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Abstract Computational trust mechanisms aim to produce
trust ratings from both direct and indirect information about
agents’ behaviour. Subjective Logic (SL) has been widely
adopted as the core of such systems via its fusion and dis-
count operators. In recent research we revisited the seman-
tics of these operators to explore an alternative, geometric
interpretation. In this paper we present principled desiderata
for discounting and fusion operators in SL. Building upon
this we present operators that satisfy these desirable proper-
ties, including a family of discount operators. We then show,
through a rigorous empirical study, that specific, geomet-
rically interpreted, operators significantly outperform stan-
dard SL operators in estimating ground truth. These novel
operators offer real advantages for computational models of
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trust and reputation, in which they may be employed without
modifying other aspects of an existing system.
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1 Introduction

Trust forms the backbone of human and artificial societies,
improving robustness of interactions by restricting the ac-
tions of untrusted entities and mitigating the impact of un-
trusted information (Sensoy et al. 2013). Within the multi-
agent systems community (Sabater and Sierra 2005), the
problem of how to determine the degree of trustworthiness
to assign to other agents is foundational for the notion of
agency and for its defining relation of acting “on behalf of”".
Trustworthiness is utilised when selecting partners for in-
teractions; distrusted agents are less likely to be engaged,
reducing their influence over the system.

Trust mechanisms aim to compute a level of trust based
on direct and second-hand interactions between agents. The
latter, commonly referred to as reputational information, is
obtained from other agents which have interacted with the
subject of the assessment. Aspects of such systems that have
been examined include how to minimise the damage caused
by collusion between agents (Haghpanah and des Jardins
2012), the nature of reputation information (Jgsang et al.
2012), and examining trust in specific contexts and agent
interaction configurations (Burnett and Oren 2012).

In this paper we strengthen the analysis of an alternative
to Jgsang’s Subjective Logic (SL) discounting and combi-
nation operators (Jgsang 2001), which we have previously
described in (Cerutti et al. 2013a). In particular, we enlarged
the range of proposed discounting operators in order to pro-
vide a more comprehensive experimental evaluation. Instead
of providing single operators we present a general approach,
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from which an entire family of operators can be derived that
are proved to be compliant with specific desirable proper-
ties. From our analysis we can deduce some new interest-
ing statistical properties of J@sang’s operators, as well as
of the proposed operators. This evaluation methodology in-
troduces two different metrics: the expected value distance
from the ground truth, and the geometric distance from the
ground truth. According to the former, our family of opera-
tors are shown to be almost equivalent to Jgsang’s original
operators, and significantly more accurate in one case. Using
the latter metric, our operators compute reputation opinions
closer to the ground truth than Jgsang’s, with the exception
of one case. Further, one of our proposed discounting opera-
tors outperforms the traditional SL operator on both metrics.

In the next section we present desiderata for discounting
and fusion operators, grounded on how trust models such
as SL are employed in practice. After a brief overview of
Jgsang’s SL in Section 3, we formalise the desiderata in Sec-
tion 4 considering SL opinions, and show that they are not
satisfied by existing SL operators. We describe our proposed
operators in Section 5, and prove that they comply with the
desirable properties presented. Then, in Section 6, we de-
scribe our experiment designed to conduct the comparative
study among the operators, and, in Section 7, we evaluate
our results to determine their significance. We summarise
the conclusions that can be drawn from this study in Section
8. In order to improve the readability of the paper, proofs of
the described results can be found in Appendix B (Appendix
A discusses the mathematical foundations of the proposed
operators).

2 Desiderata for Discounting and Fusion Operators

In this work we focus on trust relations where an agent re-
ferred to as the truster — X — “depends” on a trustee —
Y; — (Castelfranchi and Falcone 2010). As a concrete ex-
ample, we examine the case where a trustee is responsible
for providing some information to a truster, as exemplified
by the following scenario.

Example 1 Let X be a military analyst who is collecting
evidence in order to decide whether or not a specific area
contains a certain type of weapon. In particular, he needs a
datum m from two sensors Y1 and Yo, each of which has a
history of failure, thus affecting the trust X places in them.
Here, X is the truster, and Y7 and Yy the trustees.

In such a scenario, the degree of trustworthiness of Y;
and Y5> is normally computed from historical data (Jgsang
and McAnally 2004). Suppose that X asks Y; and Y5 about
m. Let us consider the case where Y informs that it believes
that m holds (we write Y to indicate either Y7 or Y5).

Example 1 (Continued) Belief. Suppose that Y answers
that m holds with absolute certainty. However, Y has had
a history of (random) failures, which means that X does not
completely trust Y ’s reports. In this situation, it seems rea-
sonable for X to derive an opinion about the likelihood of
m with an upper limit equivalent to its trustin Y.

The above scenario gives us an intuition about a first
desideratum concerning discounting opinions, viz.:

desDj; : when the trustworthiness degree of a trustee
Y is derived from historical data, if Y informs X that
m holds with absolute certainty, X should believe m
as much as it believes Y.

On the other hand, if Y informs X that it is uncertain
about m, this should be directly reflected in X’s opinion
about m.

Example 1 (Continued) Uncertainty. Consider the case
where Y informs X that it is unable to observe m. Here,
there is complete uncertainty with regard to the degree of
trustworthiness associated with Y ’s reports about m.

We can thus derive an additional desideratum:

desDs: if Y informs X that it is uncertain about
m, X is also uncertain about m.

In addition, we can identify an intermediate case, where
it is known that the current situation negatively affects the
degree of trustworthiness, and where an estimate of this ef-
fect can be determined. This is illustrated in the following
scenario.

Example 1 (Continued) Intermediate evidence. Suppose
that Y reports that its opinion about m is not accurate, but
there is some evidence in favour of m, and some evidence
against it (with some degree of uncertainty)'. In this case X
knows that the data received is somewhat accurate, and can
therefore derive a degree of trustworthiness in the informa-
tion regarding m received from Y .

This illustrates another desideratum regarding the dis-
counting of opinions, namely:

desDg3: when the trustworthiness degree of a
trustee Y is derived from historical data, if Y in-
forms X that m holds with some degree of certainty,
X should believe m no more than the trustworthi-
ness degree of Y.

There are cases where the queried datum is not evidence
about a datum, but rather an opinion about another agent.

! An example of this is GPS data, which is known to be inaccurate
if you are using civilian equipment (Bisdikian et al. 2012).
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Example 1 (Continued) Reputation. Suppose that sensor
Y1 provides information about readings obtained from Y,
an Uninterruptible Power Supply (UPS). Further suppose
that X wants to query Yo about its battery status, but X
has, until now, only obtained its information directly from
Y1. Given a report from Yo, X can ask Y1 about Ys's degree
of trustworthiness. According to our previous terminology,
the message that Y1 sends to X is the subjective — to Y1 —
trustworthiness degree of Ys.

Finally, there are cases where X has to integrate differ-
ent sources of information.

Example 1 (Continued) Consensus. Suppose that X
queries both Yy and Yy about a datum m, and let us suppose
that it receives different answers from the two sensors. In this
situation, X will search for a consensus between these opin-
ions, and will be biased towards the answer obtained from
the more historically accurate sensor.

This illustrates a desideratum about fusing opinions:

desF';: in the case where X receives n opinions
about m from Y7, Y5, ... Y, there must exist an op-
erator informing which are X’s preferences among
each Y; (i.e. related to their degree of trustworthi-
ness), and X’s opinion about m should be derived
according to these preferences (i.e. giving more im-
portance to the opinion received from the most pre-
ferred trustee).

3 Background

In the above scenario, we utilised the terms trust, trustwor-
thiness, and reputation which often have different meanings
among different pieces of research. It is beyond the scope
of this paper to investigate these meanings; the interested
reader is referred to (Castelfranchi and Falcone 2010) and
(Urbano et al. 2013) for an overview. For the purpose of
this paper we consider the notion of trustworthiness as the
property of an agent — the trustee — that a trustor is con-
nected with, where this property represents the willingness
of the trustee to share information accurately with respect to
the ground truth (we make a distinction between inaccuracy
that is intentional or otherwise). Moreover, reputation is a
property which represents the subjective view of an arbitrary
trustee’s trustworthiness that we obtained from an agent we
can directly communicate with.

Following (Jgsang et al. 2007) we express both the de-
gree of trustworthiness and the degree of reputation using
SL. This formalism extends probability theory by expressing
uncertainty about the probability values themselves, which
makes it useful for representing trust degrees. We now pro-
ceed to provide a brief overview of SL mainly based on
(Jgsang 2001).

Like Dempster-Shafer evidence theory (Dempster 1968;
Shafer 1976), SL operates on a frame of discernment, de-
noted by @. A frame of discernment contains the set of pos-
sible system states, only one of which represents the actual
system state. These are referred to as atomic, or primitive,
system states. The powerset of ©, denoted by 2€, consists
of all possible unions of primitive states. A non-primitive
state may contain other states within it. These are referred to
as substates of the state.

Definition 1 Given a frame of discernment ©, we can as-
sociate a belief mass assignment meg () with each substate
x € 29 such that

1. mg(xz) >0

2. m@((/)) =0
3. ) me(r)=1

For a substate x, me(x) is its belief mass.

Belief mass is an unwieldy concept to work with. When
we speak of belief in a certain state, we refer not only to the
belief mass in the state, but also to the belief masses of the
state’s substates. Similarly, when we speak about disbelief,
that is, the total belief that a state is not true, we need to take
substates into account. Finally, SL also introduces the con-
cept of uncertainty, that is, the amount of belief that might
be in a superstate or a partially overlapping state. These con-
cepts can be formalised as follows.

Definition 2 Given a frame of discernment © and a belief
mass assignment mg on @, we define the belief function for
a state x as

b(z) = Z me(y) where z,y € 2°

yCx
The disbelief function as

d(z) = Z me(y) where 2,y € 2°

yNz=0

And the uncertainty function as

u(x) = Z me(y) where z,y € 2°

yNax #0
yZa

These functions have two important properties. First, they
all range between zero and one. Second, they always sum to
one, meaning that it is possible to deduce the value of one
function given the other two.

Boolean logic operators have SL equivalents. It makes
sense to use these equivalent operators in frames of discern-
ment containing a state and (some form of) the state’s nega-
tion. A focused frame of discernment is a binary frame of
discernment containing a state and its complement.
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Definition 3 Given z € 2°, the frame of discernment de-
noted by ©%, which contains two atomic states, z and —z,
where —z is the complement of z in 6, is the focused frame
of discernment with focus on z.

Let ©% be the focused frame of discernment with fo-
cus on x of ©. Given a belief mass assignment me and the
belief, disbelief and uncertainty functions for = (b(x), d(z)
and u(z) respectively), the focused belief mass assignment,
MG. ON O is defined as

mg. () = b(x)

meg. (~z) = d(z)
m@L(@T) = u(x)

=

The focused relative atomicity of = (which approximates the
role of a prior probability distribution within probability the-
ory, weighting the likelihood of some outcomes over others)
is defined as

ag.(¢/0) = [E(z) — b(z)]/u(z)

where E(x) represents the expected value of x.
For convenience, the focused relative atomicity of x is
often abbreviated a 5. () or a(x).

An opinion consists of the belief, disbelief, uncertainty
and relative atomicity as computed over a focused frame of
discernment.

Definition 4 Given a focused frame of discernment © con-
taining  and its complement —x, and assuming a belief
mass assignment mg with belief, disbelief, uncertainty and
relative atomicity functions on « in © of b(x),d(z),u(x) and
a(x), we define an opinion over x, written w,, as

(b(x), d(x), u(z), a(z))

For compactness, Jgsang also denotes the various func-
tions as b,,d;,u, and a, in place, and we will follow this
notation. Furthermore, given a fixed a,, an opinion w can be
denoted as a (b, d,, u) triple.

Given opinions about two propositions from different
frames of discernment, it is possible to combine them in
various ways using SL’s various operators, as detailed in
(Jgsang 2001; Jgsang and McAnally 2004; Jgsang et al. 2005,
2006; McAnally and Jgsang 2004). In this work we concen-
trate on Jgsang’s discount and fusion operators, which we
review next.

Wy

Definition 5 (Def. 5, (Jgsang et al. 2006)) Let A, B be two

agents where A’s opinion about B is expressed as wé =

(b3, d3,us, all) and let = be a proposition where B’s opin-

ion about x is acquired by A as the opinion w? =

<bB dB B B> Let OJA B _ <b£}:B, d?:B, u?:B’ a?:B> be
the 0p1n10n such that:

bAB = b b
4 = b a2

up ™t = di + gy + by uf

0" = af
then wA B is called the uncertainty favouring discounted

opinion of A. By using the symbol ® to designate this oper-
ation, we get w8 = v ® WP

Definition 6 (Thm. 1, (Jﬂsang et al. 2006)) Let w? =
(b2, d2 v a?) and w? = (b8 dB uZ aP) be trust in x
from A and B respectlvely The op1n10n wheB =
(bdoB, dAOB ‘;‘QB a:}*B) is then called the consensus be-
tween w and w , denoting the trust that an imaginary agent
[A, B] would have in z, as if that agent represented both A
and B. In case of Bayesian (totally certain) opinions, their
relative weight can be defined as v4/% = lim (u? /u?).
Case I: u +uf —ul uB #0

pAeB _ bj uZ+b2 ug

T wl +uB_uA wB

JAB _ dA §+d1§ X
T = uAJruB,uA uTs
OB
z = uArub ,uA ub
X B° B® A

AoB _ ai uftal ul”(af +af) uft uf
Ay - A+uB 2 ud ub
Case IT: uZ + uf — uA ul =0

pAoB _ (’YA/B b7’+b5)
xr

R
gAoB — (P di+d7)
T (vA/B4
uleB =0
aAoB — P af+a?)
z (y*/B+1)
By using the symbol ‘@’ to designate this operator, we
can write w°F = wl @ WE

4 Core Properties and Requirements

In our scenario, agent X has to determine the trustworthi-
ness degree associated with m received from Y;. X will con-
sider three elements in reaching a decision:

1. trustworthiness: X has an opinion 7; concerning the
degree of trustworthiness of Y;;

2. certainty: Y; communicates that m holds with a degree
of certainty Cj;

3. combination: X has to combine 771, . .., T;, with (resp.)
C1,...,Cy in order to achieve an ultimate opinion W =
I'(Wa,...,Wy) on m, where Vi W, = T; o C;, i.e. W;
is the result of a combination of opinion 7; with opinion
C;, and each opinion W; = T; o C; has associated a
weight K; = f(T;) for some function f(-).

In particular, the three desiderata for discounting opin-
ions (desD;, desD3, desDj), give rise to the following
requirements for discounting:
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rd; if Cj is pure belief, then W; = T;;

rdo if C; is completely uncertain, then W; = C; (i.e. (0,0, 1));

rds the degree of belief of WW; is always less than or equal to
the degree of belief of T5;
and the desideratum about fusing opinion (desF;) gives rise
to the following requirements for fusion:

rfy if Vi,j K; = Kj, then W = I(Wy,...,W,) is the
opinion resulting from the average of Wy, ..., W, ;

rfy if Ji st K; = 0, then F(Wl, .. 7I/Vn) =
F(Wl,. . '7Wi—17Wi+17 .o 7I/Vn)

While there is a direct correspondence between the desi-
deratum for discounting opinion (desD1, desD5, desD3)
and the requirements for discounting (rd;, rds, rdg), the
desideratum about fusing opinion desF; gives rise to two
(loose) requirements, rf; and rf;. Note that the combina-
tion requirements describe the same “prudent” behaviour as
was presented in Example 1, in particular in the “belief” sce-
nario. Indeed even if X is highly confident in a specific con-
text, this confidence cannot increase the trust degree over the
base trustworthiness degree.

Following (McAnally and Jgsang 2004; Jgsang et al. 2006),

we utilise SL to instantiate trustworthiness and confidence,

and seek to compute their combination through SL opera-

tions?. In doing so, we must therefore consider the following

inputs and requirements:

1.O = {(b, d, u) € R}0 < b < land0 < d <
landO<wu<landb+d+u=1}

2. T; = (br,, dr,, ug,) derived by statistical observations
(e.g. (McAnally and Jgsang 2004));

3. C; = (be,, dg;, uc,) is the opinion received from Y;

about m;
4, 0 : 0 x 0O~ O
5. 7:0"— O
[ T; ifC; = (1,0,0)
6. Wi = {Ci if C; = (0,0,1)

further requiring that by, < br;;

7. given W=T(Wy,... ., W,),ifVi,j € {1,...,n}K; =
K, then

1 n

_ bWZE;bWi
1 n

- dW:E;dwi

1 n
- Uuw = — E uw;
n -
=1

8. if Ji st. K; = 0, then I(Wy,...
F(W17...,W7;717Wi+1’---7Wn).

Although any function f(-) can be used for deriving K;,

hereafter we will consider 7;’s expected value, i.e. K; =
uTi

bTi+ 3

7Wn) =

2 Hereafter each opinion will have a fixed relative atomicity of é
This assumption will be relaxed in future work.

Since 1-5 above are inputs, we concentrate on the con-
straints expressed by 6, 7 and 8, which require us to con-
sider the problem of how to combine the degree of trust-
worthiness with the degree of certainty. Existing work, such
as (McAnally and Jgsang 2004; Castelfranchi and Falcone
2010; Urbano et al. 2013), concentrate on computing 7.

We begin by noting — as illustrated in Table 1 — that
no set of operators provided by SL (Jgsang 2001; Jgsang
and McAnally 2004; Jgsang et al. 2005, 2006; McAnally
and Jgsang 2004; Jgsang 2008) satisfies the combination re-
quirements previously described.

Requirement satisfied?

Discount req. Fusion req.
Operator rdq rds rds rfy rfy
Addition (4) No No No No No
Subtraction (—) No No Yes No No
Multiplication (-) No No No No No
Division (/) No No No No No
Comultiplication (L!) No No No No No
Codivision (1) No No No No No
Discounting (®) No Yes Yes No No
Cumulative fusion (&) No No No No No
Averaging fusion (®) No No No | Yes | No
Cumulative unfusion (&) No No No No No
Averaging unfusion (©) No No No | No | No

Table 1: Jgsang operators and the satisfaction of the five
combination requirements

In the next section, we describe our proposals for the
discount — o — and consensus — I — operators in order
to satisfy the above five requirements.

5 The Operators
5.1 A Naive Discount Operator

As suggested by an anonymous referee of a preliminary ver-
sion of (Cerutti et al. 2013b), a very naive operator satisfying
the requirements rd;, rds, and rdg is the following.

Definition 7 Given the two opinions T' = (bp, dp, ur) and
C = (be, dc, uc), the naive-discount of C' by T'is W =
T o,, C, where:

- bw =bc - br;
- dw =bc - dr + dc;
- uw = be - ur +uc.

The following proposition shows that the naive discount
operator fulfils the first three requirements.

Proposition 1 Given the two opinions T = (br, dr, ur)
and C = (be, do, uc), and W = T o, C, the naive-
discount of C by T, then:
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i. WeOy

1. if C = (1,0,0), then W =T, i.e. requirement rdy;
iii. if C =(0,0,1), then W = C, i.e. requirement rds;
w. by < by, i.e. requirement rds.

However, one of the limits of this naive operator is that
if C = (0,1,0), the discounted opinion is pure disbelief.
This means that, regardless of the trustworthiness opinion
an agent has on a source of information, if this source of
information informs the agent that it is certain in its disbelief
of a message, then the result of the discounting action is
complete disbelief.

Although this seems to be reasonable in some contexts
— e.g. in the merging of confidence and trustworthiness
opinions (Cerutti et al. 2013b) — it can be questionable in
the context of discounting opinions — intuition suggests dis-
counting an opinion should (generally) raise the degree of
uncertainty, while the naive operator reduces it.

In the following section we introduce a family of dis-
count operators, which can provide varying degree of uncer-
tainty when discounting opinions.

5.2 A Family of Graphical Discount Operators

As discussed in (Jgsang 2001), a Subjective Logic opinion
admits a geometrical representation inside a triangle, and,
as shown in (Jgsang et al. 2005), operators can be defined in
order to satisfy graphical properties®.

As detailed in Appendix A, using the constraint that an
opinion’s belief, disbelief and uncertainty must sum to 1,
we can flatten the 3-dimension space O into a 2-dimension
space (Cartesian space)*.

(N \

/ T
B Q .D

R

Fig. 1: Projection of the certainty opinion and its combina-
tion with a trustworthiness opinion

3 (Jpsang et al. 2005) shows how the deduction operator affects the
space of possible derived opinions.

4 This representation is similar to the one used in (Jgsang 2001) for
representing opinions in SL, but points B and D are swapped.

Figure 1 depicts the intuition behind the family of dis-
count operators we introduce in this paper. In the figure,
point T represents the subjective logic opinion regarding the
trustworthiness degree of the source of information. Given
this point, the four-sided figure PQ DU represents the ad-
missible space of opinions, where P 2 (bp,0,1 —by),Q =
(bp,1—bp,0),D = (0,1,0),U = (0,0,1). In other words,
the opinions that are inside the admissible space clearly sat-
isfy requirement rdg, as their degree of belief cannot be
greater than byp.

Definition 8 Given an opinion T' = (by, dp, ur), the ad-
missible space of opinions given T'is Or = {X € Olbx <
br}.

We can easily show that the line between P and @ as
shown in Fig. 1 delimits the admissible space of opinions
for T

Proposition 2 Given an opinion T = (by, dr, ur), and
its Cartesian representation, the four-sided figure PQDU
represents Qr, where:

- P = <bT,0, 1-— bT>,' and
- Q= (bp,1 —bp,0).

The idea behind the family of discount operators is as
follows. An opinion C' should be projected into the admis-
sible space of opinions given 7. According to Fig. 1, dis-
counting the opinion C' with the opinion 7" means that we
project C' into O thus achieving a new opinion C’, which
is the result of the discounting operator. We consider only
a linear projection in this work, but more complex func-
tions can be easily envisaged. In other words, the idea is
that |§6\ x |TC'|, as well as the angle ac < aer.

Definition 9 describes the family of discount operators
obtained following the above intuition. Each member of the
family is identified by a specific value of ac.

Definition 9 Given the two opinions T' = (br, dr, ur)
and C = (b¢, de, uc), the graphical-discount of C' by T
isW =T75, ., C, where:

[e¥el4
—
- uw = ur + sin(ac/)|TC”|

- dw = dr + (ur —uw) cos(§ ) +cos(ac) sin(g)|T—C7\

where?:
Qc €
- —= L —Br <ac < er—Pr
3
0 ifbg =1
- ec= arctan (uc81r1(3)7r) otherwise
do +uc cos(%)
T ifdp =1
3 .
- Br= ur sm(%) )
arctan — otherwise
1 — (dr 4+ ur cos(%))

5 With reference to Fig. 1, ac £ Z¢pp, Br £ Zrpp, vr 2
A AN
Zrpu,dr = ZrUups €T = £pTU-
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™

—’Yng—ﬁT

0 ifur=1

o = . br )

arcsin [ —= | otherwise
ITU|
- €T =T — ’}/T_T 5T
— BC| ——

qﬂﬂzl:$wmﬂ:

|BMc|

=Tc |TMC/|

. BC
with ro = \‘TTCCIT

2 by

2
¢
7 (I —urp)
2¢/tan?(acr) + 1
[tan(ac:) + V3l

=1-—bc,and

if Qcor =

vl 3

3

ifOéC/ = —=

w

[TMc:| = ifae = 2n

[UCRN N}

br otherwise

We can now show that this family of operators satisfies
the requirements rdq, rd2, and rds.

Theorem 1 Given T = <bT, dT7 UT>, C = <bc, dc, UC>,
and W = Toa., C, then:

i. W= {bw, dw, uw) is an opinion;
i, ifC = (1,0,0), then W = T:
iii. ifC=/(0,0,1), then W = C;

iv. bW S bT.

In order to empirically examine the difference among
members of this family of operators, let us define the fol-
lowing three graphical discount operators. The first, o, con-

siders the widest range of avc possible, projecting C'in the
A
triangle DT'U. This operator is a “geometrical counterpart”
A
to the naive operator — projecting C'in DT'U could result in

an opinion with less uncertainty than 7. The second opera-
tor, oo, raises the uncertainty of the discount opinion project-
A
ing C'in the triangle RT'U. The third operator, o3, considers
A
the triangle ST'U, where S is the intersection of the line DU
with the bisector of the angle e (this point is not shown in
Fig. 1).

Definition 10 Given the two opinions T' = (br, dr, ur)
and C' = <bc, dc, uc>:

Qcer

— o1 1is Sagr with agcr = —/—— — B
3
. . ac(er — Br
— 0218 04, Withag = %;
€T§
L. ac 5 €T
— 0318 04, Withac = £2 + o — Br.
3

5.3 The Graphical Fusion Operator

In (Cerutti et al. 2013a) we introduced a fusion operator
which satisfies requirements rf; and rfz. Let us suppose we
have n opinions Wy, W, ..., W, derived using an operator
os.t.Vi € {1,...,n},W; = T; o C;. Intuitively, the fused
opinion I'(Wy, Wa, ..., W,,) should be the “balanced” cen-
troid of the polygon determined by the n opinions.

Definition 11 Given the opinions 73,75,...,7T,,
C1,Co,y...,Cp, W1, Wy, ... ,W,, such that Vi € {1...n},
W; = T; o C;, the opinion resulting from the fusion of opin-
ions Wy, Wy, ..., W, is

Ory(wi,...w)s dry (W, W,)s Uy (Wh .. W)

where:

This definition of 7 satisfies the requirements rf; and
rfa. Moreover, the following proposition shows that
I (Wy,...,W,) is an opinion, and its Cartesian represen-
tation is the balanced centroid of the polygon identified by
the points Wy, ..., W,,.

Proposition 3 Given the opinions T1,T5,...,T,, Ci,
Coyeo ,Cy, Wy, Wo, ... Wy s.t. Vi € {1...TL},W1' =T;o
Ci, and (br,(w,,...w,)s Ary(W,...W,)> UL (Wh,...,w,)) the
opinion resulting from the fusion of opinions Wy, Wy, ...,
W.,,, then:

i (bry(wy,...w,)s dry(Wy .. .W,)s Ury (W ..., W,)) IS an opin-

= Z?_ll Ki (Z Ki JJW1>

won
L Yy (Wy,..,W,) =

6 Experimental Evaluation

In Section 2 we discussed the desiderata for the discounting
and fusion operators. In Section 4, we used these to obtain
requirements rdy, rda, rdg, rfy, rfa, which our proposed
operators have been shown to fulfil.

In this section we focus on the design of an experiment
aimed at evaluating, from an empirical point of view, the
significance and usefulness of the desiderata and the require-
ments we identified for discounting and fusion operators. To
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this end, we consider an experiment where an explorer agent
has to explore a network in order to determine the trustwor-
thiness degree of other members: some of them are directly
connected to the explorer, while for others it has to discount
reputational information, which is provided in the form of
SL opinions. The evaluation is based upon the distance be-
tween the derived opinion and the ground truth, i.e. the prob-
ability that each agent operates in a trustworthy manner. This
likelihood is instantiated with the system, and is not known
by anyone else in the network. This is just one of the pos-
sible scenarios where the discounting and fusion operators
can be applied: other empirical evaluation is left as avenues
of future research.

The experimental setup follows the one described in (Cerutti

et al. 2013a). In this experiment each agent can communi-
cate with all the other agents in the network. In order to
randomly generate these networks, we consider a variable
PL € [0,1] representing the probability that an agent is
connected® to another agent (we exclude self-connections).
Note that we do not constrain connections to be bidirec-
tional’. In this experiment, we set PZL to lie between 0.05
and 0.25 with increments of 0.05. For each value of P, we
execute the procedure described in the following sections.

6.1 Trust System Construction

We build a set of 50 agents A = {a1,...,as0}: each agent
a, is characterised by a knowledge base KCBB,, and by the
probability of responding truthfully to another agent’s query,
namely Pl € [0...1]. For each agent a,, we randomly
choose P .

We also require that (2 = T) € KB,,. In other words,
all the agents share the same information ({2 = T) to be
read “a, knows that £21is T”.

For each agent a,, we determine if it can communicate
with a, # a, according to P%: if a, is connected to ay,
then we say that a,, is a connection of a,, (a, € Ny, ).

Following the construction of the system, the experiment
proceeds through two distinct phases, namely bootstrapping
and exploration.

6.2 Phase I: Bootstrapping

The bootstrapping phase is similar to that described in (Is-
mail and Jgsang 2002), where a beta distribution is used for

6 The term “connected” here can have different names in different
contexts, like “friend” in Facebook, or “follower” in Twitter.

7 Although this may seem counter-intuitive, it partially captures
real-world social media. For instance, Twitter messages are public,
therefore we do not know who will read our messages. The same ap-
plies with slight modifications to Google+, and, of course, to blogging
activities in general.

analysing repetitive experiments and deriving a SL opinion.
In this experiment, each agent a, asks # p times each of its
connections a, € IV, its opinion about {2. Each time, a,
provides a possible false answer, based only on the probabil-
ity Pg; (the communications are stateless): the two possible
answers of a,, are, of course, {2 = T and {2 =_1.

Agent a,, counts the number of exchanges where a,, an-
swered truthfully (#7) and when it lied (#_ ). Clearly, #5 =
#71 + #. . Using this evidence, a, can form an opinion on
a,’s trustworthiness

a _ #T #.1 2 >
“ #p+2 #p+2 #p+2
which should be close (according to the definition of dis-

tance given in Def. 12) to the “ideal” (“real”) opinion the
(omniscient) experimenter has on a,, viz.

an :<P</’LZ;7(1_P(,11;,)70>

Exp

Therefore, during the bootstrapping phase, each agent
ay € N,,, a, records its opinion of a, in its knowledge
base.

In the experiment described in (Cerutti et al. 2013a), # 5
varies between 25 and 250: however, as we noted in that pa-
per, this variation did not alter the results of the experiment.
Therefore, in this paper we collected data for ten different
values of # p varying it between 2 and 29 with a step size of
3.

6.3 Phase II: Exploration

After each agent has enriched its knowledge base with opin-
ions of the trustworthiness of its connections, an “explorer”
as € Ais randomly selected. The task of this explorer is to
determine the trustworthiness of each agent in the network.
The explorer, ag, acquires information about the network by
asking its connections “Who are your connections?”. Each
agent a, € N, answers this question according to Pg; ,
which means that their answers are: for each a, € N,
Connectionsay - Nay (clearly if PaTy = 1, then
Connections,, = Ng,).

Agent ag collects all the answers and creates a set of
tuples associating agents that the explorer does not directly
know, and all the agents that have revealed that they have
connections to that agent, viz.:

M = {<azv {aym .

n
and a, € m N%i}
i=1

Sy, 1) | Vie L. .n]ay, € Nog

Then, for each pair of M, (a.,{ay,,...,ay,}), such
that a, ¢ N, U{ag} (i.e. for each agent it is not directly
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connected to), as asks each a,, (i.e. those that are connected
to that agent) about Og=  (i.e. their opinion of that agent).
Agent a,, answers according to Pg; _ either Og= " or (br,
dgr, ugr) where (bg, dgr, ug) is a SL opinion computed
randomly such that (bgr, dgr, ug) # O“z Since ag cannot
determine whether the answer is true or not we abuse nota-
tion, by associating O“i with the answer ag received from
, to the question “What is your opinion about a,?”.
Subsequently, ag computes O;‘g‘ ;= = (052 ® 03z )
(04 @ O3z ) (viz. the fusion of the discounted opin-
ions on a of its connections using Jgsang’s operators), and,
for each operator defined in Def. 7 and Def. 10 (i.e. o €
{on,01,02,03}) O3z || = I((0a¥ 0 Of: )., (Oal" o
Og;n) (viz. the fusion of the discounted opinions on a, of
its connections using the naive operator, and the members of
the graphical operator family introduced in Def. 9 with the
fusion operator of Def. 11). Since we considered only one
fusion operator, viz. I}, we will write it without a subscript
to improve readability. Moreover, since we want to evaluate
the proposed operators and compare them to Jgsang’s ones,
each exploration has been performed with Jgsang’s opera-
tors and with only one of the proposed operators. We, there-
fore, explore the same network four times with Jgsang’s op-
erator. However, doing so guarantees that the evaluation of
each operator is independent from other evaluations.
Finally, each agent a, is added to the list of the connec-
tions of ag and the process starts again by setting M = ()
and querying each member of the connections until, in two
subsequent interactions, no further agents are added to ag’s
connections. This exploration process, therefore enables ag
to form a picture of those agents in the network, which are
not directly connected to ag, by the opinions of other agents.
Note that the results obtained through iteration j of the ex-
ploration phase serves to bootstrap iteration j + 1.

6.4 Computing the Distances.

For each agent a, € A\ {ag}, foreacho € {o,,01, 09,03},
we compute the distance between the two derived opinions
az Q. I3 ’ e a, .
Oas|] and Oas| , and the “ideal” opinion OF . For this
purpose, we consider two notions of distance, namely a ge-

ometrical distance, and a distance of expected values.

The geometric distance between two opinions (bo,, do,,
up,) and (bo,, do,, uo,) is the Euclidean distance be-
tween the two points in the O space.

Definition 12 Given two opinions O1 = (bo,, do,, uo,)

and Oy = (bo,, do,, uo,), the geometric distance between
07 and O3 is

dg(01,02) = \/(boz —0,)? + (do, = do,)* + (uo, — uo,)?

Another interesting distance measure is the difference
between the expected values of subjective logic opinions.

Let us recall that the expected value for a subjective logic
opinion (bx,dx, Uy, @) is by + Uy - a,. Given that we as-
sume a fixed base rate of %, the expected value simplifies to
b, + %=. Given the expected value of two opinions, we can
easily compute the distance between them.

Definition 13 Given two opinions O1 = (bo,, do,, uo,)
and O2 = (bo,, do,, uo,), the expected value distance
between O; and O; is

45(01,02) = | (bo, + “9) = (b0, + “52 )|

In other words, VYa, € A\ {as}, dg(O
(reps. dg (0%

as|J’
pected value distance) between the derived opinion using

Jpsang’s operators and the “ideal” one, and, Vo € {o,, o1,
09, o3}, dg(02= Fep) (TESP. dE(Ogslo, Frep)) is the

asl|o?
geometric dlstanc‘e (resp. expected value distance) between
the derived opinion using either the naive operators or the
operators of the family of graphical discount operators (Def.
9) and the “ideal” one (abbrev. d¢,, resp. d%;).
Finally, for each a, € A\ {ag}, Vo € {o,,01,09,03},
we compare the two computed distances obtaining the fol-
lowing scalar comparison values:

a az )
as|J’ Exp
Fp)) 18 the geometric distance (resp. ex-

dG(Oas |J° O%zwp)
rg(az) = log de (08

s |0 E‘zp)

and

1501, Ot
dE( as |o» O%‘zﬁp)

re(a.) = log

To strengthen the significance of the results, we mainly
concentrate on averages, and thus ag explores the network
|A|/2 = 25 times; we write rg(a.) (resp. rg(a,)) to denote
the average of the 25 computed logarithmic ratios using the
geometric distance (resp. expected value distance). More-
over rg(a,) = average, ca\{as)7(az) (resp. re(a;) =
average,_c A\{as}7(az)) is the average of the comparison
value over the whole set of agents using the geometric dis-
tance (resp. expected value distance).

7 Analysis of Experimental Results

To ensure that the outcomes are not biased by the random
generator, we run the same experiment ten times. Each run
follows the steps described in Sect. 6, and thus for each value
of P%, 10 networks have been randomly generated. More-
over, since each agent can lie, each generated network has
been explored 25 times. Therefore, for each run, for each
value of PL, 250 explorations over 10 different networks
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Fig. 2: Histograms of expected value distances dE(Og;‘J,
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) (a), and of the geometrical distances d(;(Ogglj, O%p)

(b). In red the fitting of the histogram with the gamma function (calculated with the Matlab function histfit).

have been carried on (i.e. 1250 explorations were consid-
ered in this experiment).

In Section 7.1 we make a qualitative analysis of the dis-
tributions of the distances computed using the two metrics
discussed in Definitions 12 and 13. Section 7.2 discusses the
results of the Wilcoxon signed-rank test on the measure of
distances. Finally, Sect. 7.3 provides a qualitative analysis
of the dynamics of the results varying the two parameters of
the experiment, namely the probability of connections P
and the bootstrap time # .

7.1 Distributions of Distances

We first analysed the distribution of the distances between
the ground truth and when using Jgsang’s operators (Figures
2a and 2b respectively); o1 and I (Figures 3a and 3b); oq
and I (Figures 3c and 3d), o3 and I (Figures 3e and 3f);
o, and I} (Figures 3g and 3h).

Visual inspection of Figures 2a, 3a, 3c, 3e, 3g indicates
that the distances computed using the expected value dis-
tance (Definition 13) can be approximated (qualitatively®)
using a gamma function, regardless of the choice of the op-
erator.

This result looks reasonable with respect to the opinions
computed using Jgsang’s operators (Fig. 2a) due to the fact
that the experiment considered the beta reputation system
(Ismail and Jgsang 2002) and due to the statistical properties
of Jgsang’s operators (Jgsang et al. 2006). It is, however,
interesting to note that the use of o and I, or op and I}, or
og and I, or o, and I, all result in similar graphs.

More interesting is the fact that, considering the graph-
ical distance (Figures 2b, 3b, 3d, 3f, 3h) we can conclude
that (qualitatively) Jgsang’s operators (and similarly oz with
1) are computing opinions whose geometric distance from
the ground truth is not distributed using a gamma function

8 Figures 2a, 2b, 3a, 3b, 3¢, 3d, 3e, 3f, 3g, 3h, are obtained using the
Matlab function histfit.

(Figures 2b and 3f). On the other hand, using either o; with
I (Fig. 3b), or o5 with Iy (Fig. 3d), or o,, with I'; (Fig. 3h)
returns opinions whose geometric distance from the ground
truth has a interesting and regular shape, which is similar
to a gamma function or a Lognormal distribution. A com-
prehensive study of this is beyond the scope of the present
paper and is left for future work.

7.2 Analysis Using the Wilcoxon Test

Since the Kolmogorov—Smirnov tests reported that the dis-
tribution of the differences between each pair of distance
(dB(0g; o> OFap), 4057 1> OFnyp)) (resp.
(da(0gz o O%p)s dc (052 o O%.,))) are significantly dif-
ferent from a normal distributions (p < 0.001), we analysed
them using the Wilcoxon Signed-Rank Test (WSRT).

This test allows us to conclude whether or not the me-
dian of the differences of such pairs of distances is statis-
tically equal to 0. Moreover, looking at the median of the
distribution of each distance, we can also verify the signif-
icance of the direction of the difference. In other words, if
the distribution of d (052 o Fp) has median equal to a
and the median of the distribution of d(Ogz 5L Fep) 18 0,
we can verify the hypothesis that the difference is signifi-
cantly positive (if a > b) or negative (if a < b). Therefore,
if the difference is significant, this test shows that one dis-
tance from the ground truth is significantly higher than the
other. Furthermore, WSRT calculates the sum of the ranks of
the pairwise positive differences s and negative differences
s~ . This can be used to indicate the size of this difference:
we consider the following simple formula for determining
this size, which turns to be our measure of increment of per-
formance, namely (st —s7)/(sT™ +s7).

For improving the readability of the results, we grouped
the results of the WSRT test according to the type of dis-
tance used. Table 2 shows the results of the WSRT consid-
ering measure computed using the expected value distance
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o = o, (g) (resp. (h)). In red the fitting of the histogram with the gamma function (calculated with the Matlab function

histfit).



Preprint version. Official version may differ.

12 Federico Cerutti et al.
Operator | Md* dE(oz;‘O,o‘]g;p) Md* dE(ogg‘J,an;p) 57 (x1019) | st (x1019) z Incr. Performance’
01 0.141 0.144 4.11 4.53 —27.457% ~ +5%
o 0.156 0.155 4.40 3.95 —29.586% ~ —5%
02 0.143 0.142 4.58 3.89 —45.559% ~ —8%
o3 0.163 0.145 5.12 3.51 —104.098% ~—19%
* Median; t computed as (st —s7)/(st +57); p < 0.001.

Table 2: Wilcoxon signed-rank significance tests of distances derived using the expected value distance dg (-, -). In grey are
the cases where the proposed operator o € {07, 09, 03, 0,, } did not outperform Jgsang’s operators. Results are ordered by the
increment of performance in descending order (i.e. the first row is the best one).

Operator | Md* dg(0g% o O%Zw) Md* dg (0% L OaEip) 57 (x1019) | st (x1019) z Incr. Performance’
o1 0.415 0.585 1.91 6.70 —310.462% ~ +56%
on 0.454 0.608 1.93 6.42 —297.432% ~ +54%
092 0.457 0.584 2.31 6.08 —248.968% ~ +45%
o3 0.607 0.593 4.92 3.72 —177.760% ~ —14%
* Median; T computed as (st —s7)/(st +57); p < 0.001.

Table 3: Wilcoxon signed-rank significance tests of distances derived using the geometric distance d¢ (-, ). In grey are the
cases where the proposed operator o € {07, 09, 03,0, } did not outperform Jgsang’s operators. Results are ordered by the
increment of performance in descending order (i.e. the first row is the best one).

dg(-,-), while Table 3 shows the results of the WSRT con-
sidering measure computed using the geometrical distance

da(-,-).

From Tables 2 and 3 we can conclude that, regardless the
choice of the operator and the type of measure used, the dif-
ference between the opinions determined with the proposed
operators and the Jgsang’s is significantly (p < 0.001).

Concerning the expected value distances, from Table 2
we can see that the WSRT highlights that in the case that
oy with I is used, the derived opinion is significantly (=
+5%) closer to the ground truth than the opinion computed
using Jgsang’s operators. This is not true according to the
other choices of operators, which return opinions whose dis-
tance from the ground truth is greater (between 5% and 19%)
than Jgsang’s operator.

However, if we consider the graphical distances, from
Table 3 we can see that (in order) oq, o,, and oo, each of
which with I, outperform Jgsang’s operators. Comparing
these increments of performance, we can also see that the
opinions derived using these operators are much closer to
the ground truth (between ~ +56% and ~ +45%) than
Jgsang’s operators.

7.3 Results w.r.t. Experiment Parameters

Considering the dynamics of the results, Figure 4 depicts the
mean and the standard deviation® of rg(a.) and rg(a,) for
each set of operators used — viz. oy and I}, oo and 17, og
and I, o, and I — w.r.t. the two variables considered,
namely the probability of connections P” (Figures 4a and
4b), and the bootstrap time # p (Figures 4c and 4d).

Considering the distances computed using the expected
value distance measure, from Figure 4a we can infer that on
average J@gsang’s operators are performing better for small
values of probability of connections PZ, and the greater the
PZL| the better are the performance of operators o1, o, and
oy (each of which with ). A visual inspection of Figure 4c,
however, does not highlight any specific pattern or regular-
ity in the dynamics of the system varying #p (considering
expected value distance).

On the other hand, if we consider the results derived us-
ing the geometric distance, Fig. 4b qualitatively shows that
the greater the probability of connections P, the more sim-
ilar the operators we propose in this paper are to Jgsang’s.
In fact, the more connected the network, the more the boot-
strapping phase is important, and this is independent of the

9 In Sects. 7.1 and 7.2 we show that the distances are not normally
distributed and thus from a statistical point of view medians rather than
means should be considered. Here, however, we are more interested in
the qualitative dynamics of values obtained by varying the parameters
of the experiment, and thus we rely on graphical representation of mean
and standard deviation.
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Fig. 4: Mean and Standard Deviation of the scalar comparison values using distances of expected values rg(a.) (resp. using

graphical distances r¢(a)) w.r.t. P¥ (a) (resp. (b)), and w.r.t. #5 (c) (resp. (d)). The scale is logarithmic.

choice of operators. However, when we are considering the
dynamics of the bootstrapping phase (Fig. 4d), we conclude
that the smaller the uncertainty (i.e. the greater the number
of interactions among the agents during the bootstrapping
phase), the better the proposed operators perform. It is worth
to notice that for # 5 = 2, which leads to a high uncertain
opinions, oy and I, o and I}, o3 and I} perform similarly
to Jgsang’s operators, while choosing o,, and I} leads to a
significantly better result. We will investigate this interesting
results in future work.

7.4 Summary

To summarise our empirical evaluation, we observe that:

1. the operators oy, o9, 03, 0, (in conjunction to I7), sim-
ilarly to J@sang’s operators, return opinions whose ex-
pected value distance distribution from the ground truth
is close to a gamma function (Figures 2a, 3a, 3c, 3g);

2. the operators o1, o9, o, (in conjunction with I7), dif-
fer from Jgsang’s operators and o with 7, and return
opinions whose geometric distance distribution from the
ground truth shows some qualitative regularity resem-
bling a gamma function or a Lognormal distribution (Fig-
ures 2b, 3b, 3d, 3h);

3. the operator oy with I} outperforms J@gsang’s operators
in a statistically significant manner, both considering the
expected value distance (=~ +5%) and the geometrical
distance (= +56%);

4. the rank of operators (each of which used in conjunction
with ') w.r.t. their performance is independent from the
choice of expected value distance, or geometrical dis-
tance, and is as follows: oy > o, > 09 > 03;

5. the less the probability of connections, the more o €
{01, 09, 03, 0, } returns opinions closer (according to the
graphical distance) to the ground truth than J@sang’s op-
erators;



Preprint version. Official version may differ.

14

Federico Cerutti et al.

6. the less the uncertainty (i.e. the more the bootstrap time),
the more o € {oj,09,03,0,} returns opinions closer
(according to the graphical distance) to the ground truth
than Jgsang’s operators.

8 Conclusions and Future Works

The discount and the fusion operators play an important role
in standard Subjective Logic, and form the core of the beta
reputation system. In fact, they are used to combine and dis-
count reputation information from multiple agents within a
trust network.

In this paper, following our earlier work (Cerutti et al.
2013a,b), we introduced a set of intuitive desiderata that op-
erators for discounting and fusion of opinions should pro-
vide. From these, we derived a set of requirements and a
family of operators, and proved that these satisfy the desider-
ata, while Jgsang’s operators do not. We empirically evalu-
ated'® the derived operators in a trust scenario and the results
shown in Section 7 suggest that:

— one operator taken from the family satisfying the desider-
ata always outperforms J@sang’s operators;

— according to the geometrical distance among opinions,
most of the operators satisfying the desiderata outper-
form Jgsang’s operators;

— there are relationships between the structure of the trust
network and the achieved increments of performance.

In particular, the Wilcoxon signed-rank significance test
discussed in Section 7.2, shows that the discounting opera-
tor (o1), used in conjunction with the fusion operator 17, re-
turns opinions closer to the ground truth than J@sang’s oper-
ators of 5% considering the expected value distance, and of
56% considering the graphical distance. Therefore, it seems
that allowing a reduction of the amount of uncertainty in
discounting opinion results on an increment of the perfor-
mance not only geometrically, but also when the expected
values are considered.

An empirical evaluation of the graphical operators on
real cases, e.g. (Guha et al. 2004), is already envisaged as
the main future work. For example, in a situation where sev-
eral sensors monitor the same phephenomenum (i.e. differ-
ent intrusion detection systems on the same network), the
experiment described in Section 6 can be adapted for as-
sessing the probability of false negatives according to the
trustworthiness of each system. The result would be a port-
folio of sensors (i.e. a “super” intrusion detection system)
able to automatically leverage the strength of each member
of the portfolio.

As a side effect, this will provide useful insights about
our assumptions regarding the probability of an agent to

10 The code used for this experiment is available at https://
sourceforge.net/projects/slef/.

“lie” — or, in this case, to provide a false positive/negative
results. In this paper we assumed a uniform distribution, but
as part of future work we want to investigate the effects
of adopting different distributions. In addition, we want to
develop graphical operators analogous to other Subjective
Logic operators, and we intend to study these, as well as
investigate their properties.
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A The Geometry of Subjective Logic

A SL opinion O £ (bo, do, up) is a point in the R3 space, identi-
fied by the coordinate bo for the first axis, dp for the second axis, and
uo for the third axis. However, due to the requirement that bo + do +
uo = 1, an opinion is a point inside (or at least on the edges of) the tri-

A
angle BDU shown in Fig. 5, where B = (1,0,0), D = (0,1,0),U =
(0,0,1).

B

Fig. 5: The Subjective Logic plane region.

N
Definition 14 The Subjective Logic plane region BDU is the trian-
gle whose vertices are the points B £ (1,0,0), D £ (0,1,0), and
U £ (0,0,1) on aR3 space where the axes are respectively the one of
belief, disbelief, and uncertainty predicted by SL.

A
Since an opinion is a point inside triangle BDU, it can be mapped
to a point in Fig. 6. This representation is similar to the one used in
(Jgsang 2001) for representing opinions in SL, but here the belief and
disbelief axes are swapped.
In order to keep the discussion consistent with Jgsang’s work (Jgsang

A
2001), in what follows we will scale triangle BDU by a factor 1 : %
thus obtaining that |Bo B| = |DoD| = |UgU| = 1.

/B

Fig. 6: An opinion O £ (bo, do, uo) in SL after the 1 : Lg
scale. The belief axis is the line from By (its origin) toward
the B vertex, the disbelief axis is the line from D toward
the D vertex, and the uncertainty axis is the line from U
toward the U vertex.

These geometric relations lie at the heart of the Cartesian transfor-
mation operator, which is the subject of the next subsection.

A.1 The Cartesian Representation of Opinions

As shown in A, an opinion in SL can be represented as a point in a
planar figure (Fig. 6) laying on a Cartesian plane. In this section we
will introduce the Cartesian transformation operator, which returns the
Cartesian coordinate of an opinion.

First of all, let us define the axes of the Cartesian system we will
adopt.

A
Definition 15 Given the SL plane region BDU, the associated Carte-

sian system is composed by two axes, named respectively z,y, where
the unit vector of the = axis ez = ‘Bfl-D*lBD, the unit vector of the y
axis e, = ey, and B is the origin.

Figure 7 depicts this Cartesian system.

Yo Neo

B R D "

Fig. 7: An opinion and its representation in the Cartesian
system.

The correspondence between the three values of an opinion and the
corresponding coordinate in the Cartesian system we defined is shown
in the following proposition.

Proposition 4 (Cerutti et al. 2013b, Prop. 1) Given a SL plane region
N

BDU and its associated Cartesian system (zx, ), an opinion O £ (bo,
do, uop) is identified by the coordinate (xo,yo) s.t.:
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s do +uo cos(F)
-y T
sin(%)
A
- Yo = uo

Proof Proving that yo = ug is trivial.
Let us focus on the first part of the proposmon Consider Flgure 7.
Given O, we note that the for the point P, 7PO = ¢ (e PO is

parallel to the disbelief axis) and ﬁ BP = W BU (i.e. Pis onthe

line BP) and therefore Z/gpo = Z. Then we must determine @ and
Rst. QR = PO and yr = 0. By constructlon \PO| |QR\ =do,
|BR| + |RS| where

ZQrB = 6, Zorp = 3. and xo £ |BS| =
\BR| and |RS|

o ( o 3 cos( ).
There are some notable elements of Fig. 7 that we will repeatedly
use below, and we therefore define them as follows:

— the angle oo determined by the x axis and the vector B_O);

A
— the three angles (v0,d0, and €p) of the triangle ODU, namely
the triangle determined by linking the point O with the vertex D
and U through straight lines.

A
Definition 16 Given the SL plane region BDU, given O = (b, do,
do +up cos(Z
uo) whose coordinates are (z0,yo) where zo 2 %W)(?’)
sin(Z
3

and yo £ uo, let us define and (via trivial trigonometric relations)
compute the following.

A
- ao =ZoBp =
0

ifbp =1
sin(Z .
arctan <uo—(3)ﬂ> otherwise ’
do +uo cos(%)
- Boﬂé ZopB =
3 ifdop =1
uo sin(g) .
arctan = otherwise
1= (do +wuo cos(%))
s
- o £ Zopu = g—ﬁo;
- dp 2 Zoup =
0 ifup =1
b .
arcsin (jo) otherwise ’
|oU|

A
- €0 =Z4<povu =7—"0 —60;

where |OU| = 1 1+do —up)? +b%.
3

The angle oo is called the direction of O.
Equivalently, we can write BO or (B, ao, |BO\>

Finally, as an element of SL is bounded to have its three compo-
nents between 0 and 1, we are also interested in determining the point
Mo such that the vector BM has the maximum magnitude given (a)
the direction a.p of an opinion O, and (b) M is a SL opinion. In other
words, determmmg the magnitude of BMo will allow us to re-define
the vector BO as a fraction of BMop.

Definition 17 Given the SL plane region BI%U ,and O £ (bo, do,
uo) wWhose coordinates are (zo, yo) where zo 4 dO—H,JO—COS(?’)
sin(%)
uo sin(g)
do +uo COS(%))
let us define Mp £ (x Mo »YMg) as the intersection of the straight
line passing for O and B, and the straight line passing for U and D,
and thus define the following.
-y N 2—yo + tan(ao) zo
© tan(ao) + V3
- ymgp = —V3an, +2.

and Yo e U, and [e76) 4 ZOBD = arctan (

B Proofs

Proposition 1 Given the two opinions T = (bp, dr, ur) and C =
(b, dc, uc), and W =T o, C, the naive-discount of C by T, then:

i. WeO;

#. if C = (1,0,0), then W = T, i.e. requirement rd1;
it if C =(0,0,1), then W = C, i.e. requirement rda;
iw. by < br, i.e. requirement rdg.

Proof

i. Letusprovethat ) < by < 1,0 <dw < 1,0 <uwy < 1.
To prove that by > 0, dy > 0, and uyy > 0 is trivial since C
and T are opinions.
bw = bc - by < 1is immediate since C' and T are opinions.
dw = b-dr+dc < 1canbe rewritten as dr < 1+Z—2 if bo # 0,
or do < 1 otherwise. Both in-equations are verified since C' and
T are opinions.
uw = b-ur+uc < 1canberewritten as dp < 1+i—g ifbc # 0,
or uc < 1 otherwise. Both in-equations are verified since C' and
T are opinions.
Finally, bW + dW + uw = bc (bT + dT + uT) + dc —+ uc = 1
4. Given C = (1,0,0), W = T oy, C'is such that:
- bw =b¢c - by = br;
- dw =bc -dr +dc = dr;
- uw = bo - ur +uc = urp.
#ii. Given C = (0,0,1), W = T o,, C is such that:
- bW:bc-bTZOZbc;
- dw =bc -dr+dc =dc;
- uw =bo - ur +uc = uc.
. By contradiction, byy = bo - by > by leads to bo > 1, which is
impossible. O

Proposition 2 Given an opinion T = (br, dr, ur), and its Cartesian
representation, the four-sided figure PQDU represents Qr, where:

- P2 (by,0,1 —by); and

- Q= (bp,1—bp,0).
Proof By Definition 8, Op = {X € O|bx < br}. From Prop. 4,

bx <br

yx > V3zx +2(1 - by)
ux >1—dx —br

Therefore:
- ifdx =0,ux >1— by (limit case {(by,0,1 — br);
- ifuyxy =0,dx > 1 — by (limit case (by,1 — bp,0) = Q). 0

Theorem 1 Given T = <bT, dT, uT>, C = <bc, dc, UC>, and
W=T Sag C, then:

i. W= {bw, dw, uw) is an opinion;
ii. ifC = (1,0,0), then W = T;
iii. ifC =(0,0,1), then W = C;

. by < br.

Proof Proving the thesis in the limit case is trivial. In the following we
will assume, without loss of generality, that acr # 5, agr # —

Qo ;é %7‘(‘

™
§s

(i.) W = (bw, dw, upy ) must respect

uw +dw <1 )]
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From Def. 9 it is clear that Equation 1 can be rewritten as follows. .. <
. Tp (Wy,...,.Wy) — Z Z
i=1 i=1
ur +dr+ -
5 @ 0l yYry(Wy,...,Wy) = <Z >
24/t 1 i=1 -1
%C%C)\;% by (sin(aer) + V3 cos(aer)) < 1
|tan(acr) + V3| Proof
. . _ sin(agr) .
¥n turn, using the relation tan(acs) = Wag) this can be . (z‘.).Tp prove that <bF1(W1W,Wn)’ dr (wh. Wo)s UFI(W“NW”)>
rewritten as is an opinion, we have to show that up, (w, ..., w,.) +dr, (w,,....wn) <
1 holds.
1 n
up +dp +robr <1 UP (W, W) T A0 Wy, W) = W > Kiluw, +dw,)
i=1 %\
which entails the requirement that ro < 17“1;‘”77@ = 2—; = 1. How-

ever, from definition 9, we know that ro < 1, fulfilling this require-
ment.

(ii.) C = (1,0, 0) implies that |B_C>| = 0 and thus r& = 0. There-
fore, from Def. 9, uyy = ur + sin(ag/)re|TMc:| = ur and this
results also implies that dy = dp. Since Point 1 shows that W is an
opinion in SL, we conclude that W = T.

(iii.) C =
and thus oy = ep — By = ep — ﬁT = %w — 0. Therefore, we
obtain that uyy = ur + bTT(l + tan(6 )) From Definition 16 and

the trigonometric property that tan(arcsin(v)) = ﬂ we obtain

that uyy = ur + Z%T + g £/ |T(7\2 — b2.. From Definition 16 we can

write:

(0,0, 1) implies rc =

uw = ur +7+£1+dT7_uT
V3 3)

1
:5(1+bT+dT+UT):1

Similarly, dy = dp + %L — 1 + \gﬁbT:dT-f—uTT—
1+ ¥B|TTU|. From Def. 16 we have
ur 1 3 \/g 1+dT —ur
dy =dr + + by — ~bp———
4 4 V3br @)

1
:1(4dT+2uT—2+3bT—1+uT—dT):0

From Equations 3 and 4, together with Point 1, it follows that W =
(0,0,1) =C.

(iv.) Suppose instead by > bp.

1—dw —uw >1—dpr —ur
dw +uw <dr +ur

dr + sin(acr + =) e

_ d
37 sin(acr —Q—%) tur <drtur

re <0

but 0 < ro < 1. Quod est absurdum. O
Proposition 3 Given the opinions T, To,..., Ty, C1,
Co,...,Cp, W1, Wo, ..., Wy s.t.Vi € {177,},W1 =T, 0C;, and
Oy (W, ;Wi )s A0 (W, ;Wi )s Uy (W ,..., Wy )) the opinion result-
ing from the fusion of opinions Wi, Wa, ...,

W, then:

Lbry (W, W) A1 (W, W)y UE (W .., W) ES an Opinion

ZZ"L <ZK(1—bW )

i=1

=1- (Z K; bw, )
(ii.) From Prop. 4,

dr, 1 (Wi, Wn)

Ty (Wi,...,Wn)

T ez )ZM <Z:K“W>
- e (ZK (o, + 7))

Z:KZ 5 )>+

“2sin(% )sz (ZIK“

>>
s (S ) (55)
s ()

Thus we obtain:

. i
dr,(wy,...\W,) = Sm(g) (Sm( (

i=1

Since n <ZK bw> > 0, then wp (w,,.. w,) +
’L 1
dry(wi,..,wn) <1 holds
(i4i.) Immediate from Prop. 4. 0
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