the

workflow of offloading-decision making algorithm. Ta-

ble 1 lists the symbols and their meanings used in this

paper. Given an application, it needs five steps to make

offloading decision:

Step 1: It gets the average execution time Texec
of the application running on smartphone predicted by

the execution time predictor.

Step 2: It gets user’s delay-tolerance threshold Tdelay
specified by user, and then compares Texec with Tdelay.

If user’s delay-tolerance threshold is less than the av-

erage execution time of the application, then it decides

to offload computation of the application from smart-

phone to cloud, expecting to buy some time for the

application, and the algorithm ends. Otherwise, it goes

to step 3.

Step 3: It calculates the power consumption of run-

ning the application on smartphone, called Elocal, which

will be described in Section 4.3.1.

Step 4: It calculates the power consumption of run-

ning the application on cloud, called Ecloud, and we will

explain how to calculate this power consumption in Sec-

tion 4.3.2.

Step 5: It compares Elocal with Ecloud. If Ecloud

is greater than Elocal, then it decides to run the ap-

plication on smartphone and then stops. Otherwise, it

decides to offload computation of the application from

smartphone to cloud, and the algorithm also ends.

In a nutshell, it basically compares two sets of vari-

ables (Texec and Tdelay, Elocal and Ecloud) to make the

offloading decision.

4.3.1 Energy consumption on smartphone

In order to calculate the energy consumption consumed

by running the application on smartphone, we need to

know the active power of the processor on smartphone

Pexec and the average execution time Texec predicted

by the execution time predictor, and then we use (7) to

get power consumption Elocal.

Elocal = Pexec · Texec (7)

4.3.2 Energy consumption on cloud

Calculating Ecloud is more complicated than Elocal. Be-

fore introducing how to calculate Ecloud, we make an

assumption that the offloading part of the application

is already on cloud when making an offloading decision.

As abovementioned, it needs three steps to finish

computation offloading: sending the required input data,

waiting the cloud completing execution of the offloaded

computation and receiving execution results from cloud.

Thus, Ecloud includes three parts: the energy consumed

by sending required input data on smartphone Esend,

the energy of waiting execution results on smartphone

Eidle and the energy consumed by receiving execution

results on smartphone Ereceive.

Esend is calculated by (8), and the time for sending

data from smartphone to cloud Tsend is calculated by

(9). Similarly, we calculate Ereceive by using (10) and

(11).

Esend = Psend · Tsend (8)

Tsend = Dsend/Bsend (9)

Ereceive = Preceive · Treceive (10)

Treceive = Dreceive/Breceive (11)



6 Feng Xia et al.

Table 1 List of notations

Variable Description Unit

C Computation complexity of an application I (instructions)

M Computation execution rate (speed) of smartphone I/s

S Computation execution rate (speed) of cloud I/s

n Ratio of computation execution rate on cloud and smartphone

Pexec Active power of the processor on smartphone W=J/s

Pidle Idle power of smartphone (network interface & processor included) W=J/s

Psend Power consumed to send data (network interface & processor included) W=J/s

Dsend Data size need to send to cloud B

Bsend Sending bandwidth of the network B/s

Preceive Power consumed to receive data (network interface & processor included) W=J/s

Dreceive Data size need to receive from cloud (execution results) B

Breceive Receiving bandwidth of the network B/s

Texec Execution time on smartphone s

Tidle Idle time on smartphone (execution time on cloud) s

Tsend Time for sending data s

Treceive Time for receiving data s

Elocal Energy consumed by running application locally (on smartphone) J

Ecloud Energy consumed by running application on cloud J

Etradeoff Trade-off energy consumed by computation offloading J

It is easy to get (12), and we use it to represent exe-

cution time of the application on smartphone. Since we

just offload whole or part of the application to cloud, we

are easy to come to (13) and use it to present idle time

on smartphone, i.e. execution time of the cloud-version

application. Assume that n represents the ratio of com-

putation execution rate on cloud and smartphone, and

then we get (14). Due to relatively large value of n, we

simply use the maximum value Tidlemax to calculate the

idle time on smartphone in our experiments. Therefore,

we can use (14) and (15) to calculate Eidle.

Texec = C/M (12)

Tidle ≤ C/S (13)

Tidle ≤ Tidlemax = Texec/n (14)

Eidle = Pidle · Tidle (15)

Thus, we can derive (16) to calculate Ecloud from

(8), (10) and (15). Furthermore, we get the trade-off en-

ergy consumption for computation offloading Etradeoff

from (7) and (16), i.e. the difference of energy con-

sumption of running the application on smartphone and

cloud, as shown in (17).

Ecloud = Esend + Eidle + Ereceive

= Psend · Tsend + Pidle · Tidle (16)

+Preceive · Treceive

Etradeoff = Elocal − Ecloud

= Pexec · Texec − Psend · Tsend (17)

−Pidle · Tidle − Preceive · Treceive
We transform (17) to (18) and (19). Then we make

Etradeoff equal to zero and get a constant, called break-

even transmission energy E′0, as shown in (20). Once the

application and the status of smartphone are specified,

the value of E′0 is constant.

Etradeoff = Pexec · Texec − Pidle · Tidle − E′ (18)

E′ = Psend · Tsend + Preceive · Treceive (19)

E′0 = Pexec · Texec − Pidle · Tidle (20)

In summary, we use (14) and (20) to calculate E′0,

use (9), (11) and (19) to calculate the variable E′ and

then compare E′0 with E′. If E′0 is greater than E′,

Phone2Cloud offloads computation of the application

from smartphone to cloud. Otherwise, it runs the ap-

plication on smartphone.

5 Evaluation and analysis

In this section, we conduct two different sets of exper-

iments: application experiments and scenario experi-

ments. Then we analyze the energy consumption and

execution time of the applications in our experiments

under four different factors, including input size, band-

width, CPU workload and delay-tolerance threshold.
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Fig. 3 Environment used in application experiments and sce-
nario experiments

5.1 Experiment setup

The application and scenario experiments are based on

an environment depicted in Fig. 3. We use ZTE V880

smartphone in our experiments. It uses Android oper-

ating system in version 2.2, integrates with Wi-Fi inter-

face and is capable of EDGE data connectivity. It has a

Qualcomm MSM7227-1 CPU with 600MHz frequency,

a 256MB memory and a battery capacity of 1250mAh

at 3.7 volts. The mobile client part of Phone2Cloud,

including resource monitor, bandwidth monitor, execu-

tion time predictor, offloading decision engine, local ex-

ecution manager, and offloading proxy, will be run on it.

As we can see from Fig. 3, we use Wi-Fi network to con-

nect cloud in our experiments. As to the cloud, we use

a desktop computer running Hadoop in version 0.20.2

in Linux operating system (Ubuntu 10.04) to serve as a

cloud. It has a Pentium dual-core CPU with 2.60GHz

frequency, a 2GB memory, a 320GB hard disk and a

100Mbps network interface. Besides, we run the cloud

part of Phone2Cloud, i.e. remote execution manager,

on the desktop computer.

We use three applications, as shown in Table 2, to

do application experiments and analyze the energy con-

sumption and execution time of three applications from

the experimental data. The scenario experiments are

based on a scenario that many students are using smart-

phones to learn an image process course via Internet. In

our scenario experiments, we assume that they simply

use an application running on smartphones, called face

finder, to find the number of faces in a picture. More-

over, we should run the above four applications under

different input sizes and CPU workloads as much as

Table 2 Applications used in experiments

No. Application Description

1 sort
Sort a given set of integer array
elements by using Quick sort

2 path finder

Given a map and a source location
(node), finds the shortest path tree
with the source location as root by
using Bellman-Ford algorithm

3 word count
Count the number of words from a
block of text

possible before experiments, so that we can get a large

history log L used for execution time prediction de-

scribed in Section 3.2.

We also utilize two experimental tools to record our

experimental data and change CPU workload with min-

imal intrusion to our system respectively. One is called

PowerUsage [39], which is used to measure power con-

sumption of smartphones. It uses battery interfaces pro-

vided by Google APIs to record power consumption of

smartphones. The other one is called CPUChanger, and

we develop it to change CPU workload on demand.

5.2 Analysis of application experiments

We evaluate both energy consumption and execution

time of three applications in Table 2 with respect to

four factors. We will examine how these factors will

affect energy consumption and execution time of the

applications.

Table 3 describes the four factors’ values in appli-

cation experiments for evaluations of both energy con-

sumption and execution time. For a specified factor,

we evaluate its influence on both energy consumption

and execution time of three applications under different

ranges, and other three factors are set to their default

values.

5.2.1 Energy consumption

In this section, we show the connections between en-

ergy consumption of three applications and four factors

including input size, bandwidth, CPU workload, and

delay-tolerance threshold. As a matter of fact, most of

computation of these applications can be offloaded to

the cloud, so the data needed to be sent to the cloud is

the input data of these applications, and it is reason-

able that we use the maximum value Tidlemax as the idle

time on smartphone in Section 4.3.2. As we mentioned

before, our system is not a fully automatic system, and

it needs us to manually modify applications, so that

their offloading parts can be run on the cloud and they
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Table 3 Parameters in application experiments

Application
Input size CPU workload Delay-tolerance threshold Bandwidth

Range
(KB)

Default
(B)

Range
(%)

Default
(%)

Range
(ms)

Default
(ms)

Range
(KB/s)

Default
(KB/s)

Sort 0∼4000 40000

0∼80 51.36

40∼140

infinite 0∼800 731.50Path finder 0∼250 101,111 4000∼22000

Word count 0∼2000 524,337 2000∼4000

can receive execution results returned from the cloud.

Thus, there are three corresponding cloud-version ap-

plications.

Input size

Fig. 4 shows the results of the power consumption

of three applications with different input sizes, based

on the values in Table 3. In the figure, offloading (the

green line) represents the power consumption of differ-

ent three applications running in Phone2Cloud, which

has the same indications in Figs. 5 - 7. As we can see

from Fig. 4(a), the energy consumed by sort running on

cloud is much more than that on smartphone. The rea-

son is that energy consumed by sorting on smartphone

is much less than that by data transmission, including

sending input data and receiving results. We also see

that sort should be always directly run on smartphone.

Due to the overhead of Phone2Cloud itself, such as the

power consumption of making the offloading decision,

Phone2Cloud consumes a little more power than run-

ning sort on smartphone, which can be seen in Fig.

4(a). Moreover, overhead of Phone2Cloud can be seen

among all figures.

On the contrary, the power consumption of running

path finder on smartphone is much more than running

it on cloud, as we can see from Fig. 4(b). Because of

the high complexity of finding a path in a map and rela-

tively small data transmission, the energy consumed by

searching paths in a map on smartphone is much more

than transmitting data, and this leads to the above re-

sult. We also observe that path finder should be always

offloaded to cloud. Moreover, we can see that our sys-

tem save much energy for path finder under these cir-

cumstances.

As to word count, the result is interesting, as shown

in Fig. 4(c). When input size is smaller than 256KB,

the application running on cloud costs more energy

than running locally. After that, the power consump-

tion on smartphone is over that on cloud. There is a

reason for this result. When the input size is smaller

than 256KB, transferring data costs more power than

counting words. The more the input size is, the more

power is used to counting words. We also see that word

count should be run on smartphone when input size is

smaller than 256KB and should be offloaded to cloud

when input size is larger than 256KB. Therefore, we

can save energy for word count when input size is larger

than 256KB, and it increases as input grows.

Bandwidth

Fig. 5 describes how bandwidth affects three appli-

cations’ energy consumption. For sort in Fig. 5(a), the

value of power consumption on cloud is always higher

than that on smartphone, that is to say, sort should

be always run on smartphone. The explanation for this

is energy consumed by sorting computation on smart-

phone is less than that consumed by data transmission.

However, energy consumption of sort running on cloud

and smartphone are getting closer and closer with band-

width increasing. Furthermore, the power consumed on

smartphone keeps the same and we can also see this in

Figs. 5(b) and 5(c).

We can see from Fig. 5(b) that power consumption

of path finder on smartphone is much more than that on

cloud. The reason is the same as that of Fig. 4(b). Addi-

tionally, the power consumption on cloud is decreasing

with bandwidth increasing, and we see the same in Fig.

5(c). So we should always offload path finder to cloud

under such circumstances, and then we can save much

energy for users.

The results in Fig. 5(c) are similar to those in Fig.

5(a), but there is a difference. That is word count con-

sumes more energy on cloud compared with smartphone

when bandwidth is below 600KB/s, while the power

consumption on cloud is less than smartphone when

bandwidth gets higher. The reason is that the power

consumption of data transmission is getting less and

less. Furthermore, we can reach that word count should

be run on smartphone when bandwidth is below 600KB/s

and offloaded to cloud when bandwidth is higher. There-

fore, we can save energy for word count when the band-

width is greater than 600KB/s, and the benefit enlarges

as bandwidth increases.

CPU workload

The power consumption of three applications un-

der different CPU workloads is clearly shown in Fig.
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Fig. 4 Energy consumption of three applications under different input sizes

Fig. 5 Energy consumption of three applications under different bandwidths

Fig. 6 Energy consumption of three applications under different CPU workloads
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6. In Fig. 6(a), we can see that energy consumed by

sort running on cloud is always more than running on

smartphone, meaning the application should be always

run on smartphone under these situations. Moreover,

the power consumption of sort running on smartphone

is getting more and more with CPU workload growing.

As CPU workload increases, the energy consumption

of smartphone for waiting execution results from cloud

grows. However, the growth is too small to be seen in

Fig. 6(a). Furthermore, we can also see such situations

in Figs. 6(b) and 6(c). Fig. 6(b) witnesses that power

consumption of path finder running on smartphone is

always much more than that on cloud, and it increases

as CPU workload grows. Therefore, we should always

offload path finder to cloud under these situations to

save energy. However, Fig. 6(c) shows a very different

situation compared with Fig. 6(b) when it comes to

word count. Its power consumption on smartphone is

less than that on cloud when CPU workload is below

25%, and the opposite occurs when CPU workload is

above 25%. The reason is that energy consumption of

word count running on smartphone grows with CPU

workload increasing and energy consumption of run-

ning on cloud almost does not change. Therefore, word

count should be offloaded to cloud when CPU workload

is greater than 25%, and we can save energy for users.

Delay-tolerance threshold

Fig. 7 illustrates the energy consumption of three

applications under different delay-tolerance thresholds.

We see that all of three applications experience the

same phenomenon: the energy consumption of differ-

ent applications running on cloud does not change with

delay-tolerance threshold growing as well as running on

smartphone. For this phenomenon, we can explain that

delay-tolerance threshold does not affect three applica-

tions’ power consumption on cloud and smartphone.

However, the power consumption of sort running in

our system is changing as delay-tolerance grows in Fig.

7(a). According to Fig. 4(a), the power consumption

of sort running in our system should be close to run-

ning on smartphone all the time. However, it is close

to the power consumption of running on cloud when

delay-tolerance threshold is smaller than 70 millisec-

onds, which means the execution time of sort running

on smartphone is between 70 milliseconds and 90 mil-

liseconds. Therefore, we should set delay-tolerance thresh-

old to be greater than 90 milliseconds for sort. As shown

in Figs. 7(b) and 7(c), path finder and word count should

be offloaded to cloud all the time; however, we can not

know their execution time of running on smartphone.

5.2.2 Execution time

We describe the relationship between the execution time

of three applications and four factors mentioned before

in this section. The values of each factor for different

applications are given in Table 3, and the results are

shown in Figs. 8 - 10. In these figures, offloading (the

green line) represents the execution time of different

applications running in our Phone2Cloud.

Input size

Fig. 8(a) shows the execution time of sort under dif-

ferent input sizes. The value on cloud is more than that

on smartphone, and the gap between them expands as

input grows. The reason lies in that time cost by data

transmission between cloud and smartphone is more

than that cost by sorting on smartphone. Therefore,

sort should be run on smartphone on this condition.

Except for this, we see that the offloading one keeps

the same as the local one. In this case, we see our sys-

tem can make a wise offloading decision.

For path finder, the execution time on smartphone

overweighs that on cloud, and the difference becomes

more obvious as input increases, shown in Fig. 8(b). As

a result, we should run path finder on cloud. Besides,

the execution time on cloud increases a little, but the

change is too tiny to be seen in the figure. It can be

seen that our system can make excellent decisions for

path finder.

The wisdom of Phone2Cloud can also be proved

by Fig. 8(c). Due to the fact that execution time of

word count on cloud is less than that on smartphone

when input size is smaller than 256KB, we should run

the application on cloud. While, the fact is that our

Phone2Cloud runs word count on smartphone, and it is

a wise decision. As we already know that user’s delay-

tolerance threshold is infinite, so the first task of our

Phone2Cloud is to reduce the application’s energy con-

sumption. Furthermore, the power cost on cloud is more

than that on smartphone when input size is below 256KB

in Fig. 4(c). Therefore, Phone2Cloud decides to run

word count on smartphone. When input size is greater

than 256KB, our Phone2Cloud still makes a wise deci-

sion, thus user’s experience is improved.

Bandwidth

Fig. 9 shows the relationship between execution time

of three applications and bandwidth. The running on

cloud always consumes more time than running locally,

shown in Fig. 9(a). The reason is that sorting on smart-

phone costs less time than data transmission. Moreover,

the gap between running on cloud and locally becomes

smaller as bandwidth grows. We can see from Fig. 9(a)

that the execution time on Phone2Cloud almost keeps

the same as that on smartphone, regardless of the over-
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Fig. 7 Energy consumption of three applications under different delay-tolerance thresholds

Fig. 8 Execution time of the three applications under different input sizes

Fig. 9 Execution time of three applications under different bandwidths
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head of Phone2Cloud. This shows our system always

makes the right decision.

Fig. 9(b) shows a different result comparing with

Fig. 9(a). Path finder spends more time on smartphone

than on cloud. This is because the time of data trans-

mission is less than finding a path in a map on smart-

phone, and it decreases as bandwidth increases. There-

fore our system chooses to offload path finder to cloud,

and in this situation, we can save time for users.

For word count, the execution time on cloud is more

than that on smartphone when bandwidth is less than

230KB/s, while the opposite occasion occurs when band-

width is greater. But that does not mean we should of-

fload the application to cloud even though it could save

time for users. Considering the energy consumption of

word count on cloud and smartphone, our system of-

floads word count to cloud only when the bandwidth

exceeds 600KB/s, and it makes the right decision again.

CPU workload

Fig. 10 shows the execution time of sort, path finder

and word count under different CPU workloads. A no-

table feature shared by the subfigures is that the ex-

ecution time of three applications running on cloud

does not change with CPU workload growing. For sort

in Fig. 10(a), the time consumed on cloud is consis-

tently higher than that on smartphone. Furthermore,

the gap between running on smartphone and cloud re-

duces when CPU workload increases. However, the exe-

cution time of path finder on cloud keeps much less than

on smartphone and this is quite different from sort (see

Fig. 10(b)). Additionally, the execution time on smart-

phone grows as CPU workload increases, so we should

always offload path finder to cloud under these situa-

tions to save time for users. As to word count, the re-

sults in Fig. 10(c) correspond to the power consumption

in Fig. 6(c). Due to infinite of delay-tolerance thresh-

old, users pay much attention on energy consumption,

so Phone2Cloud runs word count locally when CPU

workload is lower than 25% from Fig. 6(c). While CPU

workload is greater than 25%, it is offloaded to cloud

to save energy and time, as shown in Fig. 10(c).

Delay-tolerance threshold

Fig. 11 describes the relation between execution time

and delay-tolerance threshold. We can see that the trend

this figure shows is similar to Fig. 7. Because there is no

connection between delay-tolerance threshold and exe-

cution time on smartphone and cloud, the execution

time of each application on both cloud and smartphone

does not change with delay-tolerance threshold grow-

ing. Besides, the execution time of sort in Phone2Cloud

changes as delay-tolerance threshold increases, similar

to the energy consumption in Fig. 7(a). Thus, we get

the conclusion that the execution time of sort on smart-

Table 4 Parameters in scenario experiments

Factor Input size
CPU
workload

Delay-
tolerance
threshold

Bandwidth

Range 0∼1200 KB 20∼80 % 10∼50 s 0∼800 KB/s

Default 559,064 B 51.36 % infinite 20.27 KB/s

phone is about 80 milliseconds as shown in Fig. 11(a).

Therefore, delay-tolerance threshold should be larger

than 90 milliseconds, to be precise, 80 milliseconds. In

this way, time can be saved. Based on what Fig. 4(b)

shows, we can understand that the energy consumption

of path finder on smartphone is more than on cloud.

Therefore, no matter how much delay-tolerance thresh-

old is, our Phone2Cloud always offloads this application

to cloud. Specifically, the local execution time of path

finder is around 11 seconds, while both cloud and of-

floading ones are less than 1 second, thus we achieve the

goal of saving time for users. Fig. 11(c) shows very simi-

lar results to Fig. 11(b). Word count is always offloaded

to cloud in regardless of delay-tolerance threshold. Also,

time can be saved by Phone2Cloud for word count as

shown in Fig. 11(c).

5.3 Analysis of scenario experiments

This section examines the energy consumption and exe-

cution time of face finder in scenario experiments under

the aforementioned factors. The connections between

energy consumption and factors will be discussed in

Section 5.3.1, and the results on execution time will

be presented in Section 5.3.2.

Table 4 shows each factor’s range and default value

in the scenario experiments for evaluations of both en-

ergy consumption and execution time. When we eval-

uate a specified factor’s influence on both energy con-

sumption and execution time of face finder under dif-

ferent ranges, the other three factors are set to their

default values.

5.3.1 Energy consumption

Before discussing the results shown in Fig. 12, we need

to manually modify face finder to be able to receive

results from cloud, and there is also a corresponding

cloud-version face finder on cloud. Since most of com-

putation of face finder can be offloaded to the cloud,

the required data of the cloud-version face finder is the

input data of face finder, and it is also reasonable that

we use the maximum value Tidlemax to calculate the

idle time on smartphone.
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Fig. 10 Execution time of three applications under different CPU workloads

Fig. 11 Execution time of three applications under different delay-tolerance thresholds

Fig. 12 Energy consumption of face finder under four factors

Fig. 12(a) shows that face finder costs more energy

on smartphone than on cloud and the difference be-

tween them gets larger as input grows. This is because

data transmission costs less energy than running the

application locally. Furthermore, the local energy con-

sumption grows faster than that on cloud. Therefore,

face finder should be offloaded to cloud.

From Fig. 12(b), we can see that face finder cost

less power on smartphone than on cloud when band-

width is lower than 50KB/s and the result changes to

the opposite after bandwidth gets higher. The former

is because the energy consumed by data transmission

is very enormous when bandwidth is low, due to the

poor power efficiency of Wi-Fi. Similar to what Fig.

9(a) shows, the power consumption on smartphone has

no relation to bandwidth, and the power consumed on

cloud decreases with bandwidth growing. As a conse-

quence, we should offload face finder to cloud when

bandwidth is greater than 50KB/s for energy saving.

As to the effect of CPU workload, Fig. 12(c) shows

that energy consumption of face finder on cloud is al-

ways much less than running locally, and the gap be-

tween them grows as CPU workload increases. So face
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Fig. 13 Execution time of face finder under four factors

finder should be offloaded to cloud, which is what our

system does.

For the delay-tolerance threshold, it nearly affects

nothing on face finder on both smartphone and cloud

as shown in Fig. 12(d). According to energy consump-

tion of face finder, Phone2Cloud should run face finder

on smartphone when the threshold is smaller than 30

seconds. However, it offloads the application to cloud,

meaning the execution time on smartphone can not

meet user’s threshold. So the local execution time is

between 20 seconds and 30 seconds. Therefore, to save

power, delay-tolerance threshold should be greater than

30 seconds.

5.3.2 Execution time

Fig. 13 describes the execution time of face finder un-

der the four factors. The subfigures in Fig. 13 illustrate

the connection between execution time and the four fac-

tors respectively. To be specific, the execution time on

smartphone is not only more than, but also grows faster

than that on cloud, as shown in Fig. 13(a). Therefore,

Phone2Cloud offloads face finder to cloud all the time,

meaning it makes a wise offloading decision.

As clearly shown in Fig. 13(b), we can see the exe-

cution time experiences almost the same trend with the

energy consumption in Fig. 12(b), caused by the ineffi-

cient data transmission under low bandwidth. Further-

more, the execution time on cloud decreases with band-

width ascending and there is no relationship between lo-

cal execution time and bandwidth. So face finder should

be offloaded to cloud when bandwidth is greater than

50KB/s, as we stated in Fig. 12(b).

In Fig. 13(c), we also see the similar trend shown in

Fig. 12(c), with the only difference that the execution

time on cloud is a straight line, meaning CPU workload

influences nothing on execution time on cloud. Then in

this case, our Phone2Cloud makes an excellent offload-

ing decision, that is, it offloads face finder to cloud, and

saves time for users.

As regard to delay-tolerance threshold, Fig. 13(d)

validates our thought again, which is the threshold does

not correlate to the execution time on both cloud and

smartphone. The execution time in Phone2Cloud changes

with delay-tolerance threshold increasing. Ignoring the

threshold, face finder should be run on smartphone ac-

cording to its energy consumption in Fig. 12(b). How-

ever, Phone2Cloud offloads it to cloud when delay-tolerance

threshold is smaller than 25 seconds. This means the ex-

ecution time of face finder on smartphone is between

20 seconds and 30 seconds, as what we got from Fig.

12(d). Actually, it is about 23 seconds shown in Fig.

13(d). Therefore, we should set delay-tolerance thresh-

old to be greater than 23 seconds to save time for users.

6 Conclusion

This paper has presented an energy-efficient mobile cloud

computing system called Phone2Cloud, which takes ad-

vantage of the computation offloading paradigm. It is

able to save energy and improve applications’ perfor-

mance and users’ experience of smartphones. Two sets

of experiments are conducted and the results demon-

strate that our system is of great effectiveness. For the

sake of simplicity, we simply use a naive approach to

predict application’s execution time and only take CPU

workload and input size into account. There are many

alternative methods and factors we can take into con-

sideration, and we will compare these methods with our

own approach in the future work. Moreover, as we men-

tioned before our system is a semi-automatic offloading

system. Further studies are demanded to make our sys-

tem fully automatic.
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