
Enabling User-Driven Rule Management in Event Data
Analysis

Author:
Chen, Weisi

Publication Date:
2015

DOI:
https://doi.org/10.26190/unsworks/18231

License:
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
Link to license to see what you are allowed to do with this resource.

Downloaded from http://hdl.handle.net/1959.4/54539 in https://
unsworks.unsw.edu.au on 2024-04-19

http://dx.doi.org/https://doi.org/10.26190/unsworks/18231
https://creativecommons.org/licenses/by-nc-nd/3.0/au/
http://hdl.handle.net/1959.4/54539
https://unsworks.unsw.edu.au
https://unsworks.unsw.edu.au

Enabling User-Driven Rule Management

in Event Data Analysis

Weisi Chen

A thesis in fulfilment of the requirements for the degree of

Doctor of Philosophy

School of Computer Science and Engineering

Faculty of Engineering

January 2015

iii

Contents

ABSTRACT ... VII

ACKNOWLEDGMENTS .. VIII

LIST OF PUBLICATIONS ... IX

LIST OF FIGURES .. X

LIST OF TABLES .. XII

LIST OF ABBREVIATIONS ... XIII

CHAPTER 1 INTRODUCTION ... 1

1.1 THE DATA DELUGE PROBLEM .. 1

1.2 INTRODUCTION TO EVENT DATA ANALYSIS ... 3

1.3 RESEARCH PROBLEM .. 4

1.4 THESIS OBJECTIVES .. 4

1.5 THESIS OUTLINE .. 5

CHAPTER 2 LITERATURE REVIEW .. 7

2.1 EVENT DATA ANALYSIS ... 7

2.1.1 Data Analysis in General ... 7

2.1.2 Characteristics of Event Data .. 8

2.1.3 Event Data Analysis ... 9

2.1.4 An Example of Rule Management in Event Data Analysis 10

2.2 GENERIC APPROACHES FOR EVENT DATA ANALYSIS ... 12

2.2.1 Data Pre-Processing Tools ... 13

2.2.2 Database Management Systems (DBMSs) .. 14

2.2.3 Statistical Data Analysis Tools ... 15

2.2.3.1 R Programming Language ... 15

2.2.3.2 Statistical Analysis System (SAS) ... 16

2.2.3.3 Stata .. 16

2.2.3.4 Statistical Package for the Social Sciences (SPSS) ... 17

2.2.4 Discussion .. 18

2.3 EVENT PROCESSING SYSTEMS (EPSS) .. 18

2.3.1 Basic Concepts .. 18

iv

2.3.2 Overview of Event Processing Systems (EPSs) .. 19

2.3.3 Query-Based EPS ... 22

2.3.4 General Purpose EPS ... 23

2.3.5 Rule-Oriented EPS ... 24

2.3.5.1 Production Rules ... 24

2.3.5.2 ECA Rules ... 25

2.3.6 Discussion .. 26

2.4 ROLE OF RULE-BASED SYSTEMS IN EVENT DATA ANALYSIS.. 26

2.4.1 Conventional Rule-Based Systems .. 26

2.4.2 Ripple-Down Rules (RDR) .. 28

2.4.3 Using Rule-Based Systems for Managing Event Data Analysis 30

2.5 CONCLUSION .. 32

CHAPTER 3 RESEARCH PLAN .. 33

3.1 PROBLEM STATEMENT .. 33

3.2 RESEARCH APPROACH .. 34

3.3 RESEARCH METHODOLOGY ... 35

3.4 CONCLUSION .. 37

CHAPTER 4 PROPOSED ARCHITECTURE .. 38

4.1 OVERVIEW.. 38

4.2 THE RDR COMPONENT .. 40

4.2.1 Selection of RDR Algorithms and Inference Techniques..................................... 41

4.2.1.1 Algorithm Selection ... 41

4.2.1.2 Selected Inference Technique ... 43

4.2.2 RDR Rule Builder Sub-Component .. 44

4.2.3 RDR Engine Sub-Component ... 46

4.3 THE EPDAAS COMPONENT ... 46

4.4 UNDERLYING EPS .. 47

4.5 DATA LAYER ... 48

4.5.1 Event Pattern Definition Table .. 48

4.5.2 Event Processing Rule Base ... 49

4.5.3 Event Pattern Occurrences Stack Repository ... 50

4.5.4 List of Actions Repository .. 50

4.6 USER LAYER .. 51

v

4.7 SEQUENCE DIAGRAMS .. 51

4.7.1 Rule Addition ... 51

4.7.2 Rule Execution ... 53

4.8 CONCLUSION .. 54

CHAPTER 5 PROPOSED EVENT DATA MODELLING FRAMEWORK 56

5.1 MOTIVATION AND APPROACH ... 56

5.2 BASIC ASSUMPTIONS .. 57

5.3 EVENT DATA META-MODEL .. 59

5.3.1 Overview ... 59

5.3.2 Event Type ... 60

5.3.3 Atomic Data Type and Functor Type ... 61

5.3.4 P-DAG Type ... 62

5.3.5 Event Pattern Type and Event Pattern Occurrence .. 63

5.4 OPERATIONAL GUIDELINES .. 63

5.5 EXAMPLE: BUILDING A DATA MODEL FOR SIRCA TRTH DATA ... 65

5.5.1 Identification of Event Types .. 65

5.5.2 Identification of Event Pattern Types ... 66

5.5.3 Defining Data Model Elements ... 68

5.6 CONCLUSION .. 71

CHAPTER 6 PROTOTYPE IMPLEMENTATION ... 73

6.1 OVERVIEW OF THE PROTOTYPE IMPLEMENTATION .. 73

6.2 BUSINESS LAYER IMPLEMENTATION .. 75

6.2.1 RDR Component .. 75

6.2.2 EPDaaS Component .. 75

6.3 DATA LAYER IMPLEMENTATION .. 76

6.3.1 Event Pattern Definition Table .. 76

6.3.2 Event Processing Rule Base ... 77

6.3.3 Event Pattern Occurrences Stack & List of Actions Repositories 79

6.4 USER LAYER IMPLEMENTATION .. 80

6.5 LIMITATIONS ... 81

6.6 CONCLUSION .. 82

vi

CHAPTER 7 EVALUATION AND CASE STUDY: FINANCIAL MARKET DATA PRE-PROCESSING

 ... 83

7.1 EVALUATION CRITERIA AND METRICS .. 83

7.1.1 Review of Research Questions and Defining Evaluation Criteria 83

7.1.2 Evaluation Metrics .. 84

7.1.3 Summary ... 86

7.2 CASE STUDY BACKGROUND ... 86

7.2.1 Overview of Financial Market Data Pre-Processing .. 86

7.2.2 Scenario 1: Eliminating Duplicate Dividends... 89

7.2.3 Scenario 2: Calculating Earnings ... 92

7.2.4 Conventional Tools Used in Financial Market Data Pre-Processing 95

7.3 EVALUATING FEASIBILITY, INTEROPERABILITY AND EVENT PROCESSING CAPABILITY 95

7.3.1 Feasibility and Interoperability ... 95

7.3.2 Complex Event Processing Capability ... 98

7.4 EVALUATING USER-DRIVEN RULE SET EVOLUTION CAPABILITY .. 99

7.4.1 Scenario 1 - Eliminating Duplicate Dividends ... 99

7.4.2 Scenario 2 - Calculating Earnings .. 102

7.5 DISCUSSION .. 106

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 108

8.1 THESIS SUMMARY .. 108

8.2 ADDRESSING THE RESEARCH QUESTIONS ... 110

8.3 THESIS CONTRIBUTIONS .. 111

8.4 THESIS LIMITATIONS ... 112

8.5 FUTURE WORK .. 113

8.5.1 Short-Term Future Work ... 113

8.5.2 Long-Term Future Directions .. 113

REFERENCES .. 115

APPENDIX A: ADDITIONAL INFORMATION FOR EDMF .. 126

APPENDIX B: ADDITIONAL RESULTS FOR CASE STUDY ... 135

vii

Abstract

Increasingly in the information age, overwhelming quantities of available data has brought

about opportunities as well as difficulties. Data analysis is of considerable importance to finding

interesting patterns, discovering useful information and making decisions accordingly. Event

data has unique characteristics including temporal dependencies, high flow rate and huge

volume, which makes it more difficult to analyse than other data types. Unlike data analysts

working in large companies that have IT staff and expensive software infrastructure, those

working in the research sector find it more difficult to efficiently manage event data analysis by

themselves. User-driven rule management is a particular challenge especially when analysis

rules increase in size and complexity over time. This thesis addresses these problems by

proposing a new architecture called EP-RDR aimed at enabling data analysts, with no IT

experience, to manage their event data analysis.

EP-RDR enables complex event processing and facilitates user-driven rule set evolution

according to changing requirements. The architecture leverages event processing system (EPS)

technology with a rule-based method called Ripple-Down Rules (RDR). EP-RDR has two main

components: an RDR component playing the role of managing the event processing logic and of

supporting incremental rule insertion that enables data analysts to define and add rules by

themselves, and an EPDaaS (Event Pattern Detection as a Service) component that can invoke

any EPS so that data analysts are able to conduct event processing without concern about which

EPS to use. To facilitate the interoperability between components in EP-RDR, this thesis also

proposes an Event Data Modelling Framework (EDMF) to assist in building data models for

any application of EP-RDR. EDMF consists of an Event Data Meta-Model and its associated

Operational Guidelines. Any data model built based on EDMF allows event pattern types to be

defined, abstracting existing event and event pattern occurrence representation formats in a

consistent manner. Finally, to evaluate the proposed new method, a prototype has been

implemented and applied on real-life scenarios involving financial market data pre-processing.

This case study shows that the proposed method effectively satisfies requirements of event data

analysis, namely feasibility and interoperability, the capability of complex event processing, and

the capability of user-driven rule set evolution.

viii

Acknowledgments

First and foremost, I would like to express my sincere gratitude to the service-computing

research group at the School of Computer Science and Engineering in University of New South

Wales, especially my supervisor Prof. Fethi Rabhi who has continuously given judicious advice

and timely guidance during the last four years, and has been encouraging me to keep the

research work on track and make progress as expected.

I would also like to thank my co-supervisor Prof. Paul Compton for his expertise and

valuable advice on the RDR approach, and Zoran Milosevic and Andrew Berry for their

expertise on complex event processing and for allowing me access to a commercial event

processing system called EventSwarm. I wish to acknowledge with gratitude Dr. Lawrence Yao

for his kind guidance when dealing with technical issues and for answering some of my

research-related questions, and Prof. Boualem Benatallah for his valuable suggestions.

Furthermore, I would like to thank the Smart Services Cooperative Research Centre in

Australia for sponsoring this research project and Sirca for providing the financial market data

used in the case study.

Last but not least, I would also like to thank my family for their continuous support and

encouragement throughout these years of PhD study.

ix

List of Publications

Below is a list of publications related to this thesis.

Published Papers:

1. CHEN, W. & RABHI, F. A. 2014. Validating an Incremental Rule Management

Approach for Financial Market Data Pre-Processing. In Proceedings of Workshop on

Enterprise Applications, Markets and Services in the Finance Industry (FinanceCom

2014).

2. CHEN, W. & RABHI, F. A. 2013. An RDR-Based Approach for Event Data Analysis.

In Proceedings of 3
rd

 Australasian Symposium on Services Research and Innovation

(ASSRI’13).

3. CHEN, W. 2013. E-Research Event Data Quality. In Proceedings of Workshop in 29th

IEEE International Conference on Data Engineering (ICDE’13).

4. CHEN, W. & RABHI, F. A. 2011. Incrementally Defining Analysis Processes Using

Services and Business Processes. In Proceedings of 13th International Conference on

Enterprise Information Systems (ICEIS’11). Beijing, China.

Special Reports:

1. RABHI, F. A., CHEN, W. & QUDAH, I.A. 2014. Evaluation of Event Study

Workbench for Large Scale Event Studies. New Financial Services Report – Smart

Services CRC.

2. RABHI, F. A., LATTAB, K., LANGE, B. & CHEN, W. 2011. The News Processing

Portal An SOA for News Search. Service Delivery and Aggregation Project Progress

Report – Smart Services CRC.

3. RABHI, F. A., SIMMONDS, D., PEAT, M., ZHAI, J., CHEN, W. & TEO, D., 2011.

Event Study Workbench (ESW). Final Report – Smart Services CRC.

x

List of Figures

Figure 1.1 Interrelated concepts regarding data deluge introduced in Section 1.1. 2

Figure 2.1 Evolution of an event data analysis process. .. 10

Figure 2.2 An event data analysis process using an EPS. .. 19

Figure 2.3 EventSwarm architecture. ... 24

Figure 2.4 Forward-chaining in production rule systems. ... 27

Figure 2.5 The architecture of an RDR application on duplicate invoice detection. 29

Figure 3.1. Research methodology. .. 35

Figure 3.2 Weights of each deliverable throughout the research. .. 36

Figure 4.1 Proposed EP-RDR architecture. ... 40

Figure 4.2 SCRDR example pattern [101]. .. 41

Figure 4.3 Flat RDR example pattern [101]. .. 42

Figure 4.4 MCRDR example pattern [101]. ... 43

Figure 4.5 The algorithm of rule addition. ... 45

Figure 4.6 The WADL specification of the EPDaaS interface. ... 47

Figure 4.7 Rule set evolution. .. 51

Figure 4.8 Rule Addition sequence diagram. ... 52

Figure 4.9 Rule Execution sequence diagram. ... 54

Figure 5.1 The proposed Event Data Modelling Framework (EDMF). 57

Figure 5.2 The relationship between events and event pattern occurrences. 58

Figure 5.3 Example of simple events, event pattern occurrences and complex events.............. 58

Figure 5.4 Event Data Meta-Model of EDMF. .. 60

Figure 5.5 Operational Guidelines of EDMF. .. 65

Figure 5.6 Pattern occurrence example of "duplicate dividends". ... 67

Figure 5.7 Pattern occurrence example of "Two 6-month earnings before End Of Day". 68

Figure 5.8 Data model for Sirca TRTH data (based on the meta-model). 71

Figure 6.1 Technologies used in the prototype implementation. ... 74

Figure 6.2 How EventSwarm works in the implementation. ... 76

Figure 6.3 SQL for creating the Event Pattern Definition Table. .. 77

xi

Figure 6.4 Definition of Event Pattern Definition Table columns in PostgreSQL. 77

Figure 6.5 SQL for creating a rule set of Event Processing Rule Base. 78

Figure 6.6 Definition of a rule set of Event Processing Rule Base columns in PostgreSQL. 79

Figure 6.7 A sample file in the Event Pattern Occurrences Stack repository. 79

Figure 6.8 An overview of the GUI in the prototype. .. 81

Figure 7.1 Example of data pre-processing (for event studies). ... 89

xii

List of Tables

Table 2.1 Different cases in eliminating duplicate dividends. ... 11

Table 2.2 Types and examples of event processing languages. ... 21

Table 2.3 How do existing potential technologies/approaches meet the criteria. 30

Table 4.1 An example of the Event Pattern Definition Table. ... 48

Table 4.2 An example of an Event Processing Rule Base. .. 49

Table 5.1 Examples of events in the financial domain in Australia. .. 66

Table 6.1 A sample of the List of Actions. .. 80

Table 7.1 Summary of major issues to be addressed by event data pre-processing 88

Table 7.2 Different cases in eliminating duplicate dividends. ... 90

Table 7.3 Cases and their expected actions of Scenario 1. ... 91

Table 7.4 Different cases considered in calculating earnings. ... 93

Table 7.5 Cases and their expected actions of Scenario 2. ... 94

Table 7.6 Other tools used in the experiments to be compared with EP-RDR. 95

Table 7.7 Execution time comparison. ... 96

Table 7.8 Complex Event Processing capability comparison. ... 98

Table 7.9 Initial rule set for eliminating duplicate dividends ... 99

Table 7.10 Event pattern types used in the rule set for eliminating duplicate dividends. 100

Table 7.11 Comparison in rule change efficiency. ... 101

Table 7.12 Initial and final rules for calculating earnings .. 102

Table 7.13 Event pattern types used in the rule set for calculating earnings. 104

Table A.1 The XML schema of the proposed meta-model.. .. 126

Table A.2 "Duplicate Dividends" event pattern occurrences in JSON format.. 131

Table B.1 Recorded execution times of one rule used in Section 7.3.1....................................135

Table B.2 Recorded execution times of seven rules used in Section 7.3.1............................... 136

Table B.3 RICs of the Dubai companies in Dataset 3 in Section 7.3.1. 136

Table B.4 RICs of the companies used in Section 7.4.1. ... 136

xiii

List of Abbreviations

API Application Programming Interface

APPD Approved

ASX Australian Securities Exchange

BP Bespoke Program

CEP Complex Event Processing

CSV Comma Separated Values

DBMS Database Management System

Div Dividend

DPPT Data Pre-Processing Tool

DSP Data Stream Processing

ECA Event-Condition-Action

EDMF Event Data Modelling Framework

EOD End Of Day

EPDaaS Event Pattern Detection as a Service

EPL Event Processing Language

EP-RDR Event-Processing RDR

EPS Event Processing System

ESP Event Stream Processing

GMT Greenwich Mean Time

GREL Google Refine Expression Language

GUI Graphical User Interface

HTML HyperText Markup Language

IPL Impact Policy Language

IT Information Technology

JSON JavaScript Object Notation

xiv

MCRDR Multiple Classification RDR

NoSQL Not only SQL

OP OpenRefine

PC Personal Computer

P-DAG Pattern Directed Acyclic Graph

PROP Proposed

RBS Rule-Based System

RDR Ripple-Down Rules

REST Representational State Transfer

RIC Reuters Instrument Code

SAS Statistical Analysis System

SDAT Statistical Data Analysis Tool

SCRDR Single Classification RDR

SDLC Software Development Life Cycle

Sirca Securities Industry Research Centre of Asia-Pacific

SME Small and Medium Enterprises

SPSS Statistical Package for the Social Sciences

TRTH Thomson Reuters Tick History

TSV Tab Separated Value

UML Unified Modelling Language

URSE User-Driven Rule Set Evolution

UTC Coordinated Universal Time

WADL Web Application Description Language

XML eXtensible Markup Language

1

Chapter 1 Introduction

This chapter provides an introduction to the research area addressed in this thesis. It starts by

introducing the data deluge and some related concepts in Section 1.1. Section 1.2 discusses the

importance of event data analysis. Section 1.3 provides an overview of the research problem,

and Section 1.4 presents the thesis objectives. Finally, Section 1.5 outlines the organisation of

the thesis.

1.1 The Data Deluge Problem

In the contemporary world, the quantity of information is soaring. This has contributed to a

situation where a vast volume of new data is being generated every day, which overwhelms the

development of infrastructures and tools to manage and make use of the data, and in turn leads

to information overload. This situation is referred to as data deluge [1], data flooding [2], or

information explosion [3]. Literature often notes the ever increasing growth of data available

and the need for technology to manage the data deluge [1, 4].

As opposed to its literal meaning, data deluge has brought about opportunities as well as

problems. On the one hand, data analysts have more chance to find more subtle information

hidden inside the data; and with more input from a wide range of sources, decision making can

be more rational than it used to be. On the other hand, despite the potential opportunities

brought about by data deluge, the major problem that arises is how to take advantage of such

opportunities. In other words, current tools are less than sufficient in efficiently handling the

exploding amounts of data.

In order to address this issue, some interrelated concepts have emerged, including big data

and eResearch. These concepts together form a fourth paradigm of science - data-intensive

science, following on from the three former paradigms: empirical science (descriptions of

natural phenomena), theoretical science (using models and generalisations to explain

phenomena, e.g. Kepler’s Laws, Newton’s Laws of Motion) and computational science

(simulating complex phenomena when modelling is too complicated) [4]. Specifically,

 Big Data: Big Data is characterised by several dimensions [5] – Volume (exponential

growth rate), Velocity (increasing frequency of data generation), Variety (complexity

and diversity of data types) and Veracity (uncertainty of data). These characteristics

pose varying challenges to researchers conducting data analysis. The concept of big

data is a result of data deluge, demonstrating the opportunities and challenges brought

about by huge quantities of data for both enterprises and researchers.

1.1 The Data Deluge Problem

2

 eResearch [6]: Researchers are using many different methods to collect or generate

data, e.g. recording web logs, network traffic messages, periodic sampling from sensors,

charge-coupled devices, social media feeds, and financial reports sensors. However, due

to the increasing quantities of data, it is a challenge for researchers with no IT

experience to know what to do with the data after gathering it. This is the purpose of

eResearch, which can be informally defined as "where IT meets researchers". eResearch

is multi-disciplinary research that is conducted with a heavy reliance on IT. It

commonly involves data-intensive analysis tasks and is mainly performed by non-IT

experts from different application domains (e.g. finance, biology and health). These

experts usually use data, libraries and packages from a variety of sources and manage

the analysis process by themselves. With more than 15 years of history, there are

currently a number of national eResearch initiatives taking place in different countries,

including the UK (with a different term "eScience"), the US (under the name

"Cyberinfrastructure") and Australia. eResearch is now being adopted worldwide across

all research disciplines, harnessing high-capacity and collaborative data from a large

range of data sources and communication technology to improve and enable research

that cannot be conducted otherwise. From an IT-focused perspective, the concept of

eResearch offers solutions to researchers to enable them to handle enormous amounts of

data, and provides the technologies to do this.

Data Deluge

Researchers

need to deal with

Big Data

eResearch

eScience

Cyberinfrastructure

Data Flooding

Information

Explosion

Data-Intensive Science

Cause Solution

Figure 1.1 Interrelated concepts regarding data deluge introduced in Section 1.1.

The relationship of all the concepts mentioned above is demonstrated in Figure 1.1.

1.2 Introduction to Event Data Analysis

3

1.2 Introduction to Event Data Analysis

Data analysis is a means to process the data so that useful information can be discovered and

decisions or conclusions can be made based on the data available. It is the key method for

taking advantage of data deluge. In some cases, data analysis is as simple as manipulating

datasets in an ordinary software tool like Microsoft Excel [7]. This is not difficult when the data

is simple in nature. However, some types of data are complex and hard to analyse, and generic

tools like Microsoft Excel do not suffice. In particular, event data (or event-based data) deserves

special focus because it can be generated on a considerably massive scale with a high level of

complexity. It is thus more difficult to analyse than other types of data. Since raw event data

often presents as rather unorganised, event data in itself is useless unless data analysts make

sense of it via data analysis. For many years, event data analysis has been conducted by the

business sector for many purposes such as studying market trends, improving the efficiency of

operational processes and gathering business intelligence. The benefits of data analysis include

but are not limited to:

 Re-organising the information from event data collection;

 Acquiring meaningful insights (e.g. the identification of mission-critical trends) from

the event datasets;

 Making important decisions based on the insights.

However, unlike data analysts working in large companies that have access to IT staff and

expensive software infrastructure, data analysts in research sections find it harder to efficiently

manage their event data analysis by themselves. Sometimes, they need to conduct the data

analysis manually. A typical process is as follows [8]. First, a data analyst manually collects

data from multiple sources, such as databases, spreadsheets, and reports. An IT expert might be

needed to request the required data, which may delay the data analysis process. Second, the data

analyst will import the data into a PC application to conduct data analysis. The application can

be a dedicated program developed by a programmer, or a generic data analysis tool (either free

or commercial). The third step is to conduct the actual analysis, which is not a one-off task and

often requires iterative modifications on the analysis settings and logic. Finally, the data analyst

needs to inspect the result of the analysis and draw a conclusion based on it. This manual

process is time-consuming and requires great effort.

1.3 Research Problem

4

1.3 Research Problem

Manual data analysis requires data analysts to use certain tools. There are many tools

available. Some of them are designed for data analysts with no IT experience, for instance,

Microsoft Excel and OpenRefine [9]. These generic tools usually feature user-friendly interface

so that data analysts are able to use them without too much difficulty. To utilise them for a

particular data analysis task, the data analyst needs to learn the functions provided by these

tools, and select suitable functions to perform the analysis. However, since these tools are for

generic data analysis purpose, they require mostly manual work and they lack capabilities or

efficiency in dealing with issues of particular data types. There are more professional tools

which are specialised in different aspects of data analysis, for instance, database management

systems like MySQL [10], statistical data analysis tools like SAS [11], event processing systems

like Esper [12]. Unlike generic data analysis tools, they provide specialised capabilities and are

more efficient in particular circumstances, but require a steep learning curve or certain level of

IT expertise.

In order to acquire valuable insights and make rational decisions from event data, both

domain knowledge and IT expertise are needed. In real-life scenarios, data analysts from the

research sector are normally domain experts with very limited or even no IT experience, while

IT experts lack domain knowledge. Thus, neither data analysts alone nor IT experts alone are

able to conduct event data analysis easily. This is the main reason why event data analysis is a

challenge. Data analysts usually employ a programmer to develop a dedicated tool for a

particular data analysis task, or take advantage of existing data analysis tools with the assistance

of the IT expert. Due to different capabilities of different applications, the data analyst may

utilise multiple applications to fulfil the analysis requirements, which may require the

intervention of IT experts.

Consequently, the research problem of this thesis is how data analysts with no IT experience

can take advantage of existing tools, and have control over their own data analysis process.

1.4 Thesis Objectives

The primary aim of this thesis is to provide a new method that enables data analysts to manage

data analysis on event data with minimal IT expert intervention. First and most importantly, the

new method addresses the issues outlined in the research problem (see the previous section). In

order to achieve this, this thesis looks into event data characteristics and the definition and norm

of event data analysis. Then, existing solutions are explored and compared in terms of various

1.5 Thesis Outline

5

capabilities and limitations. It may be tempting to design new tools to overcome the limitations

of existing tools. However, this is time-consuming and labour-intensive as it involves tool

development, testing, installation, staff training and license fees. Therefore, a reasonable and

more cost-efficient approach is to reuse existing technologies.

The proposed new method takes advantage of existing technologies and approaches, and

leverages the most suitable ones to integrate. The thesis focuses on the system design aspects,

including component specification and interaction, so as to provide guidance for developers to

build systems according to the needs of data analysts in a particular domain.

In addition, it is necessary to instantiate the new method by implementing a prototype based

on it, so as to validate the feasibility of the proposed method. To assess the capabilities of the

new method, an appropriate case study involving event data analysis has been conducted. This

enables the evaluation of the new method in relation to the research objective described above.

1.5 Thesis Outline

This chapter provides a general introduction to data-intensive science and eResearch. It also

presents an overview of the research question, research objective and research contribution of

this thesis. The remainder of this PhD thesis is organised into the following chapters:

 Chapter 2 Literature Review: provides some background research material and

discussions on the topics related to the thesis. This includes what role event data

analysis plays in data-driven research, why rule management in event data analysis is

important, major categories of techniques used in data analysis and rule management

techniques.

 Chapter 3 Research Plan: discusses the research questions, objectives and the

methodology used in carrying out this research.

 Chapter 4 Proposed Architecture: describes the first design artefact proposed in this

research, which is an architecture that facilitates rule management in event data analysis

for data analysts.

 Chapter 5 Proposed Event Data Model: provides the details of the second design

artefact proposed in this research, which is an event data modelling framework that

facilitates event data modelling and thus enables the exchange of data between

components in the EP-RDR architecture.

 Chapter 6 Prototype Implementation: describes the details of a prototype

implementation of the proposed artefacts described in Chapters 4 and 5 for evaluation

purpose.

1.5 Thesis Outline

6

 Chapter 7 Evaluation and Case Study - Financial Market Data Pre-Processing: uses a

case study in the finance domain, i.e. financial market data pre-processing to evaluate

the proposed work. This chapter defines the evaluation criteria and corresponding

evaluation metrics based on the research questions raised in Chapter 3, and provides the

details of experiments and results.

 Chapter 8 Conclusion and Future Work: concludes this thesis with an outline of the

thesis contributions, and a discussion of the limitations and future work directions.

7

Chapter 2 Literature Review

In this chapter, we provide some background research material for the thesis. Firstly, Section

2.1 explains the role of event data analysis and the importance of rule management in event data

analysis. Then Section 2.2 discusses three generic approaches that can be used in event data

analysis in. A discussion on systems specialised in event data processing is provided in Section

2.3. Section 2.4 explores the rule-based systems and the role they can play in event data

analysis. Finally, Section 2.5 compares all the mentioned techniques and discusses their

suitability in conducting event data analysis.

2.1 Event Data Analysis

In this section, we start with an introduction to data analysis in general. Section 2.1.2

summarises the unique characteristics of event data. Section 2.1.3 discusses analysis conducted

specifically for event data. Section 2.1.4 raises the problem of rule management faced in event

data analysis.

2.1.1 Data Analysis in General

As mentioned in Chapter 1, the purpose of data analysis is to answer questions, to suggest

conclusions, and to support decision-making for data analysts. It is a process of converting raw

data into useful information by applying statistical and/or logical techniques systematically [13].

Data analysis is a key stage of eResearch, which is frequently conducted by data analysts in

various research domains. It is also essential for enterprises that need to gain specific

information from the data they collect.

The following distinguished phases are normally included in data analysis:

 Data collection: the process of gathering data of interest from certain data sources that

leads to answering research questions. [14]

 Data cleansing: also referred to as the core part of "data pre-processing". The common

method is to split the process into several steps including auditing, parsing,

standardisation, scrubbing, de-duplicating, integration, etc. [15, 16]

 Data transformation: also belongs to data pre-processing, which denotes preparing data

for further analysis via standardisation or normalisation. It is needed since in many

applications of data analysis, the raw data or cleansed data cannot be used directly [17]

due to formatting issues. The formatting of values into consistent layouts is performed

2.1 Event Data Analysis

8

based on various elements, including industry standards, local standards, business rules

and domain knowledge bases. Some literature indicates that this functionality often uses

a rule library or can automatically be derived from schema matching tools. [18]

 Statistical analysis: The goal of this phase is to find interesting patterns so as to identify

trends. This phase involves various algorithms and can be broken down into five

discrete steps, namely "data nature description", "data relation exploration", "data

modelling on how the data relates to the underlying population", "validation of the

model", and "predictive analytics". Statistical analysis is often accompanied with or

followed by data visualisation to interpret the results of the analysis. [19, 20]

Note that these phases are akin to the phases in Knowledge Discovery in Databases (KDD)

[21], which focuses on data analysis in databases. However, these phases are also standard in

data analysis in general.

2.1.2 Characteristics of Event Data

An event is “anything that happens, or is contemplated as happening” [22] at a certain time.

Examples of events in the real-world are very diverse and include financial trades and quotes,

banking transactions (ATM, online, credit card use, etc.), news broadcast, aircraft movements,

sensor outputs, updates in social media sites (e.g. Facebook), network communication message

deliveries, and computer systems management activities. We refer to large collections of event

occurrences recorded in the form of data as “event data” or “event-based data”, which is

sometimes cited as time series data.

Event data has some characteristics [23] that make it more difficult to analyse than other data

types:

 Temporal dependencies: Event data flows in time-streams. Compared with other data

types, event data has a temporal axis in the data schema. To be precise, every event data

record is affixed with a timestamp as well as other attributes when it is created. Due to

this feature, the analysis of event data involves a great deal of time handling (i.e.

complex event processing).

 High flow rate: In an event-based system, new events are continuously coming in to

guarantee the timeliness of the data. The flow rate is high as opposed to other data

types. Event data with very high flow rate is also referred to as high-frequency data.

 Huge volume: Event data records are normally generated and stored in huge volumes,

sometimes containing data for years. Therefore, it is way beyond human capability to

manually process a huge amount of data.

2.1 Event Data Analysis

9

 Immutability: On account of the high flow rate of event data, each record that comes in

will never be modified.

 Referability: Any event record may be relevant to previous records and can be referred

to other relevant records on some conditions such as within a certain time window, e.g.

several days before or after the current event.

 Influence: Any event may generate a bunch of new events. For instance, financial

market event data represent stimuli, market state transitions and outputs, each of which

is issued followed by a chain of responses such as state changes and new outputs.

All these characteristics give rise to drastic difficulties in processing event data.

2.1.3 Event Data Analysis

Currently, event data analysis is being conducted widely (e.g. using data mining techniques) to

explore “the characteristics of object evolution, or the trend of changes for objects in the

database” [21]. For many years, event data analysis has been conducted by the business sector

for various purposes such as studying market trends, improving the efficiency of operational

processes and gathering business intelligence. We view event data analysis as a process of

primarily detecting patterns in the data and taking a number of actions accordingly so as to

interpret the meaning of information collected from a particular event data source.

To conduct event data analysis tasks, data analysts have to rely on IT experts either to

implement a bespoke program/service or to customise an existing tool such as an event

processing system (EPS) according to their needs. Because of constant changes in business

needs and the environment, data analysts need to communicate their new requirements to IT

experts all the time to update and maintain the event data analysis business logic - event

processing rules. In existing event processing systems, rules are normally executed separately or

very small sets of rules can be executed together. When it comes to rule sets, especially large

and complex rule sets, their management is much more difficult for a data analyst. A typical

way to support such an event data analysis process requires assistance from IT experts and

knowledge engineers, as illustrated in Figure 2.1. On the one hand, the knowledge engineer

manages the rule set and on the other hand, the IT expert implements the rules according to the

underlying software infrastructure. There could be a multitude of data analysts defining new

rules so the knowledge engineer need to constantly cooperate with IT experts to manage event

processing rules particularly when the size of the rule set becomes large.

2.1 Event Data Analysis

10

Domain ExpertIT Expert

Event Data

Analysis

Event-

pattern

rules

Knowledge

Engineer

M
aintain tools

Im
plem

ent event patterns

M
a

n
a

g
e

 r
u

le
 s

e
t

Define/Modify RulesCollaborate

In
te

ra
ct

Figure 2.1 Evolution of an event data analysis process.

More recently, event data analysis is becoming of increasing interest to academic researchers

looking for patterns in data. This is contributing to the emergence and popularity of “data-

intensive science” [24]. Unlike data analysts working in large companies and having access to

IT staff and expensive software infrastructures, those working in the research sector tend to

conduct the analysis mostly on historical event datasets by themselves using a range of data

processing and statistical tools. This creates a need to enable analysis of event data by data

analysts who have limited IT expertise and fewer resources available to them. Whilst the prime

motivation of investigating solutions would be of interest to academic researchers, this research

avenue would also be relevant to Small and Medium Enterprises (SMEs) looking for simple and

cost-effective event data analysis solutions.

2.1.4 An Example of Rule Management in Event Data Analysis

In this section, we raise the problem of rule management in event data analysis by presenting a

real-world example that involves the analysis of Sirca’s daily data [25] by data analysts in the

finance domain.

Financial market data analysis often requires the computation of company returns over a

period of time. However, the value of these returns is affected by corporate actions such as the

2.1 Event Data Analysis

11

issuing of dividends. A dividend denotes a payment made by a firm out of its current or

accumulated retained earnings to its owners, which causes a fall in the stock price by the

dividend amount on the ex-date. Although the information on corporate actions is available in

the data, processing it is a non-trivial task due to the need to deal with duplicate dividend

announcement records.

Table 2.1 Different cases in eliminating duplicate dividends.

(a) Case 1 – simple duplicate dividend records.

#RIC
1
 Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

(b) Case 2 –although these two dividends are issued at the same time (Date) and they have

the same Div Ex Date and the same Div Amt, the Div IDs are different which indicates that

these are two different dividends rather than a duplicate.

#RIC
Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

ABC 12/08/2012 Dividend 11/09/2012 0.07 7926058 0 APPD

(c) Case 3 –the first dividend is proposed (PROP) and has been deleted (Delete Marker = 1),

which is considered to be an out-dated record; the second dividend is an update so this case is

not a case of a duplicate dividends to be detected.

#RIC
Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.08 7885540 1 PROP

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

Table 2.1 illustrates different cases of duplicate dividend issues. In most cases like Table

2.1(a), duplicate events just record the same dividend announcement multiple times. The initial

logic of the rule is:

1 RIC is short for "Reuters Instrument Code", which is a unique identification code for a particular company.

2.2 Generic Approaches for Event Data Analysis

12

If there are two Dividend events issued at the same event time (Date), the same "Div Amt." and

the same "Div Ex Date"

Then it is a duplicate so delete the first one

Over time, the data analyst may find this logic leads to incorrect decisions and actions in a

new case (Table 2.1(b)), which requires changing the rule to:

If there are two Dividend events with the same event time (Date), the same "Div Amt.", the same

"Div Ex Date" and the same "Div ID"

Then it is a duplicate so delete the first one

Again, due to another new case (Table 2.1(c)), the rule must be modified to:

If there are two Dividend events with the same event time, the same "Div Amt.", the same "Div

Ex Date" and the same Div ID, and the payment status of these two events are both marked

'approved' ('APPD'), and the values of ‘Div Delete Marker’ are both '0

Then it is a duplicate so delete the first one

Generally, in real-world event processing, rules are never "perfect" as there are always

exceptions to existing rules. As an extension of the example above, the defined data cleansing

rules built for Australian stock data may be applied to another country’s stock data, e.g. German

stock data, with similar but not exactly the same logic. This requires additional modifications to

the rules which can be even more complicated than the example above. It also explains why IT

experts and knowledge engineers are always needed to evolve the program or system. In many

cases, they have to develop a number of various applications for different or even slightly

different event processing tasks.

2.2 Generic Approaches for Event Data Analysis

This section explores the role of generic methods to conduct event data analysis. Data

processing tools are often utilised to conduct general data analysis tasks but many researchers

and enterprises also apply these tools to event data analysis. The tools include three categories:

bespoke programs, commercial tools and open-source tools.

Bespoke programs are developed according to specific needs of data analysts and thus

designed for a particular purpose. This method is not flexible. Every time the data analyst wants

to change the processing logic, he/she needs to ask an IT expert to modify the program.

In regard to commercial and open-source tools, there are quite a few products available on the

market that facilitate one or more phases of data analysis. Commercial tools may be

2.2 Generic Approaches for Event Data Analysis

13

unaffordable for data analysts working in the research sector as most of them are very expensive

and not open to the public.

The following sub-sections explore more examples of different categories of data processing

tools, namely data pre-processing tools (Section 2.2.1), database management systems (Section

2.2.2), and statistical data analysis tools (Section 2.2.3).

2.2.1 Data Pre-Processing Tools

Data pre-processing is an important phase in data mining and there are many tools available for

this purpose. In this section, we choose two of the most popular tools (OpenRefine and Data

Wrangler) and illustrate their capabilities.

OpenRefine [9] is a free desktop application previously funded by Google, which enables

data analysts to import, cleanse, manipulate, enrich data and finally export it for further analysis.

OpenRefine has the following key features [26, 27]:

 Importing: Files in a wide range of formats (e.g. CSV, TSV, Excel, JSON, XML and

Google Docs documents) can be imported into OpenRefine. Data analysts can upload a

local file, import data from web pages or XML documents, paste data from the

clipboard, or retrieve a document from Google Docs.

 Editing: Akin to Microsoft Excel, data analysts are able to edit cells, columns and rows

manually. It provides a number of pre-defined operations such as eliminating

consecutive white spaces in texts, escaping or un-escaping HTML entities, changing

letter case and converting data formats.

 Transformation: Performed via GREL (Google Refine Expression Language) code.

GREL enables the splitting of columns, the creation of new columns based on values of

other columns, and the combining of cells to create new columns.

 Extending: New columns may be created based on existing columns, or by calling

remote APIs exposed by external services to enrich data.

 Filtering/Faceting: A subset of the data set can be displayed according to certain

filtering criteria. This is also a function provided by Microsoft Excel.

 Clustering: Similar entries in the data set can be detected based on a number of

algorithms. Data analysts can decide manually whether these detected similar entries

should be merged or ignored. This is to enable data analysts to handle inconsistencies in

data. This is one of the unique OpenRefine's features.

 Exporting: After performing data analysis tasks, data analysts can export the processed

data as CSV, TSV, Excel or HTML files. In addition, data analysts can also export their

2.2 Generic Approaches for Event Data Analysis

14

manual processing steps to a file in JSON format, and apply them to similar datasets to

avoid repetition in the future. Thus, data analysts can customise the tool to their own

need as long as the steps are not very complicated.

Data Wrangler [28] is an interactive web application for data pre-processing. Similar to

Microsoft Excel and OpenRefine, it allows direct manipulation of data. Besides, it has the

intelligence to automatically suggest applicable operations of data transformation [26]. At any

stage, data analysts are able to repeatedly scan all the suggested options, to preview the

corresponding effects, and to decide which option should be taken into effect. In addition,

validation and type conversion are supported by integrating semantic data types (e.g. dates,

geographical locations, classification codes).

One obvious disadvantage of these data pre-processing tools is that they significantly limit

the size of input data. The reason is that they have graphical interfaces for data analysts to

interact with and all data needs to be displayed on the screen so data analysts are able to

navigate and manipulate the displayed data files. Thus, there is normally a limit of the size of

the input data to restrict the memory usage and for optimisation purposes. Another disadvantage

is that the analysis process is not automated in these tools so a great deal of manual effort needs

to be made by data analysts.

2.2.2 Database Management Systems (DBMSs)

Database Management Systems (DBMSs) enable the user to manage a database. Depending on

the privilege, the user may be able to store new data, to modify existing data, or to search and

extract data from the database. In most cases, some data processing functions are available in

DBMSs, which make it possible for the user to extract aggregate information according to

specific needs. DBMSs are generally very efficient in storing, organising and searching for

information in a database. However, data processing functions are more difficult to use, so

merely competent users are able to take advantage of them to generate useful information.

The most commonly used type of DBMS is a relational database [29], which stores data in

two-dimensional tables and applies SQL queries to manage data. Some user-friendly and

powerful relational DBMSs include Microsoft Office’s ACCESS [30], Apache OpenOffice

BASE [31], MySQL [10] and PostgreSQL [32]. Relational databases are competent for general

data management purposes; however, the scalability of relational databases is poor in a cloud

environment when they need to support an ever-increasing rate of transactions per second

without compromising on speed [33].

2.2 Generic Approaches for Event Data Analysis

15

As an alternative to relational databases, NoSQL (often interpreted as Not Only SQL)

databases [34] emerged for the purpose of facilitating the processing of big data and addressing

the needs of real-time web applications. They are designed to efficiently cope with heavy

read/write loads and have better scalability than relational databases. Therefore, they are more

suitable to be run on cloud platforms. However, NoSQL has not yet been used in most current

applications, because they often require rewriting the code of these applications. Some examples

of NoSQL databases include CouchDB [35], Hadoop [36], Cassandra [37], Neo4J [38], and

MongoDB [39].

There is another particular type of database named "temporal database" [40] that is worth

mentioning. The research on temporal databases has been motivated by the need to assign a

validity interval to relational data. Despite the fact that a time interval can be assigned to tuples

in relational databases easily, it is complicated to query such temporal data. In essence, temporal

databases operate on historical data that has a temporal dimension. Generally, the

expressiveness of temporal databases is similar to that of relational databases but for the support

of the correlation of temporal data. Thus, temporal databases can also be viewed as a

generalisation of relational databases [41] in which operators for the temporal dimension are

supported, e.g. [42]. It has been decades since temporal databases first became a research topic

but this technology is still immature [43].

2.2.3 Statistical Data Analysis Tools

In this section, we will explore and compare four commonly used statistical data analysis

tools/packages, namely R, SAS, Stata and SPSS. These tools have their advantages compared

with general-purpose programming languages and applications, as they permit data analysts to

concentrate more on the information contained in the data and the way to analyse it than

technical details of the data and how it is stored. This appeals to data analysts who have a

limited knowledge of IT or computer science. Each of these tools offers its own unique

strengths and weaknesses. Thus, many data analysts need to learn multiple tools and combine

them to complete their data analysis. In addition, data analysts are required to learn some

programming concepts so that they can utilise these tools to an optimal extent.

2.2.3.1 R Programming Language

R [44] is a free software environment for statistical computing and graphics, which compiles

and runs on most common operating systems. It is often regarded as the most comprehensive

statistical analysis package available.

2.2 Generic Approaches for Event Data Analysis

16

The advantages of R include [45]:

 A comprehensive language for managing, manipulating, and analysing data

 Capability to generate high-quality graphs and a fully-programmable graphics language

 Open source and free, permitting anyone to use and to modify it

The disadvantages of R include [45]:

 As a programming language, R is not easy to learn

 Documentation is sometimes too simplified and not very useful for beginners

 The quality of some packages needs to be evolved over time

 Many R commands give little thought to memory management, so R may consume all

available memory very quickly

2.2.3.2 Statistical Analysis System (SAS)

SAS (Statistical Analysis System) [11] is a statistical software package that enables data

analysts to conduct statistical analysis on price data interpolated with certain events. It can run

on most of the common operating systems.

Data in SAS is stored as tables and researchers can write scripts via a GUI to perform

sequences of operations on them. SAS also exposes APIs to different components so researchers

can invoke SAS components from external programs.

The advantages of SAS include [46]:

 It is very powerful and programmable

 SQL queries are enabled so users can manage the data as in traditional databases

 It can work with multiple files at once

 SAS can handle huge files depending on the size of the hard disk

The disadvantages of SAS include [46]:

 If you make a mistake in an SAS program, it can be hard to see where the error

occurred or how to correct it

 With more complicated functions, SAS has a steep learning curve

2.2.3.3 Stata

Stata [47] is another popular statistical package. With smart data-management facilities and a

wide range of latest statistical techniques integrated, it provides reliable and powerful statistical

2.2 Generic Approaches for Event Data Analysis

17

analysis functionality. In addition, it can also produce high-quality data visualisation graphs.

Stata is fast and easy to use and is available across common operating systems.

The advantages of Stata include [46]:

 It is easy to learn but still powerful, which is good for the novice as well as advanced

users

 Mistakes in commands/programs can be easily diagnosed and corrected

 It provides simple syntax of graph commands to create graphs for the data analysis

The disadvantages of Stata include [46]:

 Data cannot be easily managed

 It works with only one data file at a time, so to analyse multiple datasets at once can be

cumbersome

2.2.3.4 Statistical Package for the Social Sciences (SPSS)

SPSS (Statistical Package for the Social Sciences) [48] is an IBM software application,

a Windows-based program used to perform data entry and analysis and to create tables and

graphs. It is capable of handling large amounts of data and is commonly used in various

domains, including business and social sciences. The graphical interface is similar to Excel

Spreadsheet with far superior functions for completing complex data manipulation and analysis.

Note that SPSS can be integrated with some IBM add-ons to conduct more complicated

analysis. For instance, the SPSS Modeler [49] is an application that can be integrated with SPSS

to allow data mining and text analytics.

The advantages of SPSS include [46]:

 Basic functions are easy to learn due to its user-friendly user interface

 It generates high-quality graphs for data analysis

The disadvantages of SPSS include [46]:

 Data cannot be easily managed

 It works with only one data file at a time, so analysis of multiple datasets at once can be

cumbersome

 For academic use, SPSS lags notably behind SAS and R. Its menu offers the most basic

analysis functions. To take advantage of more advanced functions, data analysis needs

to purchase licences for add-ons, and these additional functions have a steep learning

curve.

2.3 Event Processing Systems (EPSs)

18

2.2.4 Discussion

Up until now, we have explored three generic methods to conduct event data analysis, namely

data pre-processing tools, database management systems, and statistical data analysis tools.

Data pre-processing tools normally have a user-friendly interface allowing data analysts to

interact with the tool easily. The first limitation of data pre-processing tools is that they

normally do not support complex event processing. Also, data analysts must interact with the

tools to manually specify commands for each step of the analysis as the function is not provided

for users to specify a sequence of processing rules, i.e. the business logic of the analysis. In

other words, analysis processes can hardly be automated.

Database management systems are powerful but, on the other hand, provide very limited

interface to users; i.e. they require users to be competent in managing databases via queries, etc.

NoSQL databases are for the purpose of cloud computing and thus more difficult to use.

Temporal databases are emerging to address issues in handling temporal data but this

technology is still immature.

Data analysts find statistical data analysis tools appealing due to their statistical data

processing capabilities. With technical details hidden from the user, these tools are easier to

learn, and concentrate more on the information in data than general-purpose programming

languages. Each of these tools has advantages and disadvantages, provide similar functionality

and have some limitations. Firstly, they are not specifically designed for event processing, so to

utilise these tools to analyse event data is challenging. Secondly, while these tools are easier

than normal programming languages, data analysts must still take a fair amount of time to learn

some programming concepts before they can benefit from conducting event data analysis.

Thirdly, these tools assume that datasets have already been cleansed prior to processing them,

so in many circumstances, data analysts need to combine data pre-processing tools with the

statistical tools to produce reliable results.

2.3 Event Processing Systems (EPSs)

2.3.1 Basic Concepts

Originating from both the area of active database systems [50] and distributed event-based

systems [51], event processing is "computing that performs operations on events", including

filtering, transforming and finding occurrences of given event patterns [23, 52]. Luckham [22]

and Bacon et al. [53] pioneered research into event processing in the 1990s. The former mainly

focused on simulation and pattern matching, whereas the latter focused on the construction of

2.3 Event Processing Systems (EPSs)

19

distributed applications using event-driven approaches. There are some distinct but related

concepts regarding event processing:

 Complex Event Processing (CEP) [22, 54-58]: combines data from multiple sources and

it typically focuses on detecting patterns in the order of occurrence of the incoming

events

 Data Stream Processing (DSP) [59, 60]: focuses on filtering and aggregation of stream

data

 Event Stream Processing (ESP) [22]: practically used as a near-synonym for Complex

Event Processing in the context of event streams arriving over a network.

 Event Processing: A more general term covering all of the three concepts above. An

event processing system (EPS) does some or all tasks associated with these three

concepts

2.3.2 Overview of Event Processing Systems (EPSs)

An EPS is typically a dedicated platform that provides abstractions (event processing logic) for

operations on events that are separated from the application logic (event producers and event

consumers). This can reduce the cost of development and maintenance. Event processing logic

is expressed by event processing languages (EPLs). A stream of event data is fed into the EPS

and the event processing language code is executed, then a list of actions is generated (Figure

2.2).

EPS List of ActionsEvent Stream

Event processing

language code

Figure 2.2 An event data analysis process using an EPS.

Based on several research papers, the components of an EPS platform can be categorised

into:

 Event Metadata: contains specifications of event data and event processing rules.

Currently, there is no common standard existing for defining and representing event

data [61]

2.3 Event Processing Systems (EPSs)

20

 Event Processing Language (EPL): the language used to express event pattern types or

detect occurrences of event pattern types. Event pattern types must be written in EPL

before they can be detected by the Event Processing Engine in the right way [56]

 EPL Compiler: translates an event pattern description from EPL into machine code that

the Event Processing Engine can execute [62]

 Event Processing Engine: is at the core of an EPS. It matches event pattern types

specified in the EPL code against the incoming event data and produces occurrences of

these event pattern types once they are detected [63]

 Event Development and Management Tools: event development tools allow a user to

define event data and processing rules, and event management tools are used for

managing event data, event generation, event processing infrastructure, etc.

 Enterprise Integration Components: provides an interface for the system to connect to

required external services. Examples of common Enterprise Integration Components

include event pre-processing, publishing and subscribing, and business process

invocation [64]

 Sources and Targets: specify the sources of incoming event data and the targets on

which event-driven actions are performed [65]

 Event Database: data storage used for storing the event data that are processed by the

Event Processing Engine [63]

Over the past few years many papers have been written on development of EPSs and their

applications in various fields. Table 2.2 lists different types of event processing languages and

their corresponding products. There are some common event operations (key features) in these

products [23]:

 Event expressions: "the fundamental building block of an EPS, allowing the

specification of matching criteria for a single event" [66]

 Filter: reducing the overall set of events to be processed by an EPS to a subset of events

that are actually relevant for the given processing task, e.g., removing erroneous or

incomplete data. The complexity of filtering mechanism in EPSs can vary depending on

the expressiveness of the system, from basic static inspection of event attributes to

comparisons against complex computed abstractions

 Transformation: changing event data from one form to another, including translation,

splitting, aggregation, composition, etc.

2.3 Event Processing Systems (EPSs)

21

 Translation takes each incoming event and operates on it independently of preceding

or subsequent events. It performs a "single event in, single event out" operation.

 Splitting takes a single incoming event and emits a stream of multiple events,

performing a "single event in, multiple events out" operation.

 Aggregation takes a stream of incoming events and produces one output event that is

a function of the incoming events. It performs a "multiple events in, one event out"

operation.

 Composition takes two streams of incoming events and operates on them to produce a

stream of output events. This is akin to the join operator in relational algebra, except

that it joins streams of events rather than tables of data.

 Event Pattern Detection: recognising high-level patterns by examining a collection of

events (using correlation, aggregation, abstraction, etc.), which is the core mechanism in

an EPS. This operation can be further broken down into three steps:

 Pre-detection: Event pattern types are validated (e.g. syntax and grammar errors) and

then compiled into executable EPL code by the EPL Compiler.

 Detection: The Event Processing Engine executes the EPL code of the selected event

pattern type generated from the previous step. Input event data is generated by a

particular source and pushed to the Event Processing Engine. The Event Processing

Engine then monitors the incoming event stream, matches the selected event pattern

type in data, and produces an output of detected occurrences of this event pattern

type.

 Post-detection: The Event Processing Engine stores all occurrences of the selected

event pattern type into the Event Database, and notify relevant targets to perform

corresponding actions.

Table 2.2 Types and examples of event processing languages.

(* indicates open-source products)

Language Type Language / Product

Query-Based

CCL/Aleri [67]

*CQL [68]

*Esper [12]

StreamSQL [69]

General Purpose
Netcool/Impact Policy [70]

MonitorScript/Apama [71]

2.3 Event Processing Systems (EPSs)

22

EventSwarm [72]

Rule-

oriented

Production rules
*Drools Fusion [73]

BusinessEvents [74]

Event-Condition-Action rules

(ECA rules)

Amit [75]

InfoSphere Streams [76]

Other (Logic programming)
*ETALIS [77]

*Prova [78]

In the following sub-sections, we provide further details about each category of EPL/EPS

listed in Table 2.2.

2.3.3 Query-Based EPS

Query-based EPSs typically support an EPL extended from the ubiquitous relational database

language SQL to query event data. The queries expressed in a query-based EPL are often

referred to as continuous/continual queries [79]. In contrast to traditional non-persisting queries

that work on persistent data, continuous queries are stored persistently in the database and

applied to event streams. The processing paradigm in such systems is:

 Define queries in an SQL-like language

 Process queries

 Results of the processing step are only selectively stored in the database

In order to handle unbounded input streams, a common feature among these query-based

languages is "the extensive operations on sliding windows" [80]. Sliding windows are used to

divide the event stream into segments so these segments can then be manipulated and analysed

without the system running into unlimited wait time and memory usage. There are different

ways to calculate sliding windows. Examples include [81]:

 Time-driven model: The window is re-evaluated only at the end of each time step. CQL

[68] adopts this model.

 Tuple-driven model: The window is re-evaluated every time a new tuple arrives.

StreamSQL [69] adopts this model.

Since CQL and StreamSQL adopt different sliding window models, not all queries that can

be expressed in CQL can also be expressed in StreamSQL, and vice versa [81]. In any one

particular query-based language, it is important to stick to the consistent semantics so that all

implementations using this EPL work in a consistent manner and generate expected results.

2.3 Event Processing Systems (EPSs)

23

Query-based EPLs are considered as good at defining patterns of "low-level aggregation

views according to event types defined as nested queries" [82]. However, any of these

languages has shortcomings when expressing event pattern types. For example, CQL does not

have the ability of expressing windows with a variable slide parameter [81]. Additionally, when

detecting occurrences of the same event pattern type, different query-based EPLs may generate

different results, but the user does not have the power to control which result should be

generated [83].

2.3.4 General Purpose EPS

General purpose EPSs often have designed EPLs in the imperative style, e.g. Netcool/Impact

Policy [70]. This apparently renders it hard for data analysts with limited IT expertise to learn

and make full use of the EPS. In Netcool/Impact Policy, a policy consists of "a set of statements

written in either the Impact Policy Language (IPL) or JavaScript" [70]. Event handling is

enabled but limited to parsing incoming events, sending events from one source to another,

updating events and deleting events. Event pattern detection is relatively restrictedly supported.

Based on real-life experience, building a set of policies that work on event data analysis is

equivalent to building a bespoke program in a common programming language, e.g. Java.

Another mature general purpose EPS that focuses on pattern matching is the EventSwarm

framework. Its conceptual model [72] is shown in Figure 2.3. It provides a programming

framework based on Java. EventSwarm offers "a range of pre-defined abstractions and pattern

components implemented in the Java programming language" [66]. There are two typical styles

of application built using this framework, namely applications built for specific, pre-defined

patterns or abstractions, and domain-specific applications that allow end users to define new

patterns. For the latter, a graphical interface can be developed and provided for the user. It also

has the following outstanding features [66]:

 "the ability to filter on any computed abstraction that matches a single event, including

statistical analysis"

 the capability of "using causal precedence in sequence patterns"

 It is advantageous in managing time and ordering issues of events due to event

timestamps, buffering, flexible relationships between events, time skew allowance and

causal ordering

 the capability of statistical calculation on time-driven sliding windows and use the

calculated results in the EPL code

2.3 Event Processing Systems (EPSs)

24

Figure 2.3 EventSwarm architecture.

2.3.5 Rule-Oriented EPS

Compared with query-based EPSs and general purpose EPSs, rule-oriented EPSs work best on

describing higher-level conditional business event pattern types.

2.3.5.1 Production Rules

In the area of expert systems (or knowledge-based systems), production rules originated in the

1980s. Since then they have been investigated comprehensively, become very popular, and has

been successfully applied commercially in various domains such as medicine, troubleshooting

in telecommunication networks, and computer configuration systems [82].

Most production rule systems as well as database implementations of production rules adopt

forward-chaining operational or execution semantics [82]. The rules are in the structure of "if

Condition then assert Conclusion/Action". Whenever the rule base manager needs to modify the

condition, the conclusion/action needs to be updated accordingly as well.

While production rules in nature "react to condition state changes and have no connections to

event data" [82], recent work has attempted to extend production rule systems with new features

like object models and fact base to make CEP possible. Specifically, in the declarations of

production rules, event types are defined. Incoming events are initialised as instances of the

2.3 Event Processing Systems (EPSs)

25

declared event types and are dynamically added to the fact base. In the rule condition, some

operations such as filters and event pattern detection may be applied to the instances of events.

If the condition is fulfilled, the action is triggered. Representative tools include Drools [73] and

BusinessEvents [74].

However, contemporary production rule systems still lack expressiveness as "they do not

have a clear declarative semantics, suffer from termination and confluence problems of their

execution sequences and typically do not support expressive non-monotonic features such as

classical or negation-as-finite failure or preferences" [82]. Therefore, certain event pattern types

can hardly be expressed in such systems. Some research in this area focuses on extending the

core production systems to enhance their expressiveness [84], but this results in more

complication of the usage of the system.

2.3.5.2 ECA Rules

The advent of Event-Condition-Action (ECA) rules [85] was due to the necessity to react to

different kinds of events occurring in active databases [86]. There are three components in an

ECA rule:

 Event: specifies the event that triggers the invocation of the rule. The event itself can be

a composition of different event types, in which case it is called a composite event.

 Condition: consists of the conditions that need to be satisfied, in order to carry out the

specified action. The condition is only checked upon occurrence of the specified event.

 Action: specifies the actions to be taken on the data.

Examples of active database systems using ECA rules include ACCOOD [87], Chimera [88],

COMPOSE [89], NAOS [90], HiPac [91]. Expert system techniques are sometimes integrated to

allow rule triggering to be automatic. Apart from active databases, ECA rules have also been

applied in conventional databases, where the condition is a traditional query to the local

database; and in memory-based rule engines, where the condition is a test on the local data.

Event processing systems applying ECA rules in the corresponding EPL include Amit [92]

and InfoSphere Streams [76]. These systems support event algebra operators analogous to those

provided by active database event algebras, e.g. Snoop [50] and SAMOS [93], where complex

expressions can be created using operators like And, Or, Sequence, etc. to describe event pattern

types that can be applied over the event streams in real time.

Two typical usages of ECA rules in event data analysis include detecting and reacting to

occurrences of particular event pattern types in the database that may undermine the data

integrity in real time, and executing some business logic on incoming event streams.

2.4 Role of Rule-Based Systems in Event Data Analysis

26

2.3.6 Discussion

Overall, event processing technology is broadly applied in many application domains but it is

still not a mature technology [94] that is actively researched. Among all the EPSs available,

many commonalities exist but the underlying EPL and features available in products vary

according to their targeted markets and applications. Each of the languages/products listed in

Table 2.2 has its advantages and disadvantages that reflect the usual tradeoffs between

simplicity and expressiveness. Therefore, the performance of an event data analysis greatly

depends on the selected EPL/EPS, and whatever EPL/EPS is used, there are always limitations.

Switching to a different EPS is by any means troublesome and costly.

Another issue is that rule management in EPS is yet to be researched. Luckham initially

claimed event processing rules as "the foundation for applications of CEP" [22]. In a later

publication, he claimed that managing large sets of event processing rules is a challenge which

has not yet been effectively tackled [95]. The example illustrated in Section 2.1.4 indicates the

challenge of managing rules to react to the evolving needs of researchers.

In the next section, we will consider technologies specifically designed to facilitate defining

and managing rules and look into their possible role in managing event data analysis rules.

2.4 Role of Rule-Based Systems in Event Data Analysis

Rule-Based Systems (RBSs) are types of knowledge-based systems in which knowledge is

represented as rules stored in a database. Due to the obvious advantages over conventional

business rules expressed in conventional programs or designed languages resembling natural

ones, RBSs have gradually been chosen to store business rules to assist in data processing.

This section will review RBSs as this is an area that was found to be lacking when discussing

EPSs in Section 2.3 and there are actually a number of attempts to apply RBSs to data

processing. Section 2.4.1 illustrates conventional RBSs and raises some problems with these

systems. Section 2.4.2 illustrates another type of RBSs called ripple-down rules (RDR), which

can address the issues existing in conventional RBSs.

2.4.1 Conventional Rule-Based Systems

Conventional rule-based systems apply production rules introduced in Section 2.3.5.1. These

systems acquire new knowledge by inserting, deleting, modifying existing knowledge.

A production rule system consists of:

 A set of rules

2.4 Role of Rule-Based Systems in Event Data Analysis

27

 Working memory that stores temporary data

 A forward-chaining inference engine (an example of forward chaining decision making

is shown in Figure 2.4)

Figure 2.4 Forward-chaining in production rule systems.

Examples of rule-based systems for data processing include Eprentise Data Quality Software

[96], which offers a rule-based data quality engine for standardisation and matching (merging

and de-duplication), enabling business users to check or change rules directly, with minimal IT

involvement. In this type of system, a rule base contains integrity rules to test integrity of the

data and cleansing rules to take action when violations are encountered [97].

Two acknowledged problems in attempts at commercial use of conventional rule-based

systems in data analysis are [98]:

 Unexpected interaction: It is hard to avoid unexpected interaction between rules as the

size of rule base becomes huge

 Maintenance: In real-world data processing, data analysts constantly need to update

rules incrementally to correct undesired behaviour (or deal with unusual cases).

However, it makes it considerably difficult to manage the rule base, especially when the

rule base becomes huge, as modifying or adding rules may collapse the behaviour of the

rest of the system

For the first problem, a partial solution is to utilise partitioned production systems [99]. In

these systems, only a subset of the rules are active at any time, so the knowledge engineer can

concentrate on just a small number of rules from time to time, and the interactions between rules

can be managed much more easily. As for the second problem, the best known approach is to

use Ripple Down Rules (RDR) [100], which also deal with the first problem. We will

comprehensively explore RDR in the following section.

2.4 Role of Rule-Based Systems in Event Data Analysis

28

2.4.2 Ripple-Down Rules (RDR)

The emergence of RDR is inspired by an insight for domain experts' acquisition pattern:

"experts can never explain how they reach a conclusion, rather they justify that a conclusion is

correct, and provide this justification in a particular context" [100]. This insight suggests that

knowledge acquisition should be incremental and captured within context. Therefore, unlike

other rule management systems, RDR is an error-driven, case-based, incremental rule

acquisition framework. RDR learns incrementally with the domain expert adding rules when a

false conclusion occurs, but never corrupting the existing knowledge base. There are two types

of false conclusions: false positives and false negatives [101]. False positives happen when

some false conclusions are included because of over-simplified rules, and false negatives

happen when some true conclusions are excluded because of some over-precise rules. After

summarising these false conclusions, domain experts then adjust the rule base only by adding

new rules. The case that prompted the addition of a rule is called a cornerstone case, which is

stored along with the rule and is used to compare new cases by the domain experts.

As a 20-year old knowledge acquisition technique, RDR has been used by a number of

companies due to the following advantages [102, 103]:

 Rule bases can be more easily constructed and maintained by domain experts rather

than knowledge engineers

 High accuracy

 Providing the validation of conclusions

 Requires extremely short time to add new knowledge (It has been proved that the whole

processing of adding a rule including checking cornerstone cases takes only a couple of

minutes [104])

 High efficiency

On account of these advantages, RDR can successfully eliminate the limitation of normal

RBSs. There are quite a few successful examples of RDR applications in numerous areas such

as email management. For example, "EMMA" - an E-Mail Management Assistant [105] uses a

type of RDR to manage e-mails. Users are enabled to define their rules to deal with coming

emails by selecting and filling in fields.

There have been some attempts to apply RDR to data analysis in general. For example, RDR

has been used as the basis of existing linkage techniques to detect duplicate invoices [106]. This

system is called "Duplicate Classifier with Ripple Down Rules", which enables domain experts

2.4 Role of Rule-Based Systems in Event Data Analysis

29

to incrementally specify relevant business rules referring to concrete examples; meanwhile, the

rule base (knowledge base) is updated over time. A rule example is as follows:

If: Invoice Number [j] = Invoice Number [i]

& Invoice Date [j] Similar with Invoice Date [i]

& Amount [j] = Amount [i]

& Vendor Name [j] = Vendor Name [i]

& Recurring Vendor = true

Then: Not a duplicate invoice

Figure 2.5 depicts how the "Duplicate Classifier with Ripple Down Rules" system works.

R
D

R

K
n

o
w

le
d

g
e

b
a

se

KB

Classifier

Rule Builder
Adding

Rules

Pre-

processor
Raw cases

Detected

Duplicates

Pre-

processed

Cases

Domain

Expert

review

in
p

u
t

Figure 2.5 The architecture of an RDR application on duplicate invoice detection.

Another successful RDR application on data analysis is to standardise address information,

one major step of address cleansing in enterprises [107], which is the second stage of an IBM

product – IBM Quality Stage [108]. Apart from RDR, the system also adopts variants finder and

synonyms finder in cooperation with RDR framework, focusing on one data field – address in

this case, by splitting the address into several subfields and classify them according to the

context, that is, using RDR in a classification way [109]. Also, they have a matching tool to

2.4 Role of Rule-Based Systems in Event Data Analysis

30

identify similar or duplicate records in the third stage, which is optional in their proposed

system. To sum up, they are using RDR to deal with one single domain (customer data),

focusing on semantics (parsing and standardisation), and using additional techniques in other

parts of the tool to address issues that RDR cannot handle.

One limitation of RDR is that it does not provide an appropriate solution for issues associated

with the unique characteristics of event data. In other words, complex event processing is not

supported by RDR.

2.4.3 Using Rule-Based Systems for Managing Event Data Analysis

We now perform a comparison between the capabilities of data processing, event processing

and rule-based systems concepts in order to examine their role in event data analysis. We have

selected three capabilities to be used in this comparison.

 Automation (A) – Can the system complete tasks automatically?

 Complex Event Processing (CEP) – Is the system capable and efficient when operating

on temporal data? In other words, does the system support complex event processing?

 User-Driven Rule Set Evolution (URSE) – Does the data analyst have the control over

the business logic of the data analysis? In other words, can the system be evolved by the

data analyst alone without IT experts involved?

Table 2.3 How do existing potential technologies/approaches meet the criteria.

√: Yes, ×: No, √*: Possibly yes but not mature or efficient

DPPT: data pre-processing tool; DBMS: database management system; SDAT: statistical data

analysis tool; EPS: event processing system; RBS: rule-based system; RDR: ripple-down rules.

Category Technologies / Approaches A CEP URSE

Generic

DPPT (Section 2.2.1) × × ×

DBMS (Section 2.2.2) × √* ×

SDAT (Section 2.2.3) √ × ×

EPS EPS (Section 2.3) √ √ ×

RBS
Conventional RBS (Section 2.4.1) √ × ×

RDR (Section 2.4.2) √ × √

The results of the comparison are displayed in Table 2.3. None of these technologies or

approaches has all capabilities required for conducting event data analysis. Specifically:

2.4 Role of Rule-Based Systems in Event Data Analysis

31

 Generic Approaches: They can hardly handle time-related issues. In other words, they

do not have the capability of complex event processing. Besides, data analysts cannot

evolve the system by themselves.

 DPPT (Data Pre-Processing Tool): Due to the niche market of this type of tools, these

tools are only capable in generic data pre-processing on a rather fundamental level.

Thus, in many cases they play a supplementary role for mainstream tools like

Microsoft Excel. Users need to give commands step by step so they are not automatic.

 DBMS (Database Management System): Competent users can define their own

queries to manage the database according to their needs. However, DBMSs are

deemed a high-level technology to data analysts who have limited IT expertise, so

they can hardly use the system by themselves. Except temporal database, which is

still an immature technology that is not commercialised, DBMS cannot handle time

issues efficiently.

 SDAT (Statistical Data Analysis Tool): These tools are powerful provided that the

user can write specific programs/scripts. This requires a certain level of programming

skills. Once the program is written, it can automate the data analysis process.

 EPS (Event Processing System): The obvious advantage of EPS is the capability of

complex event processing. Learning any specific EPL is time-consuming so data

analysts themselves cannot use the system easily by themselves. Regardless of the type

of EPL, once EPL code is modified, the previous data analysis can no longer be

repeated. Whilst an overwhelming body of research work focuses on the operational

issues, e.g. event processing language expressiveness and performance [110], there is a

lack of research on event processing rule management. Another important criterion for

EPS is giving data analysts the ability to customise the system according to their needs

[111], which is not given sufficient emphasis, as most work on EPS does not support

user-driven rule set evolution in event data analysis no matter how good the language

expressiveness is. Among the very limited discussion on user-driven rule set evolution,

there are two important insights: reuse of existing event patterns is of great importance

for efficiency [112]; the idea of rule templates for EPS for completing rules as well as

decoupled "building blocks" of rule logic is promising [113]. We agree with these

insights. However, the use of rule templates is not sufficient to eliminate rule re-

building efforts when modifying the rule. In most cases, the same IT expert and/or

knowledge engineer who built the existing rule set (or rule base) is needed to re-build

the entire rule set. Besides, most literature on event processing rule management tends

2.5 Conclusion

32

to focus on building each single rule in isolation and disregard the management of the

rule set as a whole. It has been proved in the knowledge acquisition community that

when the size of the rule set gets huge, it becomes very difficult to maintain the rule set,

as any modification of the rule set may cause the system to collapse [103]. Thus in most

existing EPSs, as rules may be closely associated with each other, it is difficult to keep

track of changes effectively.

 RBS (Rule-Based System): Rule-based systems are not designed for data analysis

purpose, but attempts have been made to apply them to assist data analysis processes.

Thus, they do not have obvious advantages on data analysis; however, RDR, a sub-type

of RBS, has been applied successfully to some certain types of data analysis, e.g.

duplicate invoice detection and address standardisation. It proves to be successful in

user-driven rule set evolution of the system. However, RDR has never been used for

event data analysis.

Based on all the discussion above, we can find out that the research gap is:

There is no existing technology or approach for event data analysis that enables complex event

processing and facilitates user-driven rule set evolution.

2.5 Conclusion

This chapter firstly provided some background regarding event data analysis, and then reviewed

literature regarding approaches for event data analysis. It explored three major categories of

technologies or approaches: generic approaches, event processing systems (EPSs) and rule-

based systems (RBS). Examples of each category have been given to illustrate their capabilities.

Finally, this chapter compared all these technologies or approaches using three capabilities:

automation, complex event processing and user-driven rule set evolution, and found that no

single approach has all these capabilities. To be more specific, capability A (automation) can be

easily met as long as the event data analysis logic can be defined as a runnable process.

Capability CEP (complex event processing) can only be satisfied by EPS, which however does

not facilitate user evolution of the system. Capability URSE (user-driven rule set evolution) can

only be satisfied by RDR, which in nature does not support complex event processing and thus

has not yet been applied to event data analysis. The research gap is "There is no existing

technology or approach for event data analysis that enables event processing and facilitates

user-driven rule set evolution."

Next chapter will resume the discussion on the research gap, raise research questions and

illustrate the methodology of conducting this research.

33

Chapter 3 Research Plan

This chapter provides an overview of the research plan used in the thesis. Section 3.1

summarises the research gap identified in Section 2.5 and expresses the corresponding research

questions addressed by this thesis. Section 3.2 describes the research approach. Finally, Section

3.3 provides the details of the methodology used in this research.

3.1 Problem Statement

Based on the literature review, we find that event data analysis is best conducted using a

combination of multiple technologies or approaches providing different capabilities. We have

investigated possible technologies or approaches in three different categories (data processing

tools, event processing systems and rule-based systems) and found that none of them can satisfy

all the following capabilities (first introduced in Section 2.5):

 Automation (A) – Can the system complete tasks automatically?

 Complex Event Processing (CEP) – Is the system capable and efficient when operating

on temporal data? In other words, does the system support complex event processing?

 User-Driven Rule Set Evolution (URSE) – Does the data analyst have the control over

the business logic of the data analysis? In other words, can the system be evolved by the

data analyst alone without IT experts involved?

Our first research question is:

How can we provide a new method

that enables complex event processing and facilitates user-driven rule set evolution?

As discussed in Chapter 2, complex event processing can be enabled by some existing

technologies (e.g. EPS), and user-driven rule set evolution can be facilitated by some

approaches (e.g. RDR). One possible new method is to leverage the EPS technology with the

RDR approach in one system. Thus, the second research question is:

How can we leverage existing Event Processing Systems to support the new method?

Once we find out how to leverage existing event processing systems, another problem

emerges. All these techniques including Event Processing Systems diverge from each other in

many aspects, e.g. the data model they use, the availability of application programming

3.2 Research Approach

34

interfaces, etc. This renders it extremely hard to accommodate these techniques in one system so

that they can interoperate with each other. As a result, our last research question is:

How can we facilitate the interoperability of event data in any proposed system?

3.2 Research Approach

To answer the first research question, this thesis proposes a new method that enables complex

event processing and facilitates user-driven rule set evolution, by leveraging the capability of

the EPS technology with the RDR approach. The reason why this new method can answer the

first research question is that the RDR approach brings in the capability of user-driven rule set

evolution (see Section 2.4.2), and the EPS technology is specialised in complex event

processing (see Section 2.3).

For the second research question, this thesis proposes to develop an architecture that meets

the following requirements:

 The RDR approach is adapted to play the role of routing the event processing logic,

while still supporting incremental acquisition that enables data analysts to define and

add rules by themselves;

 Any EPS can be integrated into the system so that data analysts are allowed to conduct

event data analysis without any concern about which event processing language/engine

to use.

For the third research question, this thesis proposes a framework that facilitates event data

modelling. This can enable the interoperability between components of an event data analysis

system. Specifically, the new event data modelling framework should:

 Allow event pattern types and occurrences to be defined;

 Abstract existing event and event pattern occurrence representation formats in a

consistent manner;

 Be easily extended to different types of datasets and domains.

The architecture that integrates EPS with RDR, and the event data modelling framework that

facilitates the interaction between components of an event data analysis system are the two main

artefacts that will be developed as part of this research. The following section will illustrate our

research methodology to realise these specific objectives for the research.

3.3 Research Methodology

35

3.3 Research Methodology

Figure 3.1 demonstrates the research methodology used in this thesis, which is adopted from the

Software Development Life Cycle (SDLC) [114]. The main reasons why we use the iterative

SDLC methodology in this research include [115]:

 This process is easy to control and the project is easily monitored;

 It is a highly structured systematic process which allows the capture of all evolving

requirements throughout the development of the proposed work;

 The artefacts in this research that are dependent on each other can be incrementally

refined;

 The product is easy to maintain.

The two artefacts described in the previous section (the architecture that integrates EPS

technology with an RDR approach, and the event data modelling framework) will be developed

iteratively using the SDLC in four phases. These include Analysis, Design, Implementation and

Evaluation. The weight and importance of each phase is varied in each cycle. In early iterations,

we focus more on the Analysis phase than the other phases. We concentrate more on the Design

and Implementation phases in the middle stage of the research. The Evaluation phase is

emphasised when we move toward the end of the research. Figure 3.2 illustrates the research

methodology used in our research. The rest of this section provides the details of each SDLC

phase used in our research methodology.

Figure 3.1. Research methodology.

3.3 Research Methodology

36

Weight

Iterations

Analysis

Design & Implementation Evaluation

Figure 3.2 Weights of each deliverable throughout the research.

 Analysis

In this phase, an investigation is carried out on the background of the research problem (or

from previous iterations if applicable). Advantages and disadvantages of the existing solutions

are determined. A thorough study on event data analysis was conducted in Chapter 2 of this

thesis, which raised the challenge of rule management in event data analysis (see Section 2.1.4).

Different types of possible solutions have been discussed and we have identified the EPS

technology and the RDR approach that have the most potential for inclusion in our design.

 Design

In this phase, we carry out the design of the two artefacts, namely the architecture and the

event data modelling framework. The first half of the research concentrated on the architecture

design, defining the components of the architecture, and the facility to permit communication

between components. The description of the proposed architecture is provided in Chapter 4, and

we elaborate on the proposed event data modelling framework in Chapter 5.

3.4 Conclusion

37

 Implementation

For each iteration of the SDLC cycle, a prototype is developed or refined based on the

proposed architecture in an incremental manner. The details of the prototype implementation

can be found in Chapter 6.

 Evaluation

A case study regarding financial market data pre-processing will be used to evaluate the

proposed work in this research. Use cases and event processing rules are selected based on real-

life experience of finance experts. Further details of the evaluation process and results are

provided in Chapter 7.

3.4 Conclusion

Following the discussion of related work in Chapter 2, we have further discussed the possible

approach to resolving the limitations of existing solutions to event data analysis in this chapter.

We have broken down the research problem into three research questions and then proposed a

specific research approach to answering all the research questions. Two artefacts need to be

developed, namely a software architecture in which event processing systems (EPSs) are

integrated with ripple-down rules (RDR); and a new event data modelling framework

facilitating the construction of event data models that defines a standard representation of event

data and event pattern occurrences. We also describe the methodology used to carry out this

research as well as provide an overview of the two research artefacts in this chapter. We will

elaborate on these two artefacts and our implementation respectively in the next three chapters.

38

Chapter 4 Proposed Architecture

This chapter illustrates the first design artefact of the research called the EP-RDR architecture.

We start with an overview of the proposed architecture in Section 4.1. Sections 4.2, 4.3 and 4.4

describe in detail components in the business layer of the architecture. The data layer and the

user layer are illustrated in Sections 4.5 and 4.6 respectively. In Section 4.7, two use cases of

the system are demonstrated using sequence diagrams. The material presented in this chapter

has been published in [116-118].

4.1 Overview

As mentioned in Section 3.2, the proposed architecture should meet the following requirements:

 The RDR approach is adapted to play the role of routing the event processing logic,

while still supporting incremental acquisition that enables data analysts to define and

add rules by themselves;

 Any EPS can be integrated into the system so that data analysts are allowed to conduct

event data analysis without any concern about which event processing language/engine

to use.

The proposed architecture is referred to as "Event-Processing RDR (EP-RDR)" to reflect the

integration of event processing system technology with an RDR approach. Basically, EP-RDR

is a novel approach to enable incremental user-driven rule set evolution in event data analysis.

From the perspective of rule management, we aim to adopt the RDR approach for event

processing purposes. The advantages are eliminating event processing rule rebuilding,

enhancing the reuse of existing event processing rules, keeping track of event processing

changes, simplifying rule management and thus avoiding rule base collapse. From the

perspective of complex event processing, we aim to take advantage of existing EPS

technologies by allowing them to be integrated into the system so that data analysts are able to

conduct their event data analysis without any concern about which event processing

language/engine to use.

The key feature of the architecture is that the event processing rules in the system can be

incrementally enhanced by data analysts, meanwhile eliminating the risk of corrupting the rule

base. They can execute existing rules, inspect results, and evolve the rule base according to the

results. IT experts will only play the role of defining and deploying event pattern types.

Specifically, the purpose of EP-RDR is to support the following three use cases:

4.1 Overview

39

For data analysts:

 Rule Addition: This is the case where the event data analyst defines a rule and adds it

into the rule base.

 Rule Execution: This is the case where a defined rule base is executed upon event

datasets.

For IT experts:

 Event Pattern Type Definition: This is the case where the IT expert defines and deploys

event pattern types.

The EP-RDR architecture is shown in Figure 4.1. Conceptually, it is organised into three

layers according to the widespread three-layer architecture [119, 120]:

 Data Layer: This layer includes data persistence mechanisms, e.g. databases (often

relational databases), and the facility called "data access components" for encapsulating

data persistence mechanisms and exposing data stored in databases to the business layer

so that applications can access the data. In the data layer of the EP-RDR architecture,

the data persistence mechanisms include an Event Pattern Definition Table, an Event

Processing Rule Base, an Event Pattern Occurrences Stack repository and a List of

Actions repository. All these data persistence mechanisms will be elaborated in Section

4.5.

 Business Layer: This layer is sometimes cited as "logic layer" or "application layer". It

includes core components and interaction between these components in the application

and essentially it controls the application's functionality. The two core components in

the business layer are the Ripple-Down Rule System (RDR) and an Event Pattern

Detection as a Service (EPDaaS). The RDR component has two parts: the Rule Builder

that manages the business logic of the event data analysis, i.e. event processing rules,

and the Engine that executes the rules. The EPDaaS component invokes one or more

EPS and detects occurrences of event pattern types defined in the rules. More details of

each of these two components and their interaction will be provided in Sections 4.2 and

4.3. Underlying EPSs that can be invoked by EPDaaS will be illustrated in Section 4.4.

 User Layer: This layer can also be called "user interface layer" or "presentation layer".

It is the topmost level of the architecture. It displays information related to the business

functionality and allows the user to interact with the Business Layer via Graphical User

Interfaces (GUIs) or web pages. The user interfaces in the user layer include an Event

4.2 The RDR Component

40

Processing Rule Manager GUI and an Event Processing Rule Processor GUI. Both

these two user interfaces will be discussed in Section 4.6.

Engine EPDaaS

Request to

detect event patterns

Event Data Analyst

Service

Interface

Event Processing

Rule Manager GUI

Event Processing

Rule Processor

GUI

Define rules Execute rules

Event

Pattern

Definition

Database

Event

Processing

Rule Base

Event Pattern

Occurrences

Stack

List of

Actions

Inspect actions

Detected occurrences

EPS 1

EPS 2

EPS 3

U
s
e

r

L

a
y
e

r
B

u
s
i
n

e
s
s

L

a
y
e

r
D

a
t
a

L

a
y
e

r

Rule

Builder

RDR

IT Expert

Deploy

Describe

event pattern types

Define event

pattern types

Figure 4.1 Proposed EP-RDR architecture.

4.2 The RDR Component

We now describe the RDR component in more detail. Firstly, we delve more into different RDR

algorithms and inference techniques, and determine which algorithm and inference technique is

the most appropriate to be applied to the EP-RDR architecture. After that, we illustrate the two

sub-components of the RDR component, namely the RDR Rule Builder and the RDR Engine.

4.2 The RDR Component

41

4.2.1 Selection of RDR Algorithms and Inference Techniques

There are a number of types of RDR that use different algorithms and inference techniques. In

this section, we explore these algorithms and inference techniques and determine the most

appropriate algorithm and inference technique of RDR for the EP-RDR architecture.

4.2.1.1 Algorithm Selection

Many RDR algorithms exist. The most frequently used ones include the following: Single

Classification Ripple Down Rules (SCRDR), Flat Ripple Down Rules (Flat RDR), Multiple

Classification Ripple Down Rules (MCRDR).

 Single Classification RDR (SCRDR)

An SCRDR [121] knowledge base is a finite binary tree with two edges labelled with

"except" and "if-not" respectively and nodes labelled with primary rules. SCRDR works from

the root of the tree passing a data case all the way to the end when there are no more nodes to

evaluate. If the case entails the condition of the rule, records the conclusion temporarily,

overrides the previous conclusion, and then passes it through the except branch to the next node.

Otherwise, the case will be passed through the if-not branch to the next node. Figure 4.2 is an

example pattern of SCRDR. The rule number signifies the order in which rules are added into

the system. It can be easily seen from the examples that the newly added rules revise the

knowledge without collapsing the original knowledge base. This process agrees with the pattern

of human knowledge acquisition where any knowledge people acquire at a stage may have

limitations and exceptions and it may not always be true. RDR enables users to at any stage

modify what they have already learned before.

Figure 4.2 SCRDR example pattern [101].

SCRDR has been successfully adopted in different domains such as PEIRS on pathology (the

first RDR system) and an address standardisation system [107].

Root Rule à

Default

conclusion

Rule 1 à

Conclusion 1

Rule 2 à

Conclusion 2

except except

Rule 3 à

Conclusion 3

Rule 4 à

Conclusion 4

if not if not

Rule 5 à

Conclusion 1

except

4.2 The RDR Component

42

The strengths of SCRDR is that rule bases can be easily revised [103]. However, SCRDR

does not clearly link which attributes result in which conclusion [103]. Also, SCRDR is not

suitable for multiple independent classifications (exponential redundancy increase) [122]. Most

importantly, when using SCRDR, the rule base may be ill-structured and considerable repetition

of knowledge may result [122].

 Flat RDR

A Flat RDR is different from SCRDR in that it is an n-ary tree of depth two with each node

labelled with a primary rule. The root is a default rule leading to a dummy conclusion. Depth 1

contains classification rules and Depth 2 contains deletion rules to refine Depth 1 conclusions.

All the classification rules on Depth 1 are evaluated and the system records the conclusions,

overriding the dummy conclusion. New deletion rules are added when the classification is an

over-generalisation. A new classification should be added when the classification is an over-

specialisation. It is mainly designed for multiple classifications. So it does not function as well

as SCRDR in single classifications [101].

Figure 4.3 is a simple example pattern of Flat RDR. A complete Flat RDR classification

contains classification and deletion. The users have to add new classification rules continuously

but not add exceptions on existing rules. This may result in difficulties when managing the rule

base.

Figure 4.3 Flat RDR example pattern [101].

 Multiple Classification RDR (MCRDR)

MCRDR [122], as an extension of SCRDR, allows multiple independent classifications. An

MCRDR is an n-ary tree with only except branches. If a node is true, all its children are

evaluated. Figure 4.4 is an example pattern of MCRDR. As can be seen from these examples,

MCRDR can lead to multiple conclusions.

ROOT

Classification

Rule A

Classification

Rule B

Classification

Rule C

Deletion

Rule

Deletion

Rule

Deletion

Rule

Deletion

Rule

4.2 The RDR Component

43

Figure 4.4 MCRDR example pattern [101].

While MCRDR is not efficient for single classifications [103], it has some advantages over

other algorithms. Firstly, MCRDR clearly links attributes to corresponding conclusions.

Secondly, in MCRDR all conclusions are independent so it outperforms other algorithms when

a single subject may lead to multiple conclusions.

In event data analysis, each single event may be involved in many multiple situations (event

patterns), and thus leads to a number of different actions on the raw data. Under this

circumstance, SCRDR may be ill-structured and results in exponential redundancy increase

when the size of the rule base gets larger; Flat RDR is hard to manage; and MCRDR allows

multiple conclusions without the repetition issue. Thus, MCRDR is the most suitable existing

RDR algorithm that can be applied.

4.2.1.2 Selected Inference Technique

There are primarily two inference techniques, both of which can be applied to any of the

algorithms discussed above:

 Refinement rules: Refinement rules are stored and processed as a tree. All children rules

are reached only if their parent is fulfilled. Data analysts can add rules after any leaf

rule of the tree.

 Linked-production rules [123]: All rules are at the same level and can be reused.

Therefore, event processing logic is separated from the inference logic, and

modifications can be made merely on inference logic (which rule to be processed next)

rather than on the content of rules (event patterns or actions) when adding rules. This

Root Rule

Default

conclusion

Rule 1

Conclusion 1

Rule 2

Conclusion 2

Rule 3

Conclusion 1

Rule 5

Conclusion 5

Rule 4

Conclusion 4

Rule 6

Conclusion 1

Rule 7

Conclusion 7

Rule 9

Conclusion 5

Rule 8

Conclusion 8

4.2 The RDR Component

44

method can reduce rule redundancy and protect existing rules for the sake of rule

maintenance.

Linked-production rules have obvious advantages over refinement rules in regard to

redundancies and maintenance, so we adopt linked-production rules as the inference technique

in implementing the RDR component.

4.2.2 RDR Rule Builder Sub-Component

An event processing RDR rule is defined as:

If

/* an event pattern occurs*/

the number of occurrences of a particular event pattern type >= 0;

Then

case action;

inference action: go to rule a;

Else

 inference action: go to rule b;

The role of the RDR Rule Builder is to permit incremental definition of rules based on the

presence of event patterns – each event "situation" is represented as an event pattern type in a

rule. The RDR Rule Builder is used in the Rule Addition use case, where the Event Processing

Rule Manager GUI directly interacts with the RDR Rule Builder. Specifically, when the event

data analyst defines a rule and adds it into the rule base, the Event Processing Rule Manager

GUI will invoke the RDR Rule Builder to access the Event Processing Rule Base as well as the

Event Pattern Definition Table. In regard to the event pattern type specified in each rule, if it is

an existing one, the system will simply associate the existing event pattern type to the new rule;

if it is a new one, an IT expert will assist to implement its detection using underlying EPSs and

provide links to the implemented applicable EPS service; the links will be saved in the Event

Pattern Definition Table. If the rule is defined without a problem, the rule will be added to the

rule base according to the right schema.

In order to ensure that previous processing logic can be repeated by data analysts even after

rule addition, the platform needs to keep the set of inference actions at any stage of Rule

Addition use case. Therefore, an additional feature is included: before adding any new rule, the

old inference actions are copied and stored along with the rule. If the event data analyst later

repeats whatever they have done using old rule sets at any point of the rule base evolution, they

are able to select previous rule sets by simply selecting the right rule size. For instance, if the

4.2 The RDR Component

45

event data analyst selects to run the rule set that has a size of 5, the system will use the set of

inference actions saved for the rule set of that particular size (i.e. the rule set when the size was

5). The algorithm to add a new rule is shown in Figure 4.5.

BEGIN ADD_RULE

 /** new_rule_id: the ID of the new rule to be added

 ** trigger_rule_id: the ID of the existing rule that is related to the inspected

 incorrect action

 ** trigger_inf: the predicate to denote whether the true inf. action

 or the false inf. action triggered the addition of the new rule

 ** rule_size: the current size of the rule set

 */

 new_rule_id = rule_size + 1;

 Add inf. action for rule_size (true) & inf. action for rule_size (false) as a column

 in the rule base;

 Copy and store existing inf. action (true) in inf. action for rule_size (true);

 Copy and store existing inf. action (false) in inf. action for rule_size (false);

 Select the event pattern type, get pattern_id from the database;

 Rules[new_rule_id].pattern_type = pattern_id;

 Define Rules[new_rule_id].case_action;

 Save the cornerstone case (JSON) in Rules[new_rule_id].cornerstone_case;

 IF trigger_rule_id < rule_size

 IF trigger_inf == 'true' THEN

 Rules[new_rule_id].inf_action_true

 = Rules[trigger_rule_id].inf_action_true;

 Rules[new_rule_id].inf_action_false

 = Rules[trigger_rule_id].inf_action_true;

 Rules[trigger_rule_id].inf_action_true = new_rule_id;

 ELSE IF trigger_inf == 'false' THEN

 Rules[new_rule_id].inf_action_true

 = Rules[trigger_rule_id].inf_action_false;

 Rules[new_rule_id].inf_action_false

 = Rules[trigger_rule_id].inf_action_false;

 Rules[trigger_rule_id].inf_action_false = new_rule_id;

 END IF

 ELSE

 Rules[new_rule_id].inf_action_true = -1;

 Rules[new_rule_id].inf_action_false = -1;

 IF trigger_inf == 'true' THEN

 Rules[trigger_rule_id].inf_action_true = new_rule_id;

 ELSE IF trigger_inf == 'false' THEN

 Rules[trigger_rule_id].inf_action_false = new_rule_id;

 END IF

 END IF

END

Figure 4.5 The algorithm of rule addition.

4.3 The EPDaaS Component

46

4.2.3 RDR Engine Sub-Component

The RDR Engine is used in the Rule Execution use case. The Event Processing Rule Processor

GUI directly interacts with the RDR Engine in this process. Specifically, when the event data

analyst initiates processing, the Event Processing Rule Processor GUI will call the RDR Engine

to access the Event Processing Rule Base as well as the Event Pattern Definition Table and

execute all the rules one after another according to the inference logic. For each rule, the

corresponding action will be saved into the list of actions for the event data analyst to inspect

after rule execution.

4.3 The EPDaaS Component

The EPDaaS component exposes a service interface that has the ability to invoke any

underlying EPS (using the corresponding EPL) to detect event pattern occurrences. The reason

why the EPDaaS component exposes a service interface rather than using an EPS directly for

the event pattern detection is to allow multiple EPSs that diverge in terms of expressiveness to

be integrated.

The way EPDaaS works is that when invoked with an event pattern type and a reference to an

event dataset, it will perform the following tasks:

 Accessing the Event Pattern Definition Table to find the specified event pattern type.

 Selection of one suitable underlying EPS. If there is merely one EPS, it will naturally be

the selected EPS. If there are multiple EPSs available, the selection can be based on

various algorithms. An example of such algorithms can be:

 First code available: The first EPS that has a proper code to detect the specified event

pattern type is selected, regardless of the priority of the EPSs.

 Invoking the selected EPS for the detection of the event pattern type.

 Storing the results of running the selected EPS. The results will be the occurrences of

the specified event pattern type in this event data set, or abstractions or aggregations of

these occurrences. They are stored in the Event Pattern Occurrences Stack repository.

In principle the RDR component sends a request to detect an event pattern type specified in a

particular rule, and the EPDaaS responds with event pattern occurrences. Rather than sending a

request to the EPDaaS for each event and each rule, all event pattern occurrences of a particular

event pattern type will be detected and returned in one invocation, with all occurrences saved in

the event pattern occurrences stack repository. Then for each event and each rule, the RDR

4.4 Underlying EPS

47

Engine will process each occurrence in the repository in turn to check the "condition" and assert

"action" as specified in the rule. This way, the efficiency of the platform can be guaranteed. The

RDR Engine executes the rule base and generates a list of actions on the original event dataset,

which will be inspected by the event data analyst.

Figure 4.6 shows the service interface of EPDaaS in Web Application Description Language

(WADL) [124]. Specifically, for each single event pattern being detected, the RDR engine sends

a request to the EPDaaS with 2 inputs and 1 output:

 Input (1): the key of the event pattern type to be detected, referred to as "Event Pattern

ID" in Figure 4.6, which is used as an index in the Event Pattern Definition Table.

 Input (2): a reference to the event dataset to be processed (referred to as "Event Data

Set" in Figure 4.6).

 Output: a stack of corresponding event pattern occurrences (referred to as "Detected

Occurrences" in Figure 4.6).

<method name="GET" id="DetectPatternOccurrences">

 <request>

 <param name="EventPatternID" style="query" type="xsd:string"

required="true"/>

 <param name="EventDataSet" style="query" type="xsd:string"

required="true"/>

 </param>

 </request>

 <response>

 <representation mediaType="text/json"

 element="DetectedOccurrences"/>

 </response>

</method>

Figure 4.6 The WADL specification of the EPDaaS interface.

4.4 Underlying EPS

At least one EPS can be invoked by EPDaaS. For each underlying EPS, the IT expert writes the

EPL code to detect occurrences of each existing event pattern type, deploys the code as a

service and exposes the service via a link. At least one EPS link should exist in the database.

4.5 Data Layer

48

Multiple attributes can co-exist for all available EPSs. Due to the expressiveness issues in each

EPS, some event pattern types cannot be expressed in particular EPSs.

4.5 Data Layer

4.5.1 Event Pattern Definition Table

As discussed in Section 2.3, there are many EPSs available on the market but unfortunately

none are expressive enough to capture all event pattern types. Thus, it is always hard for data

analysts to select the most appropriate one for their event data analysis. This is the motivation

for the Event Pattern Definition Table, which stores event pattern types and links to each of the

applicable EPSs invoked by the EPDaaS component. This database table is accessed in both the

Rule Addition and the Rule Execution use cases (see Section 4.7). Table 4.1 displays an

example of three rows in the Event Pattern Definition Table. In this table, at least the following

attributes should exist:

 ID: the unique identification number for a particular event pattern type.

 Name: the name of the particular event pattern type.

 Description: the description of the event pattern type. This information could be used

for IT experts to implement this event pattern type using the underlying EPS(s).

 EPS 1 Link: the link to the API of one of the underlying EPS(s) that detects occurrences

of the particular event pattern type. The link could contain some variables. In the

example, each link has a <file> variable, which denotes a reference ID of the data file to

be processed.

In this example, there is only one underlying EPS, so only "EPS 1 Link" is present. If

multiple EPSs are integrated, there will be more attributes like "EPS 2 Link" in the Event

Pattern Definition Table. When a particular EPS is not capable of expressing a particular event

pattern type, the link attribute for this EPS can be left empty.

Table 4.1 An example of the Event Pattern Definition Table.

ID
Name Description EPS 1 link

1
Dividend

event

An event is a "Dividend"

event.

https://unsw.eventswarm.com/data_files/

<file>/eventswarm?rule=Dividend%20e

https://unsw.eventswarm.com/data_files/

4.5 Data Layer

49

vent

2
Duplicate

Dividends

Two events with Type

"Dividend" has the same

timestamp, the same "Div

Amt." and the same "Div

Ex Date".

https://unsw.eventswarm.com/data_files/

<file>/eventswarm?rule=Dividend%20di

vidend

3

Missing

an EOD

event on

DED

No "End Of Day" event

exists with "Div Ex Date"

of a "Dividend" event as

the timestamp.

https://unsw.eventswarm.com/data_files/

<file>/eventswarm?rule=Missing%20E

OD%20on%20DED

4.5.2 Event Processing Rule Base

The Event Processing Rule Base is a relational database that stores event processing rules

defined via the Event Processing Rule Manager. It is also accessed in both the Rule Addition

and the Rule Execution use cases. Table 4.2 displays an example of an event processing rule

base. In each table of the rule base, there should be at least the following attributes:

 Rule ID: a unique number that identifies the particular rule.

 Event pattern ID: the unique number that identifies the event pattern type to be detected

in the particular rule. This ID is linked to the event pattern ID in the Event Pattern

Definition Table.

 Action: the action to be taken on the data if occurrences of the particular event pattern

type are detected.

 Inference action (true): the ID of the rule to be directed to if occurrences of the

particular event pattern type are detected.

 Inference action (false): the ID of the rule to be directed to if occurrences of the

particular event pattern type are not detected.

 Cornerstone case: the case that prompted the addition of a rule. It is stored along with

the rule and is used in comparison to new cases by the data analysts.

Inference action (true) and inference action (false) together form the mechanism to route the

event processing logic.

Table 4.2 An example of an Event Processing Rule Base.

Rule

No.

Event pattern

ID
Action

Inf. action

(true)

Inf. action

(false)

Cornerstone

Case

https://unsw.eventswarm.com/data_files/
https://unsw.eventswarm.com/data_files/

4.5 Data Layer

50

1 1 Action1 2 3 Event a

2 2 Action2 exit 3 Event b

3 3 Action3 exit exit Event c

4.5.3 Event Pattern Occurrences Stack Repository

The Event Pattern Occurrences Stack repository is accessed only in the Rule Execution use

case. It is used to temporarily store detected occurrences of each event pattern type associated

with rules. The purpose of this repository is to eliminate the repetition of detecting the same

event pattern type. Specifically, during rule execution, the rule set is executed on each event in

the dataset; thus each rule in the rule set may be executed multiple times and the event pattern

type associated with each rule may be detected multiple times by the EPDaaS component,

which is inefficient. With the Event Pattern Occurrences Stack repository, for each single rule

and its associating event pattern type, only one invocation of EPDaaS is needed and all

occurrences of the particular event pattern type are stored in the repository for use throughout

the Rule Execution use case. Once a particular event pattern type is detected, the same event

pattern type will never be sent to EPDaaS to detect again. When processing other events in the

dataset, if the same rule/event pattern type is called, the RDR Engine will simply process the

occurrences already detected before. More details on how this repository works are provided in

Section 4.7.2.

This repository can be a relational database or simply a file folder, i.e. anything that can store

event pattern occurrences detected by EPDaaS. As there is no standard for representing event

pattern occurrences, a new event data modelling framework will be introduced in Chapter 5 to

address this issue.

4.5.4 List of Actions Repository

A list of actions is the final result generated by the system after processing all the rules. The list

of actions can be stored in a relational database or simply in files. The List of Action repository

stores each action asserted by each rule, i.e. what to do with the original event dataset. The list

of actions should be accessible throughout the Rule Execution use case and available to the data

analysts via the Event Processing Rule Processor GUI so that they can inspect the result after

rule execution.

An important feature is that a track of decision making, i.e. how this conclusion (action) is

achieved, is stored along with each asserted action in the list. This, together with the cornerstone

4.6 User Layer

51

case saved along each rule, will make it easier for data analysts to inspect the result and find

anomalies.

4.6 User Layer

There are two parts in the user layer. The Event Processing Rule Manager GUI provides two

main functions for the event data analyst to manage the event processing rules, namely defining

event pattern types and defining rules. The Event Processing Rule Processor GUI allows the

event data analyst to commence processing a defined rule set in the Event Processing Rule

Base, and directs the event data analyst to inspect the result, i.e. a List of Actions generated by

RDR, after Rule Execution. Figure 4.7 shows that after Rule Execution the event data analyst

has to inspect the result, and if an incorrect action is found due to a new cornerstone case, the

event data analyst can add a new rule, where the cornerstone case is stored.

List of

Actions with

track of

decisions
Start execution via

Event Processing

Rule Processor

GUI

Inspect Results

(list of actions)
Add a New Rule

If an incorrect

action

is found

Figure 4.7 Rule set evolution.

4.7 Sequence Diagrams

4.7.1 Rule Addition

Figure 4.8 shows a sequence diagram for the Rule Addition use case. To define a new rule, the

event data analyst needs to specify the following information through the Event Processing Rule

Manager GUI:

 Rule set: Which rule set (which table of the Event Processing Rule Database) will this

new rule be added into?

 Rule inference information: This includes the ID of the rule and the inference action in

the rule that has resulted in the incorrect action.

 Cornerstone case: The case that has fired the addition of this new rule.

 Event pattern type: An event pattern type is selected from the pre-defined event pattern

types in the Event Pattern Definition Table. Note that every time a new event pattern

4.7 Sequence Diagrams

52

type is defined by an IT expert, it is saved so that all pre-defined event pattern types can

be selected when building new rules.

 Action: The action to be taken on the data set if an occurrence of the selected event

pattern type is found.

All these parameters will be passed on to the RDR Builder in the business layer. It will then

associate the selected event pattern type with the new rule, and add it into the selected table

(Rule set) of the Event Processing Rule Base. The algorithm of the RDR Builder addition of a

new rule has been illustrated in Section 4.2.2.

RDR

Builder

Pass parameters

If the rule is successfully added

Domain Expert

Access the event pattern type

Request the id of the selected

event pattern type

Event

Pattern

Definition

Table

Event

Processing

Rule Base

Save the new rule

If there is any issue

Event Processing

Rule Manager

GUI

Select: Rule set

Rule inference

Cornerstone case

An event pattern type

Action

Warning

Success info

Associate the pattern

type with the new rule

Figure 4.8 Rule Addition sequence diagram.

4.7 Sequence Diagrams

53

4.7.2 Rule Execution

Figure 4.9 shows a sequence diagram for the Rule Execution use case. First, the event data

analyst invokes the Event Processing Rule Processor GUI. The rule set is then applied on each

event in the dataset. For each rule being processed, the RDR Engine either sends a request (a

service call) to the EPDaaS component if the detection of event pattern occurrences for the

event pattern type specified in the rule is not yet done by the EPDaaS, or otherwise processes

the existing Event Pattern Occurrences Stack repository that stores occurrences detected before.

Whenever the EPDaaS component receives a request, it invokes one of the underlying EPS

according to the information stored in the Event Pattern Definition Table. The selected EPS then

returns a stack of corresponding event pattern occurrences and stores them in the Event Pattern

Occurrences Stack repository. For each iteration, the RDR Engine processes the stack, asserts

the action according to the rule and goes to the next rule according to the "inference action"

defined in the rule. After processing all rules on all events, a list of actions and a track of all

"decisions" made during execution will be generated for the event data analyst's inspection.

4.8 Conclusion

54

RDR Engine EPDaaS

Apply the rules set

New pattern type ? Yes: send

(1) Event pattern ID (2) Event dataset

Respond

If next rule is not “exit”

Domain Expert

Apply rules

on Event e

New pattern type? No

Associate the first rule

 as “current rule”

Apply the current rule
Determine the pattern type

associated in the rule

load EP definition;

run the selected code;

save occurrences in the stack

Event

Pattern

Definition

Table

Determine action

Determine next rule

Event

Processing

Rule Base
Associate the rule

 as “current rule”

If next rule is “exit”More events?

Yes

Event

Processing

Rule Processor

Return actions

Apply rules set

on event dataset

Select next event e

More events? No:

Return all actions

Process
Stack of

Event Pattern

Occurrences

Figure 4.9 Rule Execution sequence diagram.

4.8 Conclusion

In this chapter, we introduced the proposed architecture, called event processing RDR (EP-

RDR), for building and conducting user-driven event data analysis. Its two main components

are a Ripple-Down Rule (RDR) system and an event pattern detection as a service (EPDaaS)

which can interface with any event processing system (EPS). The EP-RDR architecture is

designed to enable rule management by data analysts from the perspective of managing the

whole rule base, and to leverage the functionality of existing Event Processing Systems.

Compared with other event processing systems, the advantages of EP-RDR include:

4.8 Conclusion

55

 Thanks to the RDR Component, the architecture allows for incremental, error-triggered

rule management, i.e. adding a new rule when an incorrect action is inspected without

corrupting the existing rule base.

 The EPDaaS component provides a service interface that can invoke multiple EPSs. For

the execution of each event processing rule, the choice of the EPS depends on the

capability of expressing particular event pattern types. Thus, data analysts do not have

to select the EPS by themselves.

 For different types of event data analysis, data analysts can simply modify the rule set.

 IT experts are not involved in rule management but solely in managing the links to

EPSs in the Event Pattern Definition Table.

However, in the interaction between the two main components - the RDR component and the

EPDaaS component, occurrences of event pattern types detected by EPDaaS need to be stored

in an Event Pattern Occurrences Stack repository so that the RDR Engine can further process

the occurrences and assert the corresponding actions. Due to a lack of standard format for

representing event pattern occurrences, it is still difficult to integrate any EPS easily into the

system. This issue will be addressed by proposing a new event data modelling framework that

can accurately represent event data and event pattern occurrences and can be used by both the

RDR component and any underlying EPS behind EPDaaS. We will illustrate the new event data

modelling framework in the following chapter.

56

Chapter 5 Proposed Event Data Modelling

Framework

This chapter illustrates in detail the proposed Event Data Modelling Framework (EDMF) that

facilitates event data modelling and thus enables the exchange of data between components in

the EP-RDR architecture described in Chapter 4. First, the chapter illustrates the motivation of

this work and the approach adopted. Second, some assumptions that form the basis of the

proposed event data modelling framework are listed in Section 5.2. The chapter then presents

the meta-model and the operational guidelines in Sections 5.3 and 5.4 respectively. Finally, we

apply the framework to build an event data model on a real-life event data analysis scenario in

Section 5.5.

5.1 Motivation and Approach

The Event Data Modelling Framework (EDMF) proposed aims to facilitate event data

modelling for event data analysis systems, particularly for the EP-RDR architecture described in

Chapter 4. The two components of the EP-RDR architecture both require event data handling:

the RDR Rule Builder should allow the definition of event pattern types in the rules (Rule

Addition use case), and the RDR Engine should be able to recognise particular event pattern

types to be detected in the rule conditions (Rule Execution use case). As for the EPDaaS

component, the service interface should know what event pattern type has to be detected and

which EPS is suitable for detecting occurrences for this particular event pattern type.

There have been many attempts at designing data models in diverse domains, for example,

[125, 126], but there is no widely used standard for the representation of event data and event

pattern occurrences, and each single data model available exclusively focuses on data from a

particular domain or data source. The lack of standard in the representation formats for event

data and event patterns is a barrier in the exchange of data between components, e.g. the two

components of the EP-RDR architecture, as one of the main goals is to allow the reuse of

existing EPSs regardless of which data format they use.

Instead of a fixed data model, we propose an Event Data Modelling Framework (EDMF),

which allows data model builders to construct an event data model more easily and in a

consistent manner.

EDMF consists of an Event Data Meta-Model and its associated Operational Guidelines as

shown in Figure 5.1. The Event Data Meta-Model is a high-level model that provides sufficient

5.2 Basic Assumptions

57

abstractions from various co-existing event data representation formats so that we can capture

the semantics of different approaches in a consistent manner. The Operational Guidelines are a

number of steps to be followed by the data model builder.

Data model builders can easily follow the operational guidelines and match the meta-model

to build a target event data model for different event data sources or EPSs. Thus, extensions to

various domains are facilitated. Any system applying EDMF will be independent from any data

source or any EPS.

Event Data

Meta-Model

Operational

Guidelines

Target Event

Data Model

Event Data Modelling

Framework (EDMF)

Figure 5.1 The proposed Event Data Modelling Framework (EDMF).

5.2 Basic Assumptions

The proposed EDMF will facilitate the development of a target data model for the

representation of the following elements in event data analysis:

 Event: a record in an event dataset; it can be either a simple event or a complex event.

 Simple event: an event retrieved from the dataset directly.

 Complex event: an event constructed from an event pattern occurrence that matches a

particular event pattern type.

 Event pattern type: a specification of an event pattern, expressing a set of event types

and their relationships, used to specify matching conditions related to the values,

abstractions or aggregations of the attributes of constituent events.

 Event pattern occurrence: a set of events linked via a number of relationships that match

an event pattern type. In other words, event pattern occurrences are real-life cases of

5.2 Basic Assumptions

58

event pattern types; event pattern types are the specification of event pattern

occurrences.

Figure 5.2 shows the relationships between simple events, event pattern occurrences, and

complex events. Specifically, a complex event is derived from an event pattern occurrence,

which is a matched case of a certain event pattern type. An event pattern occurrence consists of

a set of events (simple events or complex events or a mix of them) extracted from an event data

repository (or an event data stream). Figure 5.3 is a real-life example in the finance domain

(duplicate dividends) to demonstrate the relationships described in Figure 5.2. This example is a

follow-up of the duplicate dividends cases firstly introduced in Section 2.1.4. A Duplicate

Dividends event is derived from an occurrence of Duplicate Dividends pattern type. The

Duplicate Dividends event pattern occurrence consists of two simple Duplicate events extracted

from Sirca TRTH data.

Event

Complex

Event

Simple

Event

Complex

Event

Event Data

Repository

Event Pattern

Occurrence

derived from consist of

extracted from

Figure 5.2 The relationship between events and event pattern occurrences.

Dividend

Simple

Event 1

Duplicate

Dividends

Event

Sirca

TRTH data

Duplicate

Dividends

Pattern

Occurrence

Dividend

Simple

Event 2

derived from consist of extracted from

Figure 5.3 Example of simple events, event pattern occurrences and complex events.

In the following sections, we describe the two main components of EDMF: the Event Data

Meta-Model will be explained in the next section and the Operational Guidelines will be

explained in Section 5.4.

5.3 Event Data Meta-Model

59

5.3 Event Data Meta-Model

Some Meta-Models that represents event pattern types have been proposed, e.g. [127].

However, it is simple and not powerful enough for this thesis. Thus, this section proposes a new

meta-model, introduces the meta-model concepts for events, event patterns and related event

data concepts, represented using UML, and thus each of these concepts is represented using a

UML element [128]. Note that subsections will provide examples of specific instances of these

concepts, e.g. specific events, event patterns and other related concepts.

5.3.1 Overview

Figure 5.4 shows the UML diagram that describes the proposed event pattern meta-model. We

separate instances and types (and thus meta-model vs. model delineation). The latter would

allow us to identify a minimal event pattern meta-model, which can be instantiated in terms of

specific event data models. The meta-model elements and their corresponding model

delineations will be illustrated in detail in the following sections. An XML schema for the meta-

model is shown in Appendix A (see Table A.1).

5.3 Event Data Meta-Model

60

Figure 5.4 Event Data Meta-Model of EDMF.

5.3.2 Event Type

An event can be either a simple event or a complex event. Each event contains a list of values,

including the timestamps and other attribute values. In the proposed system, any event from raw

data of a particular data source is a simple event. A complex event is generated by an

occurrence of a particular event pattern type, which consists of a number of events and the

5.3 Event Data Meta-Model

61

metadata indicating how the complex event is generated. Event Type is the model delineation of

Event. Event is an instance of Event Type.

Event Type and Event are the two most fundamental elements in the meta-model, which

should be considered first when matching the meta-model to build an event data model.

5.3.3 Atomic Data Type and Functor Type

Atomic Data is an element to allow more generic access to data and to make it possible to access

any data types, e.g. Sirca TRTH data, Twitter data, etc. Each of the Atomic Data Type is defined

by its Format and Schema. The Format is any format that represents and stores event data, e.g.

XML or JSON. The Schema describes the structure of the data. Essentially, an Atomic Data

Type is a generic element of an attribute in the actual data, regardless of the data source and the

format of the original data. Through separating Event Type and Atomic Data, multiple wire

formats can co-exist without changing types.

A Functor is a function of an event type (Event Type) returning a value (AtomicData), which

is essentially data carried by an event instance (Event). Specific Functor instances can be

defined to access attributes of an event from data sources. Take a Dividend Event Type for

example (refer to Section 2.1.4 of Chapter 2 for the actual dividend data example). It may have

Functor Types for accessing Atomic Data Types of dividend amount, dividend ex-date and

payment status. Each of the Atomic Data Types is then defined by its own Format and Schema.

Furthermore, specific Functor instances should then be defined to access these attributes,

namely dividend amount (field "Div Amt" in Sirca data), dividend ex-date (field "Div Ex Date"

in Sirca data) and payment status (field "Payment Status") from the data source, for instance,

Sirca TRTH data repository. With the functor concept, extracting attribute values from an event

can be more generic. It knows how to extract an attribute value from an event, but it does not

care how the value is extracted or what type of data is contained inside the event.

Practically, two fundamental functors are:

 Source: The return value of this functor is a string indicating the source of the event,

e.g. "TR_MStream", "ASX_AETH", "Yahoo_Finance", etc. Different data sources use

different clocks, which results in differences in the measurement of time. For example,

there are two sources containing Australian trading data, namely Thomson Reuters Tick

History (source = "TR_MStream"), and Australian Equity Tick History (source =

"ASX_AETH"). In "TR_MStream", for a particular company named "BHP", a trading

happened at 10-JAN-2014, 11:00:35.211 (local time), at the price of 36.37 and with the

volume of 591; for the event in "ASX_AETH" recording the identical trade, however, it

5.3 Event Data Meta-Model

62

has a different time – 11:00:35.011 (local time). This makes it difficult to compare the

time between events from various data sources. Thus, a database storing the clock skew

for each source is required because the source determines the allowance for clock skew

for an event. This thesis focuses on events from a single source, so we do not provide

more discussion on the clock skew issue.

 Timestamp: The return value of this functor is the recorded time of a particular event,

which includes start time and end time. Both start time and end time are timestamps,

each of which is represented by a Coordinated Universal Time (UTC) plus a Greenwich

Mean Time (GMT) offset for the local time. In the context of Australia, the GMT offset

of most of the examples in this thesis is +10 (winter time) or +11 (day light saving

time). Start time and end time being identical means the event is an instantaneous event

at a certain level of precision (e.g. millisecond); otherwise, it is an interval event. A

consideration of the precision of the time will make this more complicated; in this

thesis, we keep the precision as millisecond (the default value). Also note that the start

time and the end time of a complex event is derived from the timestamps of the

individual events used to construct it.

5.3.4 P-DAG Type

P-DAG denotes "pattern directed acyclic graph", which is used to represent an event pattern

occurrence of a certain event pattern type. Formally, a P-DAG instance is defined as:

 P-DAG = < N, E >

 N = <n1, n2, … >

 ni is a set of event(s), ni = <e1, e2, … >

 ei is an event (i = 1, 2, …)

 E = <edge1, edge2, … >

 edgei is an edge between an ordered pair of nodes

 edgei is defined by the ordering semantics (source, target and the ordering option)

 source and target are two nodes in the P-DAG instance, which specifies the order of

two nodes

 ordering options specifies additional rules of the ordering, e.g. the start time of the

source node must be earlier than the start time of target node

5.4 Operational Guidelines

63

To sum up, a node depicts a constituent event in an event pattern occurrence; an edge

represents the time dependencies between nodes (constituent events).

5.3.5 Event Pattern Type and Event Pattern Occurrence

Basically, an event pattern type consists of:

P-DAG + Pattern Description

Pattern description contains additional information to be passed on to the event pattern

implementer to build the event pattern type. The information includes but is not limited to:

 Node referencing sequence: the order of detecting constituent events, i.e. the first, the

second, etc. node to be detected in the pattern detection phase.

 Temporal Constraints: information that constrains time, including the time between

events in an event pattern type, and the time range to detect the occurrences (e.g. to get

all events within a defined period of time).

 Matching Conditions: conditions that denote the relationships between the nodes of

events in the pattern type in regards to values, abstractions or aggregations of the

attributes of constituent events.

The pattern description can be written in a natural language (e.g. English), which will assist

the event pattern implementer to implement the pattern type on an EPS accordingly. All this

information will also be attached to event pattern occurrences detected.

Each event pattern occurrence involves a number of events, which can be simple events

and/or complex events.

5.4 Operational Guidelines

The Operational Guidelines of EDMF help data model builders to apply the Event Data Meta-

Model to their target data source and domain in order to derive a target event data model. The

Operational Guidelines include the following steps (shown in Figure 5.5):

 Step 0: Identify types of events in data and event pattern types to be used. This is

essentially a preparation stage to investigate as much as possible the data and the data

analysis tasks to be conducted on the data, thereby accurately identifying event types

and event pattern types to be used in the event data analysis tasks.

5.4 Operational Guidelines

64

 Step 1: Define event types. After identifying event types from the data, we can define

event type elements. Each event type element must implement/match the Event Type

element in the Event Data Meta-Model.

 Step 2: Define functor types that match attributes in data. Functor types are defined

to facilitate access to attributes in the data. Each event type has a unique set of attributes

in the data; for each attribute, a functor type element should be defined. Each functor

type element must implement/match the Functor element in the Event Data Meta-

Model.

 Step 3: Define event pattern types and corresponding complex event types. After

identifying event pattern types to be used in the analysis tasks, we can define event

pattern type elements and corresponding complex event types accordingly. Each event

pattern type in a specific model, e.g. the duplicate dividends event pattern type
2
 element

must be an instance of the Event Pattern Type element from the Event Data Meta-

Model. Similarly, each complex event type in a specific model element must be an

instance of the Complex Event Type element from the Event Data Meta-Model.

 Step 4: Define atomic data types. According to the need in implementation, the data

model builder can decide to define atomic data type elements to capture different

representations of the data (e.g. XML or JSON). Each atomic data type element must

implement/match the Atomic Data Type element in the Event Data Meta-Model.

2 See Section 5.5.2 for further detail of this event pattern type.

5.5 Example: Building a Data Model for Sirca TRTH Data

65

1. Define event types

2. Define functors that

match attributes in data

0. Identify types of events in

data and event pattern types

to be used

4. Define atomic data types

3. Define event pattern types

and corresponding complex

event types

Figure 5.5 Operational Guidelines of EDMF.

5.5 Example: Building a Data Model for Sirca TRTH Data

Using the Operational Guidelines described in Section 5.4 and the Event Data Meta-Model

described in Section 5.3, this section shows how to build a data model for Sirca TRTH data.

This will be used in this thesis for validation purposes.

5.5.1 Identification of Event Types

In this example we need at least three types of events in Sirca TRTH data. Examples of all the

three categories of events are listed in Table 5.1:

5.5 Example: Building a Data Model for Sirca TRTH Data

66

 End Of Day: events summarizing stock prices, and volumes along with some additional

information at the end of each trading day. This type of data has a duration of 24 hours

and is also called Daily Events.

 Dividend: a type of corporate action event which record actions issued by a corporate,

resulting in the change of share ownership and cash flows from or to the shareholder. A

dividend is a payment made by a firm out of its current or accumulated retained

earnings to its owners, which gives rise to a fall of the stock price by the dividend

amount on the executive date (the attribute "Div Ex Date").

 Capital Change: another type of corporate action event. One most frequent kind of

capital change is called stock split, which is an increase or decrease in the number of

outstanding shares, decreasing or increasing the per-stock price and earnings per stock.

Table 5.1 Examples of events in the financial domain in Australia.

Data Type
Start Time (st)

End Time (et)
Some Attribute Values

End Of Day

st = 26 Oct 2008

14:00:00.000, +10

et = 27 Oct 2008

13:59:59.999, +10

RIC Open Last Volume

CBA.

AX
40.66 40.02 4196278

Dividend

st = 30 Oct 2008

14:00:00.000, +10

et = 31 Oct 2008

13:59:59.999, +10

RIC
Div Ex

Date
Div Amt.

Div Mkt

Lvl ID

CBA.

AX

19 Jan

2009
2.472 802225

Earnings

st = 5 May 2008

14:00:00.000, +10

et = 6 May 2008

13:59:59.999, +10

RIC
EPS

Amount

EPS

Period

End

Date

EPS

Scaling

Factor

EPS

Period

Length

AQA.

AX
4990

31 Dec

2007
-4 6

5.5.2 Identification of Event Pattern Types

The event pattern types to be used in the analysis tasks include "Duplicate Dividends" and "Two

6-month earnings before End Of Day". These two event pattern types are illustrated below as

examples:

5.5 Example: Building a Data Model for Sirca TRTH Data

67

 Duplicate Dividends.

P-DAG n2 n1

Pattern

Description

The duplicate dividends pattern type involves two nodes of simple

events. The event types of both events in this pattern type are

identical, i.e. "Dividend". For a real example (Figure 5.6), there are

two dividend events on the date of 12-Aug-08. Both of them have the

same "Div Ex Date", "Div Ex Date" and "Div Amt." values, which

implies that these two events can be detected as an occurrence of the

event pattern type. (Note: refer to Section 2.1.4 for the definition of a

dividend.)

n2

n1

Figure 5.6 Pattern occurrence example of "duplicate dividends".

 Two 6-month earnings before End Of Day.

P-DAG E6(1) EODE6(2)

Pattern

Description

Two events E6(1) and E6(2) with type "Earning" (E6(2) before E6(1))

happen before an event with type "End Of Day" (EOD) with:

 The "EPS Period Length" of both E6(1) and E6(2) is 6;

 E6(2).epsEndDate + E6(2).epsLength = E6(1).epsEndDate

Find only one closest occurrence for each EOD if it exists. Figure

5.7 shows a real example of an occurrence of this event pattern type.

5.5 Example: Building a Data Model for Sirca TRTH Data

68

E6(2)

E6(1)

EOD

Figure 5.7 Pattern occurrence example of "Two 6-month earnings before End Of Day".

The next section will focus on defining data model elements in accordance with Steps 1-4 in

the Operational Guidelines illustrated in Section 5.4.

5.5.3 Defining Data Model Elements

After the identification, we define all the event types and event pattern types in the data model.

Each type of event implements the Event Type in the meta-model, i.e. each type is an instance

of Event Type in the meta-model. Each event pattern type implements the Event Pattern Type in

the meta-model. Finally, we can achieve a new model for Sirca TRTH data shown in Figure 5.8

(Note a large number of event pattern types can be identified for Sirca TRTH data but only the

duplicate dividends event pattern type is presented). The elements are marked with numbers that

indicate the corresponding step in Figure 5.5 when they are built. The details of these steps are

as follows:

Steps 1 & 2. According to the investigation on event types needed for Sirca TRTH data in

Section 5.5.1, we can define event type elements:

 SircaTRTHEvent -> instance of -> MM:EventType with:

 id -> instance of -> MM:FunctorType (datatype = string)

 RIC -> instance of -> MM:FunctorType (datatype = string)

 timestamp -> instance of -> MM:FunctorType (datatype = timestamp)

 source -> instance of -> MM:FunctorType (datatype = string)

 attribute(name) -> instance of -> MM:FunctorType(datatype = string)

 Dividend extends SircaTRTHEvent -> instance of -> MM:EventType with:

5.5 Example: Building a Data Model for Sirca TRTH Data

69

 dividend ID -> instance of -> MM:FunctorType (datatype = string)

 dividend amount -> instance of -> MM:FunctorType (datatype = currency)

 dividend ex-date -> instance of -> MM:FunctorType (datatype = date)

 payment status -> instance of -> MM:FunctorType (datatype = string)

 [… and so on]

Other event types can be modelled similarly.

Step 3. We now define event pattern type elements. The event pattern type just captures the

need to define Sirca TRTH event pattern types without being too specific about detail:

 SircaTRTHEventPattern -> instance of -> MM:EventPatternType

Once we have the base types for event and event pattern, we can define a complex event:

 SircaTRTHComplexEvent extends SircaTRTHEvent -> instance of ->

MM:ComplexEventType with:

 events -> instance of -> MM:FunctorType (datatype = set(SircaTRTHEvent))

 pattern -> instance of -> MM:FunctorType (datatype = SircaTRTHEventPattern)

The following elements capture a particular event pattern type (duplicate dividends) and a

complex event type for this event pattern type:

 DuplicateDividendPattern extends SircaTRTHEventPattern -> instance of ->

MM:EventPatternType with:

 Pattern Description: ’2 dividend events with same date and stock id number’ ->

instance of -> MM:Pattern Description

 PDAG: instance of -> MM:PDAGType with:

NodeTypes: first -> instance of -> MM:NodeType captures Dividend

 second -> instance of -> MM:NodeType captures Dividend

EdgeTypes: from first to second -> instance of -> MM:EdgeType with:

 ordering weak_before

 DuplicateDividendEvent extends SircaTRTHComplexEvent -> instance of >

MM:ComplexEventType: matches DuplicateDividendPattern

Step 4. Now we define AtomicDataTypes to capture different representations of

SircaTRTHEvent, for example, XML and JSON:

 SircaTRTHXMLEvent-> instance of -> MM:AtomicDataType with:

5.5 Example: Building a Data Model for Sirca TRTH Data

70

 SircaTRTHXMLEventSchema -> instance of -> MM:Schema with:

 id implements SircaTRTHEvent:id -> instance of -> MM:Functor

 timestamp implements SircaTRTHEvent:timestamp -> instance of -> MM:Functor

 source implements SircaTRTHEvent:source -> instance of -> MM:Functor

 attribute(name) implements SircaTRTHEvent:attribute -> instance of -> MM:Functor

 SircaTRTHJSONEvent -> instance of -> MM:AtomicDataType with

 SircaTRTHJSONEventSchema -> instance of -> MM:Schema with:

 id implements SircaTRTHEvent:id -> instance of -> MM:Functor

 timestamp implements SircaTRTHEvent:timestamp -> instance of -> MM:Functor

 [… and so on]

It can be seen that through separating type and atomic data, we have multiple wire formats

without changing our types. Defining a complex event atomic data type is similar:

 SircaTRTHXMLComplexEvent extends SircaTRTHXMLEvent -> instance of ->

MM:AtomicDataType with:

 SircaTRTHXMLComplexEventSchema -> instance of -> MM:Schema

 events implements SircaTRTHComplexEvent:events -> instance of -> MM:Functor

 pattern implements SircaTRTHComplexEvent:pattern -> instance of -> MM:Functor

An example of using this data model to represent "Duplicate Dividends" event pattern

occurrences is shown in Appendix A (see Table A.2).

5.6 Conclusion

71

1

2 2

3

4

Figure 5.8 Data model for Sirca TRTH data (based on the meta-model).

5.6 Conclusion

In this chapter, we proposed a new Event Data Modelling Framework (EDMF) that facilitates

event data modelling regardless of the domain, data source, the EPS to be used in the EP-RDR

architecture described in Chapter 4. EDMF consists of an Event Data Meta-Model that abstracts

common elements (such as events, event pattern occurrences), and Operational Guidelines to

specify how to construct a target event data model.

EDMF brings benefits for both EP-RDR developers and data analysts. For developers,

applying EDMF to the EP-RDR architecture, it will be easier to implement generic components

that do not depend on how event pattern occurrences are represented. The data model provides

the essential link between the two components of EP-RDR, i.e. RDR and EPDaaS, enabling the

exchange of data in between. This framework can also be extended to other event data analysis

software development. Components of the system may have different data models, but as long

as these data models are all built based on EDMF, it is much easier to relate and match the

5.6 Conclusion

72

separately developed models. For data analysts, data models constructed using EDMF provide a

more informative output, and thus a more detailed tracking of event pattern detection is

facilitated.

73

Chapter 6 Prototype Implementation

This chapter describes an implementation of the EP-RDR architecture and the event data

modelling framework (EDMF) proposed in Chapters 4 and 5. The purpose of the prototype

implementation is to validate the feasibility of the proposed system. This constitutes the first

step in the evaluation. The prototype implementation is also used in the next chapter to conduct

experiments to evaluate other aspects of the proposed system.

6.1 Overview of the Prototype Implementation

In this section, we describe how we have implemented a prototype of the proposed EP-RDR

architecture and the data model using a number of technologies. The relationship between

architectural components and technologies is illustrated in Figure 6.1.

In the business layer, the RDR component (including the RDR Rule Builder and the RDR

Engine) and the EPDaaS component are both implemented in Java. The service interface of

EPDaaS exposed to the RDR Engine is a RESTful API (Application Programming Interface).

More details of the business layer will be provided in Section 6.2.

In the data layer, we have used PostgreSQL to implement the Event Pattern Definition Table

and the Event Processing Rule Base. We have used a folder of files in JSON format to

implement the Event Pattern Occurrences Stack repository, and a folder of files in CSV format

to implement the List of Actions repository. More details of the data layer will be provided in

Section 6.3.

In the user layer, the Event Processing Rule Manager GUI and the Event Processing Rule

Processor GUI have been implemented using Java Swing. More details of the user layer will be

provided in Section 6.4.

As the purpose of the EP-RDR architecture is to enable the use of an EPS back-end, we have

selected a commercial system called EventSwarm. EventSwarm has proven effective and

efficient in real-time analytics for data streams in the health domain [66]. It supports a range of

predefined abstractions and pattern components implemented in Java programming language.

EventSwarm can be invoked via two typical styles. The first style provides users with a GUI to

conduct event pattern detection and inspect the detected occurrences. The second style enables

EventSwarm to be invoked by other applications via a RESTful API, and this is the one used in

this prototype implementation.

6.1 Overview of the Prototype Implementation

74

Engine EPDaaS

Request to

detect event patterns

Event Data Analyst

Service

Interface

Event Processing

Rule Manager GUI

Event Processing

Rule Processor

GUI

Define rules Execute rules

Event

Pattern

Definition

Database

Event

Processing

Rule Base

Event Pattern

Occurrences

Stack

List of

Actions

Inspect actions

Detected occurrences

EPS 1

EPS 2

EPS 3

U
s
e

r

L

a
y
e

r
B

u
s
i
n

e
s
s

L

a
y
e

r
D

a
t
a

L

a
y
e

r

Rule

Builder

RDR

IT Expert

Deploy

Java Swing

Java
Java

REST

REST

EventSwarm

PostgreSQL

File folder

CSV format

File folder

JSON format

PostgreSQL

Describe

event pattern types

Define event

pattern types

Figure 6.1 Technologies used in the prototype implementation.

Prior to implementing the components of the business layer, we have first designed the data

model for implementation and validation purposes according to the Event Data Modelling

Framework (EDMF) proposed in Chapter 5.

Following the steps of the Operational Guidelines described in Section 5.4, we identified the

types of events and event pattern types to be used. A number of event pattern types related to

these types of events are also identified. Then we sequentially defined a number of elements to

match the Event Data Meta-Model described in Section 5.4, including all the event types (that

implement the Event Type in the Event Data Meta-Model), functor types (that implement the

Functor Type in the Event Data Meta-Model), event pattern types (that implement the Event

Pattern Type in the Event Data Meta-Model), complex event types (that are instances of the

Complex Event Type element from the Event Data Meta-Model), and atomic data types (that

implement the Atomic Data Type element in the Event Data Meta-Model). Finally, we

successfully constructed a data model, which is the one provided as an example in Section 5.5.

The UML diagram describing the main part of this data model can be found in Figure 5.8. Note

6.2 Business Layer Implementation

75

that there are a large number of event pattern types that can be identified for the data we use in

the case study, but only the duplicate dividends pattern type is presented in the diagram. More

details of all event pattern types will be provided in Chapter 7.

The details of implementing the business layer, the data layer and the user layer in the system

are now provided in Sections 6.2, 6.3 and 6.4 respectively.

6.2 Business Layer Implementation

The business layer is at the core of the proposed architecture and consists of an RDR component

and an EPDaaS component whose implementation is described next.

6.2.1 RDR Component

The RDR component consists of two sub-components, namely the RDR Rule Builder and the

RDR Engine (see Section 4.2). They have been developed as two Java programs.

The role of the RDR Rule Builder (see Section 4.2.2) is to permit incremental definition of

rules based on the presence of event patterns. Each event "situation" is represented as an event

pattern type in a rule. The RDR Rule Builder is used in the Rule Addition use case, where the

Event Processing Rule Manager GUI directly interacts with the RDR Rule Builder. Figure 4.8

shows a sequence diagram that describes this process. The role of the RDR Engine (see Section

4.2.3) is to execute a rule set on a particular data set. It is used in the Rule Execution use case.

The Event Processing Rule Processor GUI directly interacts with the RDR Engine in this

process. For each rule, the Rule Engine sends a RESTful service request to the EPDaaS

component and waits for response. More details of this process have been shown as a sequence

diagram in Figure 4.9 (see Chapter 4).

As discussed in Section 4.2.1, we have selected MCRDR as the RDR algorithm and linked-

production rules as the inference technique in implementing the RDR component.

6.2.2 EPDaaS Component

As discussed in Section 4.3, the EPDaaS Component exposes a RESTful service interface that

has the ability to invoke any underlying EPS (using the corresponding EPL) to detect event

pattern occurrences. The way EPDaaS works is that when invoked with an event pattern type

and a reference to an event dataset, it will access the Event Pattern Definition Table to find the

specified event pattern type, select one underlying EPS (in this case, there is only one

underlying EPS so virtually there is no need to do the selection), invoke the selected EPS for the

detection of the event pattern type, and store the results of running the selected EPS.

6.3 Data Layer Implementation

76

The EPDaaS component is also implemented as a Java program. As mentioned earlier, we

have only selected one underlying EPS to be invoked by EPDaaS - EventSwarm, because it has

the following outstanding features [66]:

 It has the ability to filter on any computed abstraction that matches a single event,

including statistical analysis;

 It is capable of using causal precedence in sequence patterns.

 It is advantageous in managing time and ordering issues of events due to event

timestamps, buffering, flexible relationships between events, time skew allowance and

causal ordering.

 It provides the ability to calculate statistics on sliding time windows and use the

statistics in expressions.

An IT expert is still required to implement the rules in EventSwarm for detecting all the event

pattern types needed. There is a total of thirteen event pattern types that have been implemented

for evaluation purposes (details in Chapter 7). The way EventSwarm works in this prototype is

shown in Figure 6.2.

EPDaaS

The event pattern type to be detected

A/B/C

EventSwarm

Event Data file

Occurrences of the selected event pattern type

represented using the data model (JSON format)
B CA

Implemented event

pattern types

RESTful

invocations

Figure 6.2 How EventSwarm works in the implementation.

6.3 Data Layer Implementation

6.3.1 Event Pattern Definition Table

The Event Pattern Definition Table stores event pattern types and links to each the applicable

EPS invoked by the EPDaaS component (see Section 4.5.1 for details). It is implemented using

a PostgreSQL [32] database. The SQL statements for creating the Event Pattern Definition

6.3 Data Layer Implementation

77

Table are shown in Figure 6.3. The columns in the Event Pattern Definition Table are shown in

Figure 6.4.

CREATE TABLE eventpatterndefinition

(

 id integer NOT NULL, -- The unique identification number for a particular event

pattern type.

 name character varying(256) NOT NULL, -- The name of the particular event pattern

type.

 description character varying(1024) NOT NULL, -- The description of the event pattern

type. This information could be used for IT experts to implement this event pattern type

using the underlying EPS(s).

 epslink character varying(1024), -- The link to the API for an EPS that detects

occurrences of the particular event pattern type.

 CONSTRAINT "ID" PRIMARY KEY (id)

)

WITH (

 OIDS=FALSE

);

ALTER TABLE eventpatterndefinition

 OWNER TO postgres;

COMMENT ON COLUMN eventpatterndefinition.id IS 'The unique identification number for a

particular event pattern type.';

COMMENT ON COLUMN eventpatterndefinition.name IS 'The name of the particular event

pattern type.';

COMMENT ON COLUMN eventpatterndefinition.description IS 'The description of the event

pattern type. This information could be used for IT experts to implement this event

pattern type using the underlying EPS(s).';

COMMENT ON COLUMN eventpatterndefinition.epslink IS 'The link to the API for an EPS that

detects occurrences of the particular event pattern type.';

Figure 6.3 SQL for creating the Event Pattern Definition Table.

Figure 6.4 Definition of Event Pattern Definition Table columns in PostgreSQL.

6.3.2 Event Processing Rule Base

The Event Processing Rule Base is a relational database that stores event processing rules

defined via the RDR Rule Builder (see Section 4.5.2 for details). It is also implemented using a

PostgreSQL database. The SQL statements for creating a rule set of Event Processing Rule Base

6.3 Data Layer Implementation

78

are shown in Figure 6.5. The columns in a rule set of Event Processing Rule Base are shown in

Figure 6.6.

CREATE TABLE eventprocessingruleset

(

 ruleid integer NOT NULL, -- A unique number that identifies the particular rule.

 eventpatternid integer NOT NULL, -- The unique number that identifies the event

pattern type to be detected in the particular rule.

 inference_action_true integer NOT NULL DEFAULT (-1), -- The ID of the rule to be

directed to if occurrences of the particular event pattern type are detected.

 inference_action_false integer NOT NULL DEFAULT (-1), -- The ID of the rule to be

directed to if occurrences of the particular event pattern type are not detected.

 cornerstonecase json, -- The case that prompted the addition of a rule.

 action character varying(256) NOT NULL, -- The action to be taken on the data if

occurrences of the particular event pattern type are detected.

 CONSTRAINT "Rule ID" PRIMARY KEY (ruleid),

 CONSTRAINT "matching event pattern type ID" FOREIGN KEY (eventpatternid)

 REFERENCES eventpatterndefinition (id) MATCH SIMPLE

 ON UPDATE NO ACTION ON DELETE NO ACTION

)

WITH (

 OIDS=FALSE

);

ALTER TABLE eventprocessingruleset

 OWNER TO postgres;

COMMENT ON COLUMN eventprocessingruleset.ruleid IS 'A unique number that identifies the

particular rule.';

COMMENT ON COLUMN eventprocessingruleset.eventpatternid IS 'The unique number that

identifies the event pattern type to be detected in the particular rule.';

COMMENT ON COLUMN eventprocessingruleset.inference_action_true IS 'The ID of the rule to

be directed to if occurrences of the particular event pattern type are detected.';

COMMENT ON COLUMN eventprocessingruleset.inference_action_false IS 'The ID of the rule

to be directed to if occurrences of the particular event pattern type are not

detected.';

COMMENT ON COLUMN eventprocessingruleset.cornerstonecase IS 'The case that prompted the

addition of a rule. ';

COMMENT ON COLUMN eventprocessingruleset.action IS 'The action to be taken on the data

if occurrences of the particular event pattern type are detected.';

Figure 6.5 SQL for creating a rule set of Event Processing Rule Base.

6.3 Data Layer Implementation

79

Figure 6.6 Definition of a rule set of Event Processing Rule Base columns in PostgreSQL.

6.3.3 Event Pattern Occurrences Stack & List of Actions Repositories

The Event Pattern Occurrences Stack repository is used to temporarily store detected

occurrences of each event pattern type associated with rules. The purpose of this repository is to

eliminate the repetition of detecting the same event pattern type (see Section 4.5.3 for details).

In this implementation we use a file folder that contains all event pattern occurrences detected

by the EPS. For each request for detecting one particular event pattern type, a JSON file named

"EPO######" containing event pattern occurrences detected by the EPS is generated and stored

in this folder (see Figure 6.7). The structure of the JSON file is based on the data model built on

the EDMF proposed in Chapter 7.

Figure 6.7 A sample file in the Event Pattern Occurrences Stack repository.

The List of Actions repository stores the final results generated by the system after processing

all the rules, containing each action asserted by each executed rule, i.e. what to do with the

original event dataset (see Section 4.5.4 for details). In this implementation, a CSV file is

6.3 Data Layer Implementation

80

generated for each execution. Each action in the list has an ID, the action content and a decision

making trace, i.e. how this conclusion (action) is achieved. A sample of the List of Actions is

shown in Table 6.1.

Table 6.1 A sample of the List of Actions.

ID Action Content Decision Making Trace

1 Remove Event 158 Pattern "Duplicate Dividends": Event 158 and Event 159 ...

2 Remove Event 225 Pattern "Duplicate Dividends": Event 225 and Event 226 ...

...

6.4 User Layer Implementation

As discussed in Section 4.6, there are two GUIs in the user layer. The Event Processing Rule

Manager GUI provides two main functions for the event data analyst to manage the event

processing rules, namely defining event pattern types and defining rules. The Event Processing

Rule Processor GUI allows the event data analyst to commence processing a defined rule set in

the Event Processing Rule Base, and directs the event data analyst to inspect the result, i.e. a

List of Actions generated by RDR, after Rule Execution. In this implementation, we have

combined these two GUIs in one screen. Figure 6.8 shows a snapshot of this user interface,

which has been developed using Java Swing.

The Event Processing Rule Management GUI enables the event data analyst to select pre-

defined event pattern types, define event processing rules, and add defined rules into the rule

base. Prior to rule definition, the GUI first asks the data analyst to specify the ID of the rule

(shown as "Rule Number" in the GUI in Figure 6.8) and inference action (shown as "True" and

"False" in the GUI in Figure 6.8) in the rule that has resulted in the incorrect action, along with

the ID of the cornerstone case (i.e. the event that have triggered the rule addition, shown as

"Add this rule due to event Number" in the GUI in Figure 6.8). When defining a rule, the data

analyst needs to select a pre-defined event pattern type. Once a pre-defined event pattern type is

selected, the analyst needs to specify the action to be taken on the occurrences of the selected

event pattern type. Note that the cornerstone case specified here will be saved together with the

new rule, and the inference actions will be changed according to the triggering rule and

inference action specified here.

The Event Processing Rule Processor GUI provides the event data analyst with a list of rule

sets to select from, and asks the analyst to select a dataset they would like to process. Then they

can simply click the "Run" button to start the execution of the selected rule set on the selected

6.5 Limitations

81

dataset. If the execution is completed successfully, the data analyst can inspect the result by

clicking the "Inspect Result" button.

Event Processing Rule Processor

Event Processing Rule Manager

Figure 6.8 An overview of the GUI in the prototype.

6.5 Limitations

As mentioned earlier, the main purpose of developing the prototype is to validate the feasibility

of the proposed EP-RDR architecture and the corresponding EDMF via a case study. This case

study, described in Chapter 7, is related to financial market data pre-processing and involves

thirteen different event pattern types. The limitations of this prototype implementation are now

discussed.

Firstly, while data analysts are able to define rules using pre-defined event pattern types, they

are still not able to define new event pattern types by themselves. Data analysts need to

communicate the details of new event pattern types to the IT expert, who will then define event

pattern types separately from the GUI and associate them with corresponding EPS code to

detect them. To improve the process of event pattern type definition, we can set up a standard

on the visual presentation to define an event pattern type, and add a new component to the GUI.

This allows data analysts to define simple event pattern types by drawing an event-dependency

6.6 Conclusion

82

graph called P-DAG (see Section 5.3.4), and specifying the description of the event pattern

type. Then the IT expert can read this information and implement the new event pattern

accordingly. This makes the GUI more user-friendly and simplifies the process of

communication between the IT expert and the data analyst. However, even if the GUI is

extended in this way, only simple event pattern types can be easily defined via the GUI. As for

the definition of complex event pattern types, the process is not simplified much especially

when the P-DAG cannot be easily drawn via the GUI. In this case, data analysts still need to

communicate the details of new event pattern types with the IT expert in person.

The second limitation is that only one EPS (EventSwarm) can be selected to be invoked by

EPDaaS although the architecture is designed to have the ability to invoke multiple EPSs. This

is not a big issue as long as the selected EPS can handle all the event pattern types required for

the case study used in the thesis. To make this tool more powerful in expressiveness and

performance, additional EPSs need to be integrated into the system.

Thirdly, the data model must be constructed according to the data related to a particular

domain. This still requires manual work by an IT expert. To minimise the time of data model

construction, more sophisticated data modelling tools need to be used.

6.6 Conclusion

This chapter described how we implemented the EP-RDR architecture proposed in Chapter 4

along with the data model proposed in Chapter 5. This implementation will be used to evaluate

the suggest approach in the next chapter.

83

Chapter 7 Evaluation and Case Study:

Financial Market Data Pre-Processing

This chapter uses a case study in the finance domain, i.e. financial market data pre-processing to

validate the proposed work. In Section 7.1, it reviews the research questions, and defines the

evaluation criteria and corresponding evaluation metrics. Then in Section 7.2, it gives some

background to financial market data pre-processing and describes two scenarios used in the case

study. The detailed experiments and results of the evaluation of the proposed method are

provided in Sections 7.3 and 7.4. Parts of the material presented in this chapter have been

published in [129].

7.1 Evaluation Criteria and Metrics

In this section, we will first review the research questions of the thesis, and define the criteria

used to evaluate the contribution of the thesis in addressing the research questions. Then, we

will define some evaluation metrics accordingly.

7.1.1 Review of Research Questions and Defining Evaluation Criteria

As pointed out in Section 3.1, the main objective of this research is to investigate an approach

that enables data analysts to manage event data analysis on historical data with minimal IT

expert intervention. Accordingly, we have defined the following research questions:

 How can we provide a new method that enables complex event processing and

facilitates user-driven rule set evolution?

 How can we leverage existing Event Processing Systems to support the new method?

 How can we facilitate the interoperability of event data in any proposed system?

In order to answer these research questions, we proposed EP-RDR architecture (Chapter 4)

and an EDMF framework (Chapter 5). In this chapter, we will be evaluating the thesis

contribution in addressing these research questions. For this purpose, we now define the

following evaluation criteria:

 Feasibility and Interoperability: The EP-RDR architecture should be feasible; the

interoperability of event data between the architectural components should be

facilitated.

7.1 Evaluation Criteria and Metrics

84

 Complex Event Processing Capability: The system should be capable of conducting

complex event processing on event datasets.

 User-Driven Rule Set Evolution Capability: Data analysts with minimal IT experience

should have control over rule set evolution in the system.

7.1.2 Evaluation Metrics

We now define some metrics to evaluate our new method according to each of the evaluation

criteria above.

 Feasibility and Interoperability

This criterion is satisfied if the proposed EP-RDR architecture in Chapter 4 can be

successfully implemented and the interoperability of event data between components (RDR and

EPDaaS) can be realised. This will be achieved by:

 Developing a prototype of the design (which involves developing RDR and EPDaaS

components, selecting an underlying EPS, selecting the database, developing a usable

GUI).

 Selecting at least one appropriate event data set, running the prototype with the

selected data set, and recording the execution times of one particular rule and several

rules respectively.

 Observing if event data can be transferred between RDR and EPDaaS components

successfully, check whether there is any incorrect or missing information incurred

when the event data transferred from RDR to EPDaaS, and whether the event pattern

occurrences detected by the underlying EPS can be recognised and processed by the

RDR component.

 Complex Event Processing Capability

This criterion is satisfied if event processing rules can be properly defined and executed. We

should perform the following to accomplish this evaluation:

 Define at least one scenario in an appropriate domain where event data analysis is

involved. Select at least one appropriate event data set.

 In each scenario, a data analyst should be able to add one event processing rule in an

empty rule set and execute this rule only.

 Observe if this event processing rule can be defined and executed properly.

7.1 Evaluation Criteria and Metrics

85

 We can also compare the result of this rule with the result produced by other existing

tools.

 User-Driven Rule Set Evolution Capability

This criterion is satisfied if data analysts are able to easily evolve the system by themselves

easily, which means making changes to rule sets according to new cases without affecting other

existing rules. This is the most important part of the evaluation. We will perform the following

tasks to accomplish this evaluation:

 Define at least one scenario in an appropriate domain where incremental event data

analysis is involved. Select at least one appropriate event data set. This can be done

together with the evaluation of "Complex Event Processing Capability".

 In each scenario, a data analyst should work iteratively by executing the current rule

set, inspecting the resulting list of generated actions and decisions, and adding new

rules. This can also be done together with the evaluation of "Complex Event

Processing Capability".

 Observe if new rules can be added successfully.

 In at least one particular iteration of rule addition, observe if any other existing rule is

affected.

 Compare the time of rule set evolution (or rule change) using our new method with

some other existing tools.

 Compare the efficiency of rule change in an appropriate iteration of the rule set

evolution. The rule change efficiency (RCE) of the system in one particular iteration

of rule change can be calculated using the following formula:

RCE = (1 - % of false negatives) / No. of rules changed

Now we illustrate the formula above. For a particular iteration of rule change due to a new

case, consider in the selected data set there are totally N cases to be detected and asserted an

action on. False negatives are cases that should be detected but have not been detected. If the

number of false negatives is FN, then:

RCE = (N - FN) / (N * No. of rules changed)

Note that in this formula we have applied the concept of "recall" in the machine learning field

[130]:

Recall = (N - FN) / N

7.2 Case Study Background

86

7.1.3 Summary

To sum up, we need to do the following to accomplish the evaluation on all the criteria listed

above:

 Select appropriate event data sets in a particular domain and define case study scenarios

where incremental event data analysis is involved.

 Develop a prototype, and compare the execution time of one particular event processing

rule with other tools.

 Observe the various aspects of the system according to different criteria.

 Compare our new method with some other existing tools via observation and

calculation.

Now we start the illustration on the case study in the following section, including the

selection of a proper domain and appropriate event data sets in this domain, and the definition of

scenarios where incremental event data analysis is involved.

7.2 Case Study Background

We have selected financial market data pre-processing as the case study used to evaluate the

proposed architecture. First of all, financial market data (e.g. stock data, corporate action data,

etc.) comes with a timestamp associated with each record, so it can be considered as a typical

example of event data. Secondly, data pre-processing is an integral part of financial market data

analysis, which involves addressing time-related data quality issues. Many interesting event

pattern types can be defined and used in financial market data pre-processing. Therefore, we are

able to find appropriate scenarios to conduct the evaluation discussed above.

In this section, an overview of financial market data pre-processing and some examples are

provided in Section 7.2.1. Then, we illustrate in detail two types of financial market data

analysis that require complex data pre-processing in Sections 7.2.2 and 7.2.3 respectively.

7.2.1 Overview of Financial Market Data Pre-Processing

Financial market data is a source of knowledge about trading behaviour, strategies and patterns,

market design, operations and efficiency, products being traded, and financial news. For this

reason, there are many financial market data providers that sell either real-time data or historical

data. Examples of real-time financial market data providers include Thomson Reuters [131] and

Bloomberg [132]. Examples of historical financial market data providers include Sirca [25] that

7.2 Case Study Background

87

specialises in Australian data and WRDS [133] that provides mostly US data. In this case study,

we will be using data downloaded from Thomson Reuters Tick History (TRTH) provided by

Sirca.

Prior to conducting any meaningful financial study, data analysts expend a lot of effort on

data collecting and pre-processing (also known as data preparation). Since there are many data

quality issues such as missing data, duplicates and inconsistencies, data pre-processing is an

indispensible phase where data analysts detect and manage these data quality issues, and

standardise the data to facilitate further processing and analysis. Data pre-processing generally

involves [21]:

 Data quality control (Cleansing): attempts to fill in missing values, smooth out noise

while identifying outliers, and correct inconsistencies in the data.

 Data integration: involves combining data residing in different sources and providing

data analysts with more meaningful and valuable information.

 Data transformation (Standardisation): converts a set of data values from the data

format of a source data system into the data format of a destination data system.

 Data reduction: is the process of minimising the amount of data that needs to be stored

in a data storage environment. Data reduction can increase storage efficiency and

reduce costs.

In particular, event data pre-processing handles a number of issues (see Table 7.1), which can

be categorised into "time-related" and "non-time-related" issues.

There are many data quality issues associated with Sirca TRTH data that require pre-

processing. For example, prior to carrying out an event study [134] using a software tool (e.g.

Eventus [135]), the data analyst needs to first download the raw company stock data, and pre-

process the dataset, i.e. cleansing the data and calculating returns (see Figure 7.1). If the data

pre-processing is not done properly, the data analysis will end up with errors or unreasonable

and unreliable results.

7.2 Case Study Background

88

Table 7.1 Summary of major issues to be addressed by event data pre-processing

Category Dimension Problem Name Explanation

Non-time

-related

issues

Accuracy

Illegal values

A value does not comply with the

type or does not exist in the attribute

dictionary

Invalid formats
The format of value does not agree

with the type

Completeness Missing values

Missing attribute values (null or

default) within a data-compulsory

field

Consistency

Inconsistent

values
Two attributes do not agree

Inconsistent

formats in the

same attribute

Values within the same attribute

have different formats resulting in

difficulty in understanding

Time -

related

issues

Event

Uniqueness
Duplicate events

Similar repeated records (with the

same timestamps and ID values) due

to event update or verification

Timeliness Out-of-date
The data is out-of-date and has to be

updated or verified

Completeness Missing events
Missing event record which is

compulsory

Event

Consistency

Inconsistent

event order

sequence

Time stream sequence is not in a

consistent order

Time-related key

value

disagreement

Key value of an event is changed

over time, resulting in key value

disagreement

Time overlapping
Time overlapping due to key

attribute value change

Time-related

meaning

inconsistency

Meaning of an attribute depends on

time it was generated

7.2 Case Study Background

89

Cleanse Data and

Calculate Returns

Event Study Tool

(e.g. Eventus)

Returns

Database

Raw company data

(downloaded from

data source)

Figure 7.1 Example of data pre-processing (for event studies).

The rest of this section will introduce two scenarios of TRTH financial market data pre-

processing, namely eliminating duplicate dividends and calculating earnings. These two

scenarios are both representative of financial market data pre-processing, and involve complex

event processing rules and require incremental rule set evolution (i.e. modification on the

business logic according to new cases). The purpose of the data analysis involved in these two

scenarios is to detect occurrences of particular event pattern types related to the data pre-

processing and to generate a CSV file with a list of actions to be taken on the original dataset.

The actions can be deleting a particular event, reporting potential problems in data, filling in a

value in a field, etc.

7.2.2 Scenario 1: Eliminating Duplicate Dividends

We introduced the duplicate dividends problem in Section 2.1.4 as an example of rule set

evolution in event data analysis. This example will constitute the basis of our first scenario in

the case study. In the following, we extend this example and illustrate the change of logic when

data analysts are dealing with this problem.

There are totally six cases that result in an incremental modification of the rules (business

logic). The cases are displayed in Table 7.2. The expected action relating to these cases is listed

in Table 7.3.

Specifically, in the most common cases, like Case 1 shown in Table 7.2(a), duplicate events

are considered simply as two dividend events with the same timestamp, the same "Div Amt."

and the same "Div Ex Date". After a while in the new case (Case 2) shown in Table 7.2(b), the

Div Ex Date in this Dividend event refers to a day that has no trading, which means this

Dividend event may not be valid. This needs to be reported in the output so the data analyst can

avoid the potential errors caused. Thus, a new rule should be defined to rectify the issue.

Similarly, other new cases all result in changes of the existing rules (see Table 7.3 for details).

7.2 Case Study Background

90

Table 7.2 Different cases in eliminating duplicate dividends.

(a) Case 1 – Simple duplicate dividend records: two events with Type "Dividend" has the

same timestamp, the same "Div Amt." and the same "Div Ex Date".

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

(b) Case 2 – No "End Of Day" event exists with "Div Ex Date" of a "Dividend" event as the

timestamp.

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

(c) Case 3 – An event with the type "Dividend" has null or empty value in the field "Div

Amt." or "Div Ex Date".

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 15/10/2013 Dividend 9344378 0 APPD

 (d) Case 4 – Although these two dividends are issued at the same time (Date), the Div IDs

are different which indicates they are two different dividends rather than a duplicate.

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.07 7885540 0 APPD

ABC 12/08/2012 Dividend 11/10/2012 0.07 7926058 0 APPD

 (e) Case 5 – A "Dividend" event has a value other than "APPD" in the field "Payment

Status". This dividend event is not approved (a value other than APPD) so it should be

considered as an out-dated record.

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 12/08/2012 Dividend 11/09/2012 0.08 7885540 0 PROP

7.2 Case Study Background

91

 (f) Case 6 – A "Dividend" event has '1' in the field "Div Delete Marker". This dividend event

is virtually deleted by the data provider, so this is not a valid entry.

#RIC Date Type Div

Ex Date

Div

Amt

Div ID Div

Delete

Marker

Payment

Status

ABC 26/08/2014 Dividend 11/09/2012 0.15 9654412 1 APPD

Table 7.3 Cases and their expected actions of Scenario 1.

Case Brief Description Expected Action

1 Simple duplicate dividend records: Two events

with Type "Dividend" have the same timestamp,

the same "Div Amt." and the same "Div Ex

Date".

Delete the former dividend

event

2 No "End Of Day" event exists with "Div Ex

Date" of a Dividend event as the timestamp.

Report it: Missing data

3 An event with the type "Dividend" has null or

empty value in the field "Div Amt." or "Div Ex

Date".

Discard this Div event and

report missing value

4 A pair of duplicate dividends (pattern type No.

4) have different "Div Mkt Lvl ID". Although

these two dividends are issued at the same time

(Date), the Div IDs are different which indicates

they are two different dividends rather than a

duplicate.

This cannot be counted as a

"duplicate dividends" case.

5 A "Dividend" event has a value other than

'APPD' in the field "Payment Status". This

dividend event is not approved (a value other

than APPD) so it should be considered as an out-

dated record.

This dividend event cannot

be counted in any "duplicate

dividends" case.

6 A "Dividend" event has '1' in the field "Div

Delete Marker". This dividend event is virtually

deleted by the data provider, so this is not a valid

entry.

This dividend event cannot

be counted in any "duplicate

dividends" case.

7.2 Case Study Background

92

7.2.3 Scenario 2: Calculating Earnings

This is a more complicated scenario, which can better show the capability of the new system in

handling rules involving complex event processing. In some financial studies, researchers need

to calculate and compare the Price-Earnings ratios (P/E) of different companies in the same

industry to indicate whether investors of a particular company are expecting higher earnings

growth in the future than other companies. This is a very important measure for investors to

assess a company. P/E equals market value per share (i.e. price) divided by earnings per share.

P/E = Price/Earnings per share

Thus, to calculate P/E ratio, we need both price data that provides price information and

corporate action data that provides earnings information.

The task here is to find the correct value of "earnings per share" from "Earning" data for each

trading day ("End Of Day" event) in TRTH data. There are totally six cases we have

incrementally found that result in an incremental modification on the rules (business logic). The

cases are displayed in Table 7.4. The expected action relating to these cases is listed in Table

7.5.

At the first stage, the data analyst defined a rule based on the most common cases like Case 1

shown in Table 7.4(a). The content of the rule is:

If an event with type "Earning" (E) happens before an event with type "End Of Day" (EOD)

(Note that for each EOD find only one closest occurrence if it exists),

then the "earnings per share" for this EOD event should be calculated by

E.epsAmount * 10
EPS_scaling_factor

.
3

After a while, the data analyst found some new cases like the one (Case 2) shown in Table

7.4(b) that caused incorrect calculation using the previous rule. In this case, there are "Earning"

events with "6" (months) as the value of the "EPS Period Length" field rather than "12" (month)

as in the most common cases. The data analyst decided to annualise the "Earning" events, i.e.

find two "Earning" events with "6" month "EPS Period Length" and add up "EPS Amount"

values in these two records so their EPS periods together constitute one year. Thus, the

calculation of the earnings of the End Of Day event should be changed. Similarly, other new

cases all result in changes of the existing rules (see Table 7.5 for details).

3 "epsAmount" denotes the value of the field "EPS Amount" in the "Earning" event, and "EPS_scaling_factor"

denotes the value of the field "EPS Scaling Factor"

7.2 Case Study Background

93

Table 7.4 Different cases considered in calculating earnings.

(a) Case 1 – Normal earning record.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 17/08/2011 Earning 30/06/2011 12 2306.9 -4

ABC 18/08/2011 EndOfDay

(b) Case 2 – 6 months' earnings + 6 months' earnings.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 28/02/2012 Earning 31/12/2011 6 2071.7 -4

ABC 22/08/2012 Earning 30/06/2012 6 7974 -5

ABC 23/08/2012 EndOfDay

(c) Case 3 – 3 months' earnings + 3 months' earnings + 6 months' earnings.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 28/02/2011 Earning 31/12/2011 3 952.5 -4

ABC 25/05/2012 Earning 31/03/2012 3 1350.6 -4

ABC 22/08/2012 Earning 30/06/2012 6 2011.3 -4

ABC 23/08/2012 EndOfDay

(d) Case 4 – 3 months' earnings + 9 months' earnings.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 28/02/2012 Earning 31/12/2011 3 874 -4

ABC 25/05/2012 Earning 31/03/2012 9 1985 -4

ABC 26/05/2012 EndOfDay

 (e) Case 5 – 3 months' earnings + 3 months' earnings

+ 3 months' earnings + 3 months' earnings.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 28/02/2011 Earning 30/9/2011 3 522 -4

ABC 25/05/2012 Earning 31/12/2011 3 887 -4

ABC 22/08/2012 Earning 31/03/2012 3 1397.3 -4

ABC 22/08/2012 Earning 30/06/2012 3 4352 -5

ABC 26/05/2012 EndOfDay

7.2 Case Study Background

94

(f) Case 6 – 9 months' earnings + 3 months' earnings.

RIC Date Type EPS Period

End Date

EPS Period

Length

EPS

Amount

EPS Scaling

Factor

ABC 28/02/2012 Earning 31/12/2011 9 2004 -4

ABC 28/02/2013 Earning 30/09/2012 3 1085.4 -4

ABC 01/03/2013 EndOfDay

Table 7.5 Cases and their expected actions of Scenario 2.

Case Brief Description Expected Action

1 An event with type "Earning"

(E) happens before an event

with type "End Of

Day" (EOD).

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = E.epsAmount *

10
EPS_scaling_factor

2 Two events E6(1) and E6(2) with

type "Earning" (E6(2) before

E6(1)) happen before an event

with type "End Of Day" (EOD)

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = (E6(1).epsAmount +

E6(2).epsAmount) * 10
EPS_scaling_factor

3 Three events with

type "Earning" (E3(2) before

E3(1) before E6) happen before

an event with type "End Of

Day" (EOD)

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = (E6.epsAmount +

E3(1).epsAmount + E3(2).epsAmount) *

10
EPS_scaling_factor

4 One 3-month earning and one

9-month earning before End Of

Day

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = E9.epsAmount +

E3.epsAmount

5 Four 3-month earnings before

End Of Day

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = (E3(1).epsAmount +

E3(2).epsAmount + E3(3).epsAmount +

E3(4).epsAmount) * 10
EPS_scaling_factor

6 One 9-month earning and one

3-month earning before End Of

Day

Calculate the earnings of the EOD event using

the following formula:

EOD.earnings = (E3.epsAmount +

E9.epsAmount) * 10
EPS_scaling_factor

7.3 Evaluating Feasibility, Interoperability and Event Processing Capability

95

7.2.4 Conventional Tools Used in Financial Market Data Pre-

Processing

In real life scenarios, data analysts either employ a programmer to develop a bespoke program,

or learn and apply an existing data pre-processing tool to perform pre-processing tasks on

datasets. Therefore, we have selected two tools to be compared with our new system (EP-RDR)

in the experiments (see Table 7.6). One of them is a bespoke program (BP) we developed which

implements the data pre-processing logic in Java for both the "eliminating duplicate dividends"

scenario and the "calculating earnings" scenario. The other one is OpenRefine (OP) [9], which

is a popular and representative data pre-processing tool that is broadly utilised in various

domains.

Table 7.6 Other tools used in the experiments to be compared with EP-RDR.

Abbr. Name Description

BP Bespoke Program A dedicated program that implements the data pre-

processing logic in Java for both the "eliminating

duplicate dividends" scenario and the "calculating

earnings" scenario.

OP OpenRefine One of the most popular and free desktop applications for

data pre-processing, previously funded by Google. This

tool is easy to use but data pre-processing business logic is

performed manually by data analysts.

7.3 Evaluating Feasibility, Interoperability and Event

Processing Capability

7.3.1 Feasibility and Interoperability

As discussed in Chapter 6, we have successfully developed a prototype for the proposed

artefacts, namely EP-RDR architecture and the event data modelling framework (EDMF). This

prototype functioned properly and gave expected results. From the perspective of a software

developer, the design is not hard to implement because most complex logic resides with an

existing EPS (EventSwarm). Developers are able to implement it using different technologies

flexibly. Therefore, the proposed method is feasible.

7.3 Evaluating Feasibility, Interoperability and Event Processing Capability

96

In both of the two scenarios (eliminating duplicate dividends and calculating earnings)

described in Sections 7.2.2 and 7.2.3, the system could execute the corresponding rule set

without any problem. Event data was transferred between RDR and EPDaaS components

successfully and no incorrect or missing information was incurred. The event pattern

occurrences detected by the underlying EPS (EventSwarm) are represented in JSON format,

compliant with the data model we built via EDMF. Thus, these occurrences could also be

recognised and processed by the RDR component, since they share the same meta-model.

In terms of execution time, we compared the EP-RDR prototype with BP (see Table 7.6). We

selected one particular rule in the eliminating duplicate dividends scenario and 2 different data

sets to record the execution time interval from starting the program to getting the final result

(the list of actions). The rule is based on Case 1 in Table 7.2:

If two events with Type "Dividend" has the same timestamp, the same "Div Amt." and the same

"Div Ex Date"

then delete the former dividend event.

Note that we have pre-uploaded three data sets in different sizes onto the EPS (EventSwarm)

server prior to execution, so that the remote file upload time are not considered as part of the

execution time.

For each of these three datasets, we first executed this rule for ten times and calculated the

average execution time. The results are shown in Table 7.7 (a). Then, we executed seven rules

defined according to the "eliminating duplicate dividends" scenario (see Section 7.2.2) ten

times, using each of these three datasets on EP-RDR and BP respectively, and calculated the

average execution time. The results are shown in Table 7.7 (b). Note that these seven rules are

displayed in Section 7.4.1. Finally, we have calculated "the number of events per second" under

execution time (per rule) to demonstrate the efficiency of both EP-RDR and BP (see Table

7.7(c)). The records of each execution time are listed in Appendix B (see Tables B.1 and B.2).

Table 7.7 Execution time comparison.

(a) Average execution time of 1 rule.

 Companies Date Range
No. of

events

Dataset

Size (KB)

Average Execution

Time (s)

EP-RDR BP

Dataset 1 SGB.AX
01/06/2007 -

31/05/2009
764 143 0.374 0.247

Dataset 2
BHP.AX and

ZYL.AX

01/01/2005 -

29/04/2011
5300 1001 0.870 0.753

Dataset 3
36 Dubai

companies
4

01/12/2006 -

04/12/2013
90262 32605 7.829 5.500

4 The RICs of these 36 Dubai companies are listed in Appendix B (see Table B.3)

7.3 Evaluating Feasibility, Interoperability and Event Processing Capability

97

 (b) Average execution time of 7 rules.

 Companies Date Range
No. of

events

Dataset

Size (KB)

Average Execution

Time (s)

EP-RDR BP

Dataset 1 SGB.AX
01/06/2007 -

31/05/2009
764 143 2.585 0.591

Dataset 2
BHP.AX and

ZYL.AX

01/01/2005 -

29/04/2011
5300 1001 4.817 1.845

Dataset 3
36 Dubai

companies

01/12/2006 -

04/12/2013
90262 32605 35.140 10.149

(c) Number of events per second under execution time.

 EP-RDR BP

1 Rule

Dataset 1 2043 events/sec 3093 events/sec

Dataset 2 6092 events/sec 7039 events/sec

Dataset 3 11529 events/sec 16411 events/sec

7 Rules

Dataset 1 2069 events/sec 9049 events/sec

Dataset 2 7702 events/sec 20108 events/sec

Dataset 3 17981 events/sec 62256 events/sec

As we can see from the results, EP-RDR is generally a little slower than BP. This is mainly

due to the fact that the underlying EPS (EventSwarm) is only available remotely rather than

locally. Therefore, the EP-RDR prototype requires remote invocation of the underlying EPS,

which largely relies on the Internet connection status. While executing multiple rules, multiple

remote invocations are required (one invocation for each event pattern type), so the execution

time difference becomes larger. If the underlying EPS could be invoked locally, the

performance would be more comparable. The comparison in this section is mainly used to

evaluate the feasibility of the proposed approach and the interoperability of the components.

In regard to the rule modification time, we compared the EP-RDR prototype with the BP and

OP. We tried to build a rule set for all the cases shown in Table 7.2, BP required an IT expert to

implement the rules and it took several days for each rule to be implemented. In OP, not all the

rules can be implemented. In EP-RDR, the rule building process was much easier, and took only

five minutes for each rule to be added. We also asked a data analyst with very limited IT

knowledge to try build the rule base by himself and it was successfully done within an hour,

without assistance by the IT expert.

7.3 Evaluating Feasibility, Interoperability and Event Processing Capability

98

7.3.2 Complex Event Processing Capability

To assess the ability of the system in detecting complex event pattern types, we tried to define

two particular rules. The first rule is based on Case 1 in Table 7.2:

If two events with Type "Dividend" has the same timestamp, the same "Div Amt." and the same

"Div Ex Date"

then delete the former dividend event.

The second rule is based on Case 2 in Table 7.4:

If the following pattern occurs:

E6(2) -> E6(1) -> EOD

Two events E6(1) and E6(2) with type "Earning" (E6(2) before E6(1)) happen before an event with

type "End Of Day" (EOD) with:

 The "EPS Period Length" of both E6(1) and E6(2) is 6;

 E6(2).epsEndDate + E6(2).epsLength = E6(1).epsEndDate

(Find only one closest occurrence for each EOD if it exists)

then Calculate the earnings of the EOD event using the following formula:

EOD.earnings = (E6(1).epsAmount + E6(2).epsAmount) * 10
EPS_scaling_factor

.

OP was not capable of handling the above rules as they required complex time handling (i.e.

event pattern detection). BP and EP-RDR could handle these time-related rules and automate

the process but BP had to be implemented by an IT expert, while EP-RDR was customised by

data analysts. The result of this comparison is shown in Table 7.8.

Table 7.8 Complex Event Processing capability comparison.

√: can be implemented and customised by data analysts

√*: can be implemented but cannot be customised by data analysts

×: cannot be implemented
 EP-RDR BP OP

The 1st Rule √ √* ×

The 2nd Rule √ √* ×

7.4 Evaluating User-Driven Rule Set Evolution Capability

99

7.4 Evaluating User-Driven Rule Set Evolution Capability

7.4.1 Scenario 1 - Eliminating Duplicate Dividends

In the first scenario - eliminating duplicate dividends, using EP-RDR, the event data analyst

initially defined three rules (Table 7.9(a)). After four iterations, there are finally seven rules

(Table 7.9(b)). The actions and inference actions in italic are those that were added or changed.

In terms of using BP, the data analyst initially asked the IT expert to define the identical three

rules as shown in Table 7.9(a). For each iteration of rule change, the analyst asked the IT expert

to modify the program. As for using OP, the data analyst first tried to define the identical three

rules as shown in Table 7.9(a). For each iteration of rule change, the analyst tried to modify the

rules by himself. Table 7.10 displays all the event pattern types involved in these event

processing rules.

Table 7.9 Initial rule set for eliminating duplicate dividends

(a) Initial rule set for eliminating duplicate dividends

Rule

No.
Event pattern type Action

Inf.

action

(true)

Inf.

action

(false)

1 Dividend event N/A 2 2

2 Duplicate Dividends Delete the former one 3 3

3
Missing an EOD event

on DED
Report it as an error -1 -1

7.4 Evaluating User-Driven Rule Set Evolution Capability

100

(b) Final rule set for eliminating duplicate dividends

Rule

No.
Event pattern type Action

Inf.

action

(true)

Inf.

action

(false)

1 Dividend event N/A 4 2

2 Duplicate Dividends Delete the former one 5 3

3
Missing an EOD event

on DED
Report it as an error -1 -1

4
Missing value in a Div

event

Discard this Div event

and report missing

value

2 2

5 Different Div ID
Retrieve the last

action
3 6

6 Status is not 'APPD'
Retrieve the last

action
3 7

7 Delete Marker is not 0
Retrieve the last

action
3 3

Table 7.10 Event pattern types used in the rule set for eliminating duplicate dividends.

ID Name Event Pattern Description

1 Dividend event An event is a "Dividend" event.

2
Duplicate

Dividends

Two events with Type "Dividend" have the

same timestamp, the same "Div Amt." and the

same "Div Ex Date".

3
Missing an EOD

event on DED

No "End Of Day" event exists with "Div Ex

Date" of a "Dividend" event as the timestamp.

4
Missing value in a

Div event

An event with the type "Dividend" has null or

empty value in the field "Div Amt." or "Div Ex

Date".

5 Different Div ID
A pair of duplicate dividends (pattern type No.

4) have different "Div Mkt Lvl ID".

6 Status is not 'APPD'
A "Dividend" event has a value other than

'APPD' in the field "Payment Status".

7
Delete Marker is

not '0'

A "Dividend" event has '1' in the field "Div

Delete Marker".

7.4 Evaluating User-Driven Rule Set Evolution Capability

101

We did an experiment with the "eliminating duplicate dividends" scenario to compare the rule

change efficiency of both BP and EP-RDR. Specifically, a data analyst ran the initial rule set on

twenty-two Australian companies to detect duplicate dividends. The RIC codes of the twenty-

two companies are listed in Appendix B (see Table B.4). Then the data analyst tried to make

changes to the rule base according to Case 3 in Table 7.2(c). Finally we calculated the rule

change efficiency (RCE) of each system:

RCE = (1 - % of false negatives) / No. of rules changed

In this case, we know that there should be totally 300 dividends removed due to duplicate

dividends or invalid entries (missing values). False negatives will be Dividend events not

removed but should have been removed.

Specifically, after running the initial rule set in Table 7.9(a), a programmer was asked to

modify the code of BP due to Case 3 in Table 7.2(c) for the data analyst; meanwhile, the data

analyst added a new rule in the rule set used by EP-RDR (Rule 4 in Table 7.9(b)). We found

that with respect to BP, the change of the first rule in the initial code affected the two other

following rules in the code, which resulted in three iterations of changes. In fact, it took quite a

long time (approximately one day) to have it working in the right way. In OP, it is the same case

as with BP, but Rule 3 (a time-related rule) could not be properly defined. By contrast, in EP-

RDR, we simply added one rule (Rule 4 in Table 7.9(b)) and the existing rules were not

affected, so the result came out correctly without any side effect. The time of this rule addition

is approximately five minutes, considerably shorter than using BP or OP. Table 7.11 shows the

comparison of rule change efficiency of the three systems.

Compared with BP and OP, EP-RDR enables the event data analyst to update the rule base

simply and neatly without assistance from the IT expert, consuming a significantly less amount

of time. Therefore, we can draw a conclusion that the efficiency of rule changes in our new

system out-performs BP and OP.

Table 7.11 Comparison in rule change efficiency.

Tool
Rules

changed

Total duplicates

not removed

Execution

repetitions

Rule Change

Efficiency

(RCE)

BP & OP

1 300/300

3 33.3% 2 12/100

3 0/100

EP-RDR 1 0/300 1 100%

7.4 Evaluating User-Driven Rule Set Evolution Capability

102

7.4.2 Scenario 2 - Calculating Earnings

In the second scenario - calculating earnings, initially, only one rule (Table 7.12(a)) was defined

by the data analyst. When using EP-RDR, after five iterations of rule addition by the data

analyst, there were finally six rules (Table 7.12(b)). The actions and inference actions in italic

are those that were added or changed. This more complicated scenario is to demonstrate the

more complex event processing capabilities of EP-RDR. Table 7.13 displays all the event

pattern types involved in these event processing rules.

Table 7.12 Initial and final rules for calculating earnings

(a) Initial rule set for calculating earnings

Rule

No.
Event pattern type Action

Inf. action

(true)

Inf. action

(false)

1
Earning before End

Of Day

EOD.earnings =

E.epsAmount *

10
EPS_scaling_factor

-1 -1

7.4 Evaluating User-Driven Rule Set Evolution Capability

103

(b) Final rule set for calculating earnings

Rule

No.
Event pattern type Action

Inf. action

(true)

Inf. action

(false)

1
Earning before End

Of Day

EOD.earnings =

E.epsAmount *

10
EPS_scaling_factor

2 2

2

Two 6-month

earnings before End

Of Day

EOD.earnings =

(E6(1).epsAmount +

E6(2).epsAmount) *

10
EPS_scaling_factor

3 3

3

Two 3-month

earnings and one 6-

month earning before

End Of Day

EOD.earnings =

(E6.epsAmount +

E3(1).epsAmount +

E3(2).epsAmount) *

10
EPS_scaling_factor

4 4

4

One 3-month earning

and one 9-month

earning before End

Of Day

EOD.earnings =

E9.epsAmount +

E3.epsAmount

5 5

5

Four 3-month

earnings before End

Of Day

EOD.earnings =

(E3(1).epsAmount +

E3(2).epsAmount +

E3(3).epsAmount +

E3(4).epsAmount) *

10
EPS_scaling_factor

6 6

6

One 9-month earning

and one 3-month

earning before End

Of Day

EOD.earnings =

(E3.epsAmount +

E9.epsAmount) *

10
EPS_scaling_factor

-1 -1

7.4 Evaluating User-Driven Rule Set Evolution Capability

104

Table 7.13 Event pattern types used in the rule set for calculating earnings.

EOD End Of Day, E Earning

An arrow defines the chronological order of two events, i.e. a -> b means a happens "strictly" before b (we do not

count it when a and b happen on the same date); En means an "Earning" event with n as the value of "EPS Period

Length"; EOD denotes an End-of-day event (price data); ‘epsEndDate’ denotes the field "EPS Period End Date";

‘epsLength’ denotes the field "EPS Period Length"

ID Name Event Pattern Description

1
Earning before

End Of Day

E -> EOD

An event with type "Earning" (E) happens before an event with

type "End Of Day" (EOD).

(Find only one closest occurrence for each EOD if it exists.)

2

Two 6-month

earnings before

End Of Day

E6(2) -> E6(1) -> EOD

Two events E6(1) and E6(2) with type "Earning" (E6(2) before E6(1))

happen before an event with type "End Of Day" (EOD) with:

 The "EPS Period Length" of both E6(1) and E6(2) is 6;

 E6(2).epsEndDate + E6(2).epsLength = E6(1).epsEndDate

 Find only one closest occurrence for each EOD if it

exists.

3

Two 3-month

earnings and

one 6-month

earning before

End Of Day

E3(2) -> E3(1) -> E6 -> EOD

Three events with type "Earning" (E3(2) before E3(1) before E6)

happen before an event with type "End Of Day" (EOD) with:

 The "EPS Period Length" of E3(2) and E3(1) is 3; The "EPS

Period Length" of E6 is 6;

 E3(2).epsEndDate + E3(2).epsLength = E3(1).epsEndDate

 E3(1).epsEndDate + E3(1).epsLength = E6.epsEndDate

 Find only one closest occurrence for each EOD if it

exists.

7.4 Evaluating User-Driven Rule Set Evolution Capability

105

4

One 3-month

earning and one

9-month

earning before

End Of Day

E3 -> E9 -> EOD

Two events E3 and E9 with type "Earning" (E3 before E9) happen

before an event with type "End Of Day" (EOD) with:

 The "EPS Period Length" of E3 is 3 and The "EPS Period

Length" of E9 is 9;

 E3.epsEndDate + E3.epsLength = E9.epsEndDate

 Find only one closest occurrence for each EOD if it

exists.

5

Four 3-month

earnings before

End Of Day

E3(4) -> E3(3) -> E3(2) -> E3(1) -> EOD

Four events E3(1), E3(2), E3(3), and E3(4) with type "Earning" (E3(4)

before E3(3) before E3(2) before E3(1)) happen before an event with

type "End Of Day" (EOD) with:

 The "EPS Period Length" of E3(1), E3(2), E3(3), and E3(4) is

3;

 E3(i).epsEndDate + E3(i).epsLength = E3(i-1).epsEndDate

(i=2,3,4)

 Find only one closest occurrence for each EOD if it

exists.

6

One 9-month

earning and one

3-month

earning before

End Of Day

E9 -> E3 -> EOD

Two events E3 and E9 with type "Earning" (E9 before E3) happen

before an event with type "End Of Day" (EOD) with:

 The "EPS Period Length" of E3 is 3 and The "EPS Period

Length" of E9 is 9;

 E9.epsEndDate + E9.epsLength = E3.epsEndDate

 Find only one closest occurrence for each EOD if it

exists.

7.5 Discussion

106

7.5 Discussion

In summary, the proposed system has successfully addressed all the evaluation criteria:

feasibility and interoperability, complex event processing capability and user-driven rule set

evolution capability.

 Feasibility and Interoperability: The design does not put many restrictions on the

technologies to be used and is not difficult for a developer to implement. The prototype

works as expected and it is a bit slower than a local bespoke program due to repetitive

remote invocations of the underlying EPS (for each event pattern type to be detected).

However, considering the time of remote invocation, the speed is not a big issue. If the

underlying EPS could be invoked locally, the performance would be more comparable.

The data models used in both the RDR component and the EPDaaS component

(including the underlying EPS - EventSwarm) are all built via the EDMF, sharing the

same meta-model. This ensures the exchange of data between them.

 Complex Event Processing Capability: EPDaaS as a component plays the role of

invoking the underlying EPS, which has the capability to detect event pattern

occurrences. With EPS technology leveraged in the system, the system can address

complex event processing effectively.

 User-Driven Rule Set Evolution Capability: With the involvement of the RDR

approach, the system allows for incremental, error-triggered rule management, i.e. it is

possible to add a new rule when an incorrect action is found without corrupting the

existing rule base.

By contrast, a bespoke program is normally dedicated to automating a specific data pre-

processing logic, which can hardly be customised by data analysts. Time-related issues might be

specifically handled but normally it is very inefficient. Although existing tools, such as

OpenRefine, provide the function to save all used rules so data analysts can apply them to

similar datasets automatically, this is still extremely error-prone. Most importantly, data pre-

processing tools, like OpenRefine, are not capable of addressing time-related issues.

An additional advantage of our new system over others is that as all inference actions are

always stored along with existing rules at any stage of the rule set evolution, data analysts can

run historical rule sets so as to repeat whatever has been done before. Specifically, in both

scenarios, in BP, once the program is modified, it cannot be converted back so previous rules at

earlier stages cannot be repeated. In OpenRefine, we need to save the rule set manually (e.g. in a

JSON file) at any stage for future use, otherwise, the rules will not be retained. In EP-RDR, we

7.5 Discussion

107

were able to execute previous rule sets at any stage of the rule set evolution process, which is a

plus for the EP-RDR system.

There are some limitations in the evaluation. Firstly, the rule sets were not very large and

specific to one particular domain. Future work will need to design experiments with bigger rule

sets in other domains. Secondly, while the data analyst could play the role of managing the

rules, an IT expert was still involved in defining and coding event pattern types in the

underlying EPS and in building the data model via EDMF. However, taking advantage of

existing EPLs, the work of the IT expert was much easier than developing the entire tool or

maintaining the logic in the code according to data analyst evolving requirements. Last but not

least, the underlying EPS was invoked remotely, which resulted in the deterioration of

performance when the number of rules becomes larger. In the future, we could invoke an

underlying EPS locally, so that the performance is more comparable.

108

Chapter 8 Conclusion and Future Work

The primary contribution of this thesis lies in a rule-based architecture for event data analysis

called EP-RDR and an event data modelling framework called EDMF, which have been

subsequently implemented and evaluated. In this final chapter, Section 8.1 provides a summary

of the main ideas and findings of the thesis. Next, Section 8.2 presents a critical evaluation on

how our proposed method has addressed the research questions. Following that, we describe the

main contributions of the thesis in Section 8.3, and identify the main limitations in Section 8.4.

Finally, we discuss potential future work in Section 8.5.

8.1 Thesis Summary

This thesis has investigated the role of event data analysis and the importance of rule

management when the analysis is being conducted by data analysts who have limited IT

knowledge (fundamental usage of popular operating systems, e.g. clicking buttons using the

mouse, opening and closing a data file, etc.). It has found that event data has some unique

characteristics, which make it more difficult to process than other types of data. To conduct

event analysis tasks, data analysts have to rely on IT experts either to implement a bespoke

program/service or to customise an event processing system (EPS) according to their needs.

Because of constant changes in business needs and the environment, data analysts need to

communicate their new requirements to IT experts to update and maintain the event data

analysis business logic - event processing rules. When it comes to dealing with large rule sets, it

is hard for an event data analyst with limited IT knowledge to manage them, as any change on

one particular rule in the rule set may affect other existing rules, thereby corrupting the whole

rule set. In this case, a knowledge engineer is needed to manage the event processing rules.

Through a thorough exploration on three major categories of potential approaches for event

data analysis: generic approaches (e.g. bespoke programs, data pre-processing tools, database

management systems, and statistical data analysis tools), Event Processing Systems or EPSs

(e.g. Esper, EventSwarm), and rule-based systems (e.g. Ripple Down Rules or RDR), this thesis

compared all these approaches in terms of three capabilities: automation, event processing and

user-driven rule set evolution. The research found that no single approach possesses all these

capabilities at the same time. To be more specific, the automation capability can be easily met

as long as the event data analysis logic can be defined as a runnable process. The capacity to

conduct complex event processing can only be provided by an EPS. This, however, does not

facilitate user-driven rule set evolution of the system for addressing changing requirements. The

8.1 Thesis Summary

109

user-driven rule set evolution is satisfied by a rule-based system such as RDR, but this

technology does not support event processing and thus has not yet been applied to event data

analysis. The research gap is "There is no existing approach for event data analysis that enables

event processing and facilitates user-driven rule set evolution." Consequently, this thesis has

sought to address the research gap by investigating a new approach to enabling data analysts in

managing event data analysis on historical data with minimal IT expert intervention. The three

research questions are:

 How can we provide a new method that enables complex event processing and

facilitates user-driven rule set evolution?

 How can we leverage existing Event Processing Systems to support the new method?

 How can we facilitate the interoperability of event data in any proposed system?

In answer to these research questions, this thesis proposes the "Event-Processing RDR"

architecture (EP-RDR), which leverages EPS technologies as well as the power of RDR

systems. This architecture has two main components in the business layer, namely RDR and

EPDaaS (Event Pattern Detection as a Service). The RDR component is re-designed for event

processing purposes and plays the role of managing the event processing logic, while still

supporting incremental rule insertion that enables data analysts to define and add rules by

themselves. Any EPS can be integrated and invoked by EPDaaS so that the system allows data

analysts to conduct event processing without any concern about which event processing

language/engine to use. To enable the interoperability between components in the architecture,

this thesis also proposes an "Event Data Modelling Framework" (EDMF), which allows data

model builders to construct an event data model more easily and in a consistent manner. EDMF

consists of an Event Data Meta-Model and its associated Operational Guidelines. The Event

Data Meta-Model is a high-level model that provides sufficient abstractions from various co-

existing event data representation formats so that the semantics of different approaches can be

captured in a consistent manner, and the meta-model can be easily extended to different types of

datasets and domains. The Operational Guidelines are a number of steps to be followed by the

data model builder. A data model built based on EDMF will allow event pattern types and

occurrences to be defined, and will abstract existing events and event pattern occurrences data

formats in a consistent manner.

In order to evaluate the effectiveness of the proposed method, a prototype was implemented.

This thesis applied three criteria to conduct the evaluation, namely, feasibility and

interoperability, event processing capability, and user-driven rule set evolution capability. A

case study on financial market data pre-processing was elaborated and the prototype was used in

8.2 Addressing the Research Questions

110

the two real-life scenarios (eliminating duplicate dividends and calculating earnings) to check

the ability of the proposed method to satisfy the evaluation criteria.

8.2 Addressing the Research Questions

This section discusses how the proposed method (EP-RDR and EDMF) has answered the

research questions. The discussion is based on characteristics of the method reported in this

thesis as well as the results from the case study evaluations. Specifically,

 The first research question "How can we provide a new method that enables complex

event processing and facilitates user-driven rule set evolution?" has been addressed by

the idea of leveraging the EPS technology with an RDR approach. According to the

validation results in Section 7.3.1, integrating EPS technology with an RDR approach

within a single system is feasible. In particular, the RDR component maintains the rule

base and allows for incremental, error-triggered rule management, i.e. adding a new rule

when an incorrect action is inspected without corrupting the existing rule base. The

experiments described in Section 7.4 prove that the proposed method can facilitate user-

driven rule set evolution.

 The second research question "How can we leverage existing Event Processing Systems

to support the new method?" has been addressed by the proposed EP-RDR architecture

in which the EPDaaS component plays the role in invoking any underlying EPS for

conducting event pattern detection. The experiments described in Section 7.3.2 prove

that the proposed method can support complex event processing via a commercial EPS

(EventSwarm).

 The third research question "How can we facilitate the interoperability of event data in

any proposed system?" has been addressed by the proposed EDMF, which allows event

data models to be built in a consistent manner. The data models used in both the RDR

component and the EPDaaS component should all be built using EDMF so that they

share the same meta-model, and thus enable the interoperability between components of

the EP-RDR architecture. The interoperability of the proposed method has been

evaluated in Section 7.3.1, and the results prove that the components in the architecture

are interoperable.

8.3 Thesis Contributions

111

8.3 Thesis Contributions

Part of the materials presented in this thesis have been published in [116-118, 129]. The main

contributions of the research carried out in this thesis can be summarised into:

 EP-RDR Architecture: EP-RDR is designed for building and conducting user-driven

event data analysis. Its two main components are a Ripple-Down Rule (RDR) system

and an event pattern detection as a service (EPDaaS) which can interface with any event

processing system (EPS). It enables incremental rule management by data analysts from

the perspective of managing the whole rule base, and to leverage the functionality of

existing Event Processing Systems. Taking advantage of the existing EPS, the IT

expert's intervention in the system is simplified, i.e. the work of IT expert was much

easier than developing the entire tool or managing the logic in the programming code.

Additionally, this architecture can have applications outside event data analysis. For

instance, applications based on this architecture can be developed for analysing other

types of datasets, for which there are existing tools but managing the rules for the

analysis can be difficult especially when the rule set is huge. Under this circumstance,

the underlying EPS in the architectural design can be replaced by tools for this

particular type of data analysis.

 Event Data Modelling Framework: We have proposed a new Event Data Modelling

Framework (EDMF) that facilitates event data modelling regardless of the domain, data

source, or the EPS to be used in the EP-RDR architecture. EDMF is beneficial to both

EP-RDR developers and data analysts. For developers, applying EDMF to the EP-RDR

architecture, it will be easier to implement generic components that do not depend on

how event pattern occurrences are represented. The data model provides the essential

link between the two components of EP-RDR, i.e. RDR and EPDaaS, enabling the

exchange of data in between. This framework can also be applied to enable

interoperability of event datasets between different types of event processing systems.

Such systems may have different data models, as long as the data models can be linked

with each other via EDMF’s meta-model. EDMF provides the basis for a new standard

format for representing event datasets.

8.4 Thesis Limitations

112

8.4 Thesis Limitations

This section discusses the main limitations of the proposed method and this thesis.

In terms of the scope of the thesis, the focus is on data analysis of historical event data only.

The thesis assumes that the targeted users of the proposed system are data analysts in research

institutions who do not require "real-time" processing. Thus, no consideration of real-time

analysis was given. However, in the contemporary information age, real-time analysis with

minimal lag is gradually becoming crucial for data analysts, especially those in enterprises, to

ensure the timeliness of analysis results.

In terms of the design of the proposed system, one limitation is that an IT expert is still

involved in the data analysis process. That is, while a data analyst is empowered to manage the

event processing rules, an IT expert is still needed to define event pattern types associated with

the rules. Therefore, essentially, data analysts do not have full control of the system in the Rule

Addition use case (see Section 4.7.1).

The Event Data Modelling Framework (EDMF) consists of a high-level Event Data Meta-

Model and its associated Operational Guidelines. The Event Data Meta-Model provides

sufficient abstractions from various co-existing event data representation formats to capture the

semantics of different approaches in a consistent manner. However, since only one type of event

dataset (financial market data) has been used, there is no certainty that all event and event

pattern types can be represented using the Event Data Meta-Model.

Another significant limitation lies in the evaluation part of the thesis, which has been done

merely via a case study in the financial domain. The thesis proposed EP-RDR architecture and

the EDMF, which claim the advantage of being able to be applied in various domains, but this

has not been demonstrated in the thesis. As for the "Complex Event Processing Capability", the

thesis evaluated the system using the "Eliminating Duplicate Dividends" and "Calculating

Earnings" scenarios. However, the work must be demonstrated on more complex event pattern

types.

Additionally, as mentioned earlier, a typical data analysis process has the following four

phases: data collection, data cleansing (data pre-processing), data transformation and statistical

analysis (see Section 2.1.1). Usually, data cleansing, data transformation and statistical analysis

can be conducted separately or together. In the evaluation, we merely selected data pre-

processing in the case study so the feasibility of performing data transformation and statistical

analysis has not been demonstrated.

8.5 Future Work

113

8.5 Future Work

This section describes some potential research issues and future work that has arisen as a result

of the research presented in this thesis.

8.5.1 Short-Term Future Work

In the short term, another case study can be performed so as to evaluate the proposed method to

a better extent. We may do the following to make it happen:

 Selecting another domain (e.g. health, biology, etc.) for which there are large amounts

of event data that need to be analysed.

 Identifying a particular scenario that requires a large rule set in the selected domain.

The rules should vary in the complexity of the underlying event pattern types. In other

words, the rule set should combine very simple as well as very complex event pattern

types. It would be better to include at least one event pattern type that EventSwarm (the

Event Processing System we used in this thesis) cannot handle. This scenario could

cover more phases of data analysis (e.g. data transformation, statistical analysis).

 Integrating another powerful EPS (e.g. Esper) that can bridge the gap that EventSwarm

cannot fill. With two integrated EPSs, the claimed benefit of the proposed system

(making use of multiple EPSs to enhance the performance of the system) can be

evaluated.

 Develop a stable prototype of the proposed system in the context of a large-scale

scientific software development project, and make it publicly available to academic data

analysts, so that they are able to make use of it and provide valuable feedback.

8.5.2 Long-Term Future Directions

In the long term, it would be helpful to:

 Extend the proposed approach to real-time event data analysis. This will enable new

commercial event data analysis applications in areas such as disaster management and

business intelligence. Such effort requires a revised version of the proposed EP-RDR

architecture to support real-time features. Most importantly, for real-time analysis,

timeliness needs to be fulfilled. Thus, efficiency of the system will be the priority on top

of the functionality, so further optimisation of the system’s architecture is necessary.

8.5 Future Work

114

 Include additional components into the EP-RDR architecture to enhance the

functionality of the system. For instance, external statistical computing modules could

be integrated to make the system more suitable for statistical analysis.

 Extend the Event Data Meta-Model in the Event Data Modelling Framework (EDMF)

described in Section 5.3, so that it can facilitate the representation of as many event

pattern types as possible. This will make it considerably easier for the IT expert to build

a data model for data in a particular domain and to implement more complex event

pattern types in the underlying EPS.

115

References

[1] P. McFedries. (2011) The Coming Data Deluge. IEEE Spectrum. 19. Available:

http://spectrum.ieee.org/at-work/innovation/the-coming-data-deluge

[2] P. Meier, "Data Flooding and Platform Scarcity," in iRevolutions, ed, 2009.

[3] I. G. Israel, "Information explosion and university libraries: Current trends and

strategies for intervention," Chinese Librarianship: an International Electronic Journal,

2010.

[4] T. Hey, S. Tansley, and K. e. Tolle, The Fourth Paradigm: Data-Intensive Scientific

Discovery. Redmond, Washington, 2009.

[5] IBM. (2013). The Four V's of Big Data. Available:

http://www.ibmbigdatahub.com/infographic/four-vs-big-data

[6] B. Appelbe and D. Bannon, "eResearch - Paradigm Shift Or Propaganda?," Journal of

Research and Practice in Information Technology, vol. 39:2, pp. pp. 83-90, 2007.

[7] Microsoft. (2015). Excel. Available: http://products.office.com/en-us/excel

[8] D. M. Harcar, "Justification and Expected Benefits of Data Analysis Automation

Projects," 2015.

[9] OpenRefine. (2015). Available: http://openrefine.org/

[10] Oracle. (2015). MySQL. Available: http://www.mysql.com/

[11] SAS. (2014). SAS. Available: http://www.sas.com/en_us/home.html

[12] Esper. (2013). Available: http://esper.codehaus.org/

[13] C. M. Judd and G. H. McCleland, Data Analysis: A Model-Comparison Approach:

Harcourt College Pub, 1989.

[14] R. Sapsford and V. Jupp, Data Collection and Analysis, 2nd ed.: SAGE Publications

Ltd, 2006.

[15] T. Friedman and A. Bitterer, "Magic Quadrant for Data Quality Tools," Gartner. 28 July

2011.

http://spectrum.ieee.org/at-work/innovation/the-coming-data-deluge
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://products.office.com/en-us/excel
http://openrefine.org/
http://www.mysql.com/
http://www.sas.com/en_us/home.html
http://esper.codehaus.org/

116

[16] A. Bitterer, "Who's Who in Open-Source Data Quality," Gartner. 18 January 2012.

[17] A. K. Jain and R. C. Dubes, Algorithms for clustering data: Prentice-Hall, Inc., 1988.

[18] T. Milo and S. Zohar, "Using Schema Matching to Simplify Heterogeneous Data

Translation," presented at the 24th VLDB, 1998.

[19] S. Gibilisco. (2014). Statistical Analysis. Available:

http://whatis.techtarget.com/definition/statistical-analysis

[20] R. Schutt and C. O'Neil, Doing Data Science: Straight Talk from the Frontline: O'Reilly

Media, Inc., 2013.

[21] J. Han and M. Kamber, Data Mining: Concepts and Techniques, 2nd ed. ed. San

Francisco, CA, USA: Morgan Kaufmann Publishers, 2006.

[22] D. Luckham, The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. MA, USA: Addison Wesley Professional, 2002.

[23] O. Etzion and P. Niblett, Event Processing in Action: Manning Publications Co., 2011.

[24] F. A. Rabhi, L. Yao, and A. Guabtni, "ADAGE: A Framework for Supporting User-

Driven Ad-hoc Data Analysis Processes," Computing, vol. 94, pp. 489-519, 2012.

[25] Sirca. (2015). Available: http://www.sirca.org.au/

[26] datos.gob.es, "Data Processing and Visualisation Tools," European PSI Platform2013.

[27] GitHub. (2014). Documentation For Users. Available:

https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users

[28] DataWrangler. (2013). Available: http://vis.stanford.edu/wrangler/

[29] E. F. Codd, "A relational model of data for large shared data banks," Commun. ACM,

vol. 13, pp. 377-387, 1970.

[30] Microsoft. (2015). Access. Available: https://products.office.com/en-

au/access?legRedir=true&CorrelationId=78383e98-8ec5-4f52-b2aa-1fe0e3e73d86

[31] Apache. (2010). OpenOffice Base. Available:

https://www.openoffice.org/product/base.html

http://whatis.techtarget.com/definition/statistical-analysis
http://www.sirca.org.au/
https://github.com/OpenRefine/OpenRefine/wiki/Documentation-For-Users
http://vis.stanford.edu/wrangler/
https://products.office.com/en-au/access?legRedir=true&CorrelationId=78383e98-8ec5-4f52-b2aa-1fe0e3e73d86
https://products.office.com/en-au/access?legRedir=true&CorrelationId=78383e98-8ec5-4f52-b2aa-1fe0e3e73d86
https://products.office.com/en-au/access?legRedir=true&CorrelationId=78383e98-8ec5-4f52-b2aa-1fe0e3e73d86
https://www.openoffice.org/product/base.html

117

[32] PostgreSQL. (2015). Available: http://www.postgresql.org/

[33] D. Rosenberg. (2010). Are databases in the cloud really all that different? Available:

http://www.cnet.com/au/news/are-databases-in-the-cloud-really-all-that-different/

[34] K. Grolinger, W. Higashino, A. Tiwari, and M. Capretz, "Data management in cloud

environments: NoSQL and NewSQL data stores," Journal of Cloud Computing:

Advances, Systems and Applications, vol. 2, p. 22, // 2013.

[35] Apache. (2014). CouchDB. Available: http://couchdb.apache.org/

[36] Apache. (2014). Hadoop. Available: http://hadoop.apache.org/

[37] Apache. (2009). Cassandra. Available: http://cassandra.apache.org/

[38] Neo4J. (2015). Available: http://neo4j.com/

[39] MangoDB. (2015). Available: http://www.mongodb.org/

[40] K. Shailender and K. Shailender, "A Study of Temporal Database Research,"

International Journal of Artificial Intelligence & Knowledge Discovery, vol. 3, 2013.

[41] C. J. Date, H. Darwen, and N. A. Lorentzos, Temporal Data and the Relational Model:

Morgan Kauffman Publishers, 2002.

[42] C. M. Saracco, M. Nicola, and L. Gandhi, "A matter of time: Temporal data

management in DB2 10," IBM2012.

[43] C. J. Date, An Introduction to Database Systems, 8th ed.: Addison Wesley, 2003.

[44] R. (2015). The R Project for Statistical Computing. Available: http://www.r-project.org/

[45] G. Williams, Data Mining with Rattle and R: Springer, 2011.

[46] S. Zaidi and M. Nasir, Teaching and Learning Methods in Medicine: Springer, 2015.

[47] StataCorp. (2015). Stata. Available: http://www.stata.com/

[48] IBM. (2015). SPSS. Available: http://www-01.ibm.com/software/au/analytics/spss/

http://www.postgresql.org/
http://www.cnet.com/au/news/are-databases-in-the-cloud-really-all-that-different/
http://couchdb.apache.org/
http://hadoop.apache.org/
http://cassandra.apache.org/
http://neo4j.com/
http://www.mongodb.org/
http://www.r-project.org/
http://www.stata.com/
http://www-01.ibm.com/software/au/analytics/spss/

118

[49] IBM. (2015). SPSS Modeler. Available: http://www-

01.ibm.com/software/au/analytics/spss/products/modeler/

[50] S. Chakravarthy and D. Mishra, "Snoop: an expressive event specification language for

active databases," Data Knowl. Eng., vol. 14, pp. 1-26, 1994.

[51] M. Gero, F. Ludger, and P. Peter, Distributed event-based systems, 2006.

[52] D. Luckham, Event Processing for Business: Organizing the Real-Time Enterprise.

Hoboken, New Jersey: John Wiley & Sons, Inc., 2012.

[53] J. Bacon, K. Moody, J. Bates, R. Hayton, C. Ma, A. McNeil, et al., "Generic Support

for Distributed Applications," IEEE Computer, pp. 68-76, 2000.

[54] R. Barga and H. Caituiro-Monge, "Event Correlation and Pattern Detection in CEDR,"

in Current Trends in Database Technology – EDBT 2006. vol. 4254, T. Grust, H.

Höpfner, A. Illarramendi, S. Jablonski, M. Mesiti, S. Müller, et al., Eds., ed: Springer

Berlin Heidelberg, 2006, pp. 919-930.

[55] M. Eckert, "Complex Event Processing with XChangeEQ," Dissertation, LMU Munich,

2008.

[56] E. Wu, Y. Diao, and S. Rizvi, "High-performance complex event processing over

streams," presented at the Proceedings of the 2006 ACM SIGMOD international

conference on Management of data, Chicago, IL, USA, 2006.

[57] G. Cugola and A. Margara, "TESLA: a formally defined event specification language,"

presented at the Proceedings of the Fourth ACM International Conference on

Distributed Event-Based Systems, Cambridge, United Kingdom, 2010.

[58] D. Gyllstrom, E. Wu, H.-J. Chae, Y. Diao, P. Stahlberg, and G. Anderson, "SASE:

Complex event processing over streams," 2006.

[59] K. Patroumpas and T. Sellis, "Window Specification over Data Streams," in Current

Trends in Database Technology – EDBT 2006. vol. 4254, T. Grust, H. Höpfner, A.

Illarramendi, S. Jablonski, M. Mesiti, S. Müller, et al., Eds., ed: Springer Berlin

Heidelberg, 2006, pp. 445-464.

http://www-01.ibm.com/software/au/analytics/spss/products/modeler/
http://www-01.ibm.com/software/au/analytics/spss/products/modeler/

119

[60] A. Arasu, S. Babu, and J. Widom, "The CQL continuous query language: semantic

foundations and query execution," The VLDB Journal, vol. 15, pp. 121-142, 2006.

[61] S. Boll and G. U. Westermann, "MediAEther -- an Event Space for Context-Aware

Multimedia Experiences," presented at the ACM SIGMM Workshop on Experiential

Telepresence (ETP'03), Berkeley, California, 2003.

[62] SAP. (2015). Continuous Computation Language. Available:

http://help.sap.com/saphelp_esp51sp08gsg/helpdata/en/e7/931cee6f0f101486068ade550

250ad/content.htm?frameset=/en/e7/74cec06f0f1014bd1e98b8d524e830/frameset.htm&

current_toc=/en/e7/74cec06f0f1014bd1e98b8d524e830/plain.htm&node_id=45&show_

children=false

[63] L. Chung-Sheng, "Real-time event driven architecture for activity monitoring and early

warning," in Emerging Information Technology Conference, 2005., 2005, p. 4 pp.

[64] P. Mariño, C. Siguenza, J. Nogueira, F. Poza, and M. Dominguez, "An event driven

software architecture for enterprise-wide data source integration," in Information

Technology: Coding and Computing, 2000. Proceedings. International Conference on,

2000, pp. 140-145.

[65] Y. Ping-Peng, C. Gang, D. Jin-Xiang, and H. Wei-Li, "An event and service interacting

model and event detection based on the broker/service model," in Computer Supported

Cooperative Work in Design, The Sixth International Conference on, 2001, 2001, pp.

20-24.

[66] A. Berry and Z. Milosevic, "Real-Time Analytics for Legacy Data Streams in Health:

Monitoring Health Data Quality," presented at the 17th IEEE International Enterprise

Distributed Object Computing Conference (EDOC), 2013, Vancouver, BC, 2013.

[67] Sybase. (2014). Sybase Aleri Event Stream Processor. Available:

http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01286.0311/pdf/Produ

ctOverview.pdf?noframes=true

[68] Oracle. (2014). CQL. Available:

http://docs.oracle.com/cd/E17904_01/apirefs.1111/e12048/intro.htm

http://help.sap.com/saphelp_esp51sp08gsg/helpdata/en/e7/931cee6f0f101486068ade550
http://infocenter.sybase.com/help/topic/com.sybase.infocenter.dc01286.0311/pdf/Produ
http://docs.oracle.com/cd/E17904_01/apirefs.1111/e12048/intro.htm

120

[69] TIBCO. (2014). StreamSQL Guide. Available:

http://www.streambase.com/developers/docs/latest/streamsql/

[70] IBM. (2015). Netcool/Impact Policy. Available:

http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.do

c6.1/PolicyReferenceGuide.pdf

[71] SoftwareAG. (2015). Apama. Available:

http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview

/default.asp

[72] Deontik. (2013). EventSwarm. Available:

http://deontik.com/Products/EventSwarm.html

[73] RedHat. (2015). Drools Fusion. Available: http://drools.jboss.org/drools-fusion.html

[74] TIBCO. (2015). TIBCO BusinessEvents. Available:

http://www.tibco.com/products/event-processing/complex-event-

processing/businessevents/default.jsp

[75] A. Adi, D. Botzer, and O. Etzion, "The Situation Manager Component of Amit —

Active Middleware Technology," in Next Generation Information Technologies and

Systems. vol. 2382, A. Halevy and A. Gal, Eds., ed: Springer Berlin Heidelberg, 2002,

pp. 158-168.

[76] IBM. (2015). InfoSphere Streams. Available: http://www-

03.ibm.com/software/products/en/infosphere-streams/

[77] Google. (2014). Available: https://code.google.com/p/etalis/

[78] Prova. (2011). Available: https://prova.ws/confluence/display/EP/Event+processing

[79] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang, "NiagaraCQ: a scalable continuous query

system for Internet databases," presented at the Proceedings of the 2000 ACM

SIGMOD international conference on Management of data, Dallas, Texas, USA, 2000.

[80] L. Liu, C. Pu, and W. Tang, "Continual Queries for Internet Scale Event-Driven

Information Delivery," IEEE Trans. on Knowl. and Data Eng., vol. 11, pp. 610-628,

1999.

http://www.streambase.com/developers/docs/latest/streamsql/
http://publib.boulder.ibm.com/infocenter/tivihelp/v8r1/topic/com.ibm.netcoolimpact.do
http://www.softwareag.com/corporate/products/apama_webmethods/analytics/overview
http://deontik.com/Products/EventSwarm.html
http://drools.jboss.org/drools-fusion.html
http://www.tibco.com/products/event-processing/complex-event-processing/120
http://www.tibco.com/products/event-processing/complex-event-processing/120
http://www.tibco.com/products/event-processing/complex-event-processing/120
http://www-03.ibm.com/software/products/en/infosphere-streams/
http://www-03.ibm.com/software/products/en/infosphere-streams/
https://code.google.com/p/etalis/
https://prova.ws/confluence/display/EP/Event+processing

121

[81] K. Robert, "Evaluation of the Stream Query Language CQL," ed. Sweden: The

European Library, 2010.

[82] A. Paschke and A. Kozlenkov, "Rule-Based Event Processing and Reaction Rules," in

Rule Interchange and Applications. vol. 5858, G. Governatori, J. Hall, and A. Paschke,

Eds., ed: Springer Berlin Heidelberg, 2009, pp. 53-66.

[83] N. Jain, S. Mishra, A. Srinivasan, J. Gehrke, J. Widom, H. Balakrishnan, et al.,

"Towards a streaming SQL standard," Proc. VLDB Endow., vol. 1, pp. 1379-1390,

2008.

[84] D. Phan Minh and P. Mancarella, "Production systems with negation as failure,"

Knowledge and Data Engineering, IEEE Transactions on, vol. 14, pp. 336-352, 2002.

[85] K. Dittrich, S. Gatziu, and A. Geppert, "The active database management system

manifesto: A rulebase of ADBMS features," in Rules in Database Systems. vol. 985, T.

Sellis, Ed., ed: Springer Berlin Heidelberg, 1995, pp. 1-17.

[86] N. W. Paton and O. D, "Active database systems," ACM Comput. Surv., vol. 31, pp. 63-

103, 1999.

[87] J. Erikson, "CEDE: Composite Event Detector in An Active Database," 1993.

[88] R. Meo, G. Psaila, and S. Ceri, "Composite events in Chimera," in Advances in

Database Technology — EDBT '96. vol. 1057, P. Apers, M. Bouzeghoub, and G.

Gardarin, Eds., ed: Springer Berlin Heidelberg, 1996, pp. 56-76.

[89] N. H. Gehani, H. V. Jagadish, and O. Shmueli, "Event specification in an active object-

oriented database," SIGMOD Rec., vol. 21, pp. 81-90, 1992.

[90] C. Collet and T. Coupaye, "Composite events in NAOS," in Database and Expert

Systems Applications. vol. 1134, R. Wagner and H. Thoma, Eds., ed: Springer Berlin

Heidelberg, 1996, pp. 244-253.

[91] U. Dayal, B. Blaustein, A. Buchmann, U. Chakravarthy, M. Hsu, R. Ledin, et al., "The

HiPAC project: combining active databases and timing constraints," SIGMOD Rec.,

vol. 17, pp. 51-70, 1988.

122

[92] IBM. (2015). Amit. Available:

http://www.research.ibm.com/haifa/projects/software/extreme_blue/papers/eXB_AMIT.

pdf

[93] S. Gatziu and K. Dittrich, "Events in an Active Object-Oriented Database System," in

Rules in Database Systems, N. Paton and M. H. Williams, Eds., ed: Springer London,

1994, pp. 23-39.

[94] I. Schmerken. (2008). Deciphering the Myths Around Complex Event Processing.

Available: http://www.wallstreetandtech.com/latency/deciphering-the-myths-around-

complex-event-processing/d/d-id/1259489?

[95] D. Luckham. (2006). What's the Difference Between ESP and CEP? Available:

http://www.complexevents.com/?p=103

[96] Eprentise. (2014). Eprentise Data Quality software.

[97] K. Duncan and D. Wells, "Rule Based Data Cleansing for Data Warehousing," 1999.

[98] I. Bratko, "Prolog Programming for Artificial Intelligence ", 4th ed, 2011.

[99] A. P. Reynolds, G. Richards, B. de la Iglesia, and V. J. Rayward-Smith, "Clustering

Rules: A Comparison of Partitioning and Hierarchical Clustering Algorithms," Journal

of Mathematical Modelling and Algorithms, vol. 5, pp. 475-504, 2006/12/01 2006.

[100] P. Compton and R. Jansen, "A philosophical basis for knowledge acquisition,"

Knowledge Acquisition 2, pp. 241-257, 1990.

[101] T. M. Cao and P. Compton, "A Simulation Framework for Knowledge Acquisition

Evaluation," presented at the 28th Australasian Computer Science Conference, 2005.

[102] P. Compton, L. Peters, T. Lavers, and Y. S. Kim, "Experience with Long-term

Knowledge Acquisition," K-CAP, 2011.

[103] D. Richards, "Two Decades of Ripple Down Rules Research," The Knowledge

Engineering Review, vol. 24:2, pp. 159-184, 2009.

[104] P. Compton, L. Peters, G. Edwards, and T. G. Lavers, "Experience with Ripple-Down

Rules," Knowledge Based Systems, vol. 19, pp. 356-362, 2006.

http://www.research.ibm.com/haifa/projects/software/extreme_blue/papers/eXB_AMIT
http://www.wallstreetandtech.com/latency/deciphering-the-myths-around-complex-event-processing/d/d-id/1259489?
http://www.wallstreetandtech.com/latency/deciphering-the-myths-around-complex-event-processing/d/d-id/1259489?
http://www.wallstreetandtech.com/latency/deciphering-the-myths-around-complex-event-processing/d/d-id/1259489?
http://www.complexevents.com/?p=103

123

[105] V. Ho, W. Wobcke, and P. Compton, "EMMA: An E-Mail Management Assistant," in

IEEE/WIC International Conference on Intelligent Agent Technology, 2003.

[106] V. H. Ho, P. Compton, B. Benatallah, J. Vayssiere, L. Menzel, and H. Vogler, "An

Incremental Knowledge Acquisition Method for Improving Duplicate Invoices

Detection," in IEEE 25th International Conference on Data Engineering, 2009, pp.

1415-1418.

[107] M. N. Dani, T. A. Faruquie, R. Garg, G. Kothari, M. K. Mohania, K. H. Prasad, et al.,

"A Knowledge Acquision Method for Improving Data Quality in Services

Engagements," presented at the IEEE International Conference on Services Computing,

2010.

[108] R. Arora and H. Karanam, "Leverage a ripple-down rules framework in InfoSphere

QualityStage standardization rule set development," IBM Corporation2011.

[109] K. H. Prasad, T. A. Faruquie, S. Joshi, S. Chaturvedi, L. V. Subramaniam, and M.

Mohania, "Data Cleansing Techniques for Large Enterprise Datasets," in Annual SRII

Global Conference (SRII), 2011, pp. 135-144.

[110] A. Hinze, K. Sachs, and A. Buchmann, "Event-based applications and enabling

technologies," presented at the Proceedings of the Third ACM International Conference

on Distributed Event-Based Systems, Nashville, Tennessee, 2009.

[111] K. Chandy and W. Schulte, Event Processing: Designing IT Systems for Agile

Companies: McGraw-Hill, Inc., 2010.

[112] S. Sen and N. Stojanovic, "GRUVe: A Methodology for Complex Event Pattern Life

Cycle Management," in Advanced Information Systems Engineering. vol. 6051, B.

Pernici, Ed., ed: Springer Berlin Heidelberg, 2010, pp. 209-223.

[113] H. Obweger, J. Schiefer, M. Suntinger, P. Kepplinger, and S. Rozsnyai, "User-Oriented

Rule Management for Event-Based Applications," presented at the Proceedings of the

5th ACM international conference on Distributed event-based system, New York, New

York, USA, 2011.

[114] R. Murch, Project Management: Best Practices for IT Professionals: Prentice Hall

PTR, 2000.

124

[115] G. V. Post and D. L. Anderson, Management Information Systems: Solving Business

Problems with Information Technology: Irwin/McGraw-Hill, 2000.

[116] W. Chen, "E-Research Event Data Quality," presented at the Workshop in 29th IEEE

International Conference on Data Engineering (ICDE'13), Brisbane, Australia, 2013.

[117] W. Chen and F. Rabhi, "An RDR-Based Approach for Event Data Analysis," presented

at the Third Australasian Symposium on Service Research and Innovation (ASSRI’13),

Sydney, Australia, 2013.

[118] W. Chen and F. Rabhi, "Enabling User-Driven Rule Management in Event Data

Analysis," Information Systems Frontiers, 2014.

[119] W. Eckerson, "Three Tier Client/Server Architecture: Achieving Scalability,

Performance, and Efficiency in Client Server Applications," in Open Information

Systems 10, 1995.

[120] Microsoft. (2015). Three-Layered Services Application. Available:

http://msdn.microsoft.com/en-us/library/ff648105.aspx

[121] P. Compton and R. Jansen, "Knowledge in context: a strategy for expert system

maintenance," in 2nd Australian Joint Artificial Intelligence Conference, 1988, pp. 292-

306.

[122] B. H. Kang, P. Compton, and P. Preston, "Multiple Classification Ripple Down Rules:

Evaluation and Possibilities," presented at the 9th Banff Knowledge Acquisition for

Knowledge Based Systems Workshop, 1995.

[123] P. Compton, Y. Kim, and B. Kang, "Linked Production Rules: Controlling Inference

with Knowledge," in Knowledge Management and Acquisition for Smart Systems and

Services. vol. 8863, Y. Kim, B. Kang, and D. Richards, Eds., ed: Springer International

Publishing, 2014, pp. 84-98.

[124] WADL. (2009). Available: http://www.w3.org/Submission/wadl/

[125] F. A. Rabhi, A. Guabtni, and L. Yao, "A data model for processing financial market and

news data," International Journal of Electronic Finance, vol. 3, pp. 387-403, 01/01/

2009.

http://msdn.microsoft.com/en-us/library/ff648105.aspx
http://www.w3.org/Submission/wadl/

125

[126] IBM. (2015). IBM Health Plan Data Model. Available: http://www-

03.ibm.com/software/products/en/healthcare/

[127] J. Schiefer, S. Rozsnyai, C. Rauscher, and G. Saurer, "Event-driven rules for sensing

and responding to business situations," presented at the Proceedings of the 2007

inaugural international conference on Distributed event-based systems, Toronto,

Ontario, Canada, 2007.

[128] OMG, "OMG Unified Modeling Language (OMG UML), Superstructure. Version

2.4.1," 2011.

[129] W. Chen and F. Rabhi, "Validating an Incremental Rule Management Approach for

Financial Market Data Pre-Processing," presented at the Workshop on Enterprise

Applications, Markets and Services in the Finance Industry (FinanceCom 2014),

Sydney, Australia, 2014.

[130] C. E. Metz, "Basic principles of ROC analysis," Seminars in Nuclear Medicine, vol. 8,

pp. 283-298, 1978.

[131] Thomson-Reuters. (2014). Available: http://www.thomsonreuters.com.au/

[132] Bloomberg. (2015). Available: http://www.bloomberg.com/

[133] WRDS. (2015). Wharton Research Data Services. Available: http://wrds-

web.wharton.upenn.edu/wrds/

[134] J. Binder, "The Event Study Methodology Since 1969," Review of Quantitative Finance

and Accounting, vol. 11, pp. 111-137, 1998/09/01 1998.

[135] Eventus. (2012). Available: http://www.eventstudy.com/

http://www-03.ibm.com/software/products/en/healthcare/
http://www-03.ibm.com/software/products/en/healthcare/
http://www.thomsonreuters.com.au/
http://www.bloomberg.com/
http://wrds-web.wharton.upenn.edu/wrds/
http://wrds-web.wharton.upenn.edu/wrds/
http://wrds-web.wharton.upenn.edu/wrds/
http://www.eventstudy.com/

126

Appendix A: Additional Information for EDMF

Table A.1. The XML schema of the proposed meta-model.

<?xml version="1.0" encoding="ISO-8859-1"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

 <xs:element name="Functor Type" type="Functor Type"/>

 <xs:complexType name="Functor Type">

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="datatype" type="xs:string" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Source" type="Source"/>

 <xs:complexType name="Source">

 <xs:sequence/>

 </xs:complexType>

 <xs:element name="Source" type="Source"/>

 <xs:complexType name="Source">

 <xs:sequence>

 <xs:element name="Functor Type" type="Functor Type" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Timestamp" type="Timestamp"/>

 <xs:complexType name="Timestamp">

 <xs:sequence>

 <xs:element name="Functor Type" type="Functor Type" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="ComplexEventType" type="ComplexEventType"/>

 <xs:complexType name="ComplexEventType">

 <xs:complexContent>

 <xs:extension base="EventType">

 <xs:sequence>

 <xs:element name="EventPatternType" type="EventPatternType" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="AtomicData" type="AtomicData"/>

 <xs:complexType name="AtomicData">

http://www.w3.org/2001/XMLSchema

127

 <xs:sequence>

 <xs:element name="AtomicDataType" type="AtomicDataType" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Event" type="Event"/>

 <xs:complexType name="Event">

 <xs:sequence>

 <xs:element name="EventType" type="EventType" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="BaseEventType" type="BaseEventType" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="EventPatternOcurrence" type="EventPatternOcurrence"/>

 <xs:complexType name="EventPatternOcurrence">

 <xs:sequence>

 <xs:element name="generated by" type="ComplexEvent" minOccurs="1" maxOccurs="1"/>

 <xs:element name="EventPatternType" type="EventPatternType" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="PDAG Instance" type="PDAG Instance" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="EventPatternType" type="EventPatternType"/>

 <xs:complexType name="EventPatternType">

 <xs:sequence>

 <xs:element name="PDAG Type" type="PDAG Type" minOccurs="1" maxOccurs="1"/>

 <xs:element name="Pattern Description" type="Pattern Description" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Pattern Description" type="Pattern Description"/>

 <xs:complexType name="Pattern Description">

 <xs:sequence>

 <xs:element name="Node Type" type="Node Type" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="SimpleEvent" type="SimpleEvent"/>

 <xs:complexType name="SimpleEvent">

 <xs:complexContent>

 <xs:extension base="Event">

 <xs:sequence/>

 </xs:extension>

128

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="ComplexEvent" type="ComplexEvent"/>

 <xs:complexType name="ComplexEvent">

 <xs:complexContent>

 <xs:extension base="Event">

 <xs:sequence>

 <xs:element name="ComplexEventType" type="ComplexEventType" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="AtomicData" type="AtomicData" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="EventType" type="EventType"/>

 <xs:complexType name="EventType">

 <xs:sequence>

 <xs:element name="name" type="xs:string" minOccurs="1" maxOccurs="1"/>

 <xs:element name="function for" type="Functor Type" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="PDAG Type" type="PDAG Type"/>

 <xs:complexType name="PDAG Type">

 <xs:sequence>

 <xs:element name="defined in" type="Node Type" minOccurs="1"

maxOccurs="unbounded"/>

 <xs:element name="defined by" type="Edge Type" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Node Type" type="Node Type"/>

 <xs:complexType name="Node Type">

 <xs:sequence>

 <xs:element name="EventType" type="EventType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Edge Type" type="Edge Type"/>

 <xs:complexType name="Edge Type">

 <xs:sequence>

 <xs:element name="ordering semantics" type="xs:string" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="Node Type" type="Node Type" minOccurs="2" maxOccurs="2"/>

129

 </xs:sequence>

 </xs:complexType>

 <xs:element name="AtomicDataType" type="AtomicDataType"/>

 <xs:complexType name="AtomicDataType">

 <xs:sequence>

 <xs:element name="Format" type="Format" minOccurs="1" maxOccurs="1"/>

 <xs:element name="Schema" type="Schema" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Format" type="Format"/>

 <xs:complexType name="Format">

 <xs:sequence/>

 </xs:complexType>

 <xs:element name="Schema" type="Schema"/>

 <xs:complexType name="Schema">

 <xs:sequence/>

 </xs:complexType>

 <xs:element name="Functor" type="Functor"/>

 <xs:complexType name="Functor">

 <xs:sequence>

 <xs:element name="Functor Type" type="Functor Type" minOccurs="1" maxOccurs="1"/>

 <xs:element name="AtomicDataType" type="AtomicDataType" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Simple Event" type="Simple Event"/>

 <xs:complexType name="Simple Event">

 <xs:complexContent>

 <xs:extension base="Event">

 <xs:sequence>

 <xs:element name="AtomicData" type="AtomicData" minOccurs="1"

maxOccurs="1"/>

 </xs:sequence>

 </xs:extension>

 </xs:complexContent>

 </xs:complexType>

 <xs:element name="BaseEventType" type="BaseEventType"/>

 <xs:complexType name="BaseEventType">

 <xs:sequence>

 <xs:element name="Source" type="Source" minOccurs="1" maxOccurs="1"/>

 <xs:element name="Timestamp" type="Timestamp" minOccurs="1" maxOccurs="1"/>

 <xs:element name="EventType" type="EventType" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

130

 </xs:complexType>

 <xs:element name="PDAG Instance" type="PDAG Instance"/>

 <xs:complexType name="PDAG Instance">

 <xs:sequence>

 <xs:element name="PDAG Type" type="PDAG Type" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Node" type="Node"/>

 <xs:complexType name="Node">

 <xs:sequence>

 <xs:element name="contained by" type="Event" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element name="PDAG Instance" type="PDAG Instance" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="Node Type" type="Node Type" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 <xs:element name="Edge" type="Edge"/>

 <xs:complexType name="Edge">

 <xs:sequence>

 <xs:element name="PDAG Instance" type="PDAG Instance" minOccurs="1"

maxOccurs="1"/>

 <xs:element name="Edge Type" type="Edge Type" minOccurs="1" maxOccurs="1"/>

 <xs:element name="source" type="Event" minOccurs="1" maxOccurs="1"/>

 <xs:element name="target" type="Event" minOccurs="1" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

</xs:schema>

131

Table A.2. “Duplicate Dividends” event pattern occurrences in JSON format.

{

 "Occurrences": [

 {

 "Pattern Description": "Duplicate dividends",

 "PDAG": {

 "nodes": [

 {

 "id": "e3373e90-30ca-5f81-95f3-981d8ea05102",

 "source": "TR_Stream",

 "startTime": "2008-10-29 00:00:00.000, +10",

 "endTime": null,

 "dataList": {

 "Period Length": "6",

 "Period Units": "12",

 "Mandatory Voluntary Indicator": "MAN",

 "Div Ex Date": "18-Nov-08",

 "Franking %": "100",

 "Feature": "40",

 "Frequency": "99",

 "Currency": "AUD",

 "Ind. An Amount": "1.82",

 "Descr": " Dividend Rinvestment plan in operation.",

 "Div End Date": "30-Sep-08",

 "Reinvestment Plan Available": "Y",

 "Source of Fund": "8",

 "Tax Marker": "2",

 "Payment Status": "APPD",

 "Corporate Action ID": "9035725",

 "Spec. Tax Rules": "7",

 "Div Reg. Date": "24-Nov-08",

 "Div Amt.": "0.31",

 "Payment Type": "CDI",

 "Div Delete Marker": "0",

 "Div Ann. Date": "29-Oct-08",

 "Type": "Dividend",

 "Date[L]": "29-Oct-08",

 "Div Mkt Lvl ID": "8018473",

 "Div Pay Date": "18-Dec-08",

 "Type Marker": "70",

 "#RIC": "SGB.AX",

 "Tax Rate": "30"

 }

 },

 {

 "id": "913fa16f-7af6-5398-9c92-f6d29da36810",

 "source": "TR_Stream",

 "startTime": "2008-10-29 00:00:00.000, +10",

132

 "endTime": null,

 "dataList": {

 "Period Length": "6",

 "Period Units": "12",

 "Mandatory Voluntary Indicator": "MAN",

 "Div Ex Date": "18-Nov-08",

 "Franking %": "100",

 "Feature": "40",

 "Frequency": "99",

 "Currency": "AUD",

 "Ind. An Amount": "1.82",

 "Descr": "Dividend Rinvestment plan in operation.",

 "Div End Date": "30-Sep-08",

 "Reinvestment Plan Available": "Y",

 "Source of Fund": "8",

 "Tax Marker": "2",

 "Payment Status": "APPD",

 "Corporate Action ID": "9035725",

 "Spec. Tax Rules": "7",

 "Div Reg. Date": "24-Nov-08",

 "Div Amt.": "0.31",

 "Payment Type": "CDI",

 "Div Delete Marker": "0",

 "Div Ann. Date": "29-Oct-08",

 "Type": "Dividend",

 "Date[L]": "29-Oct-08",

 "Div Mkt Lvl ID": "8018473",

 "Div Pay Date": "18-Dec-08",

 "Type Marker": "70",

 "#RIC": "SGB.AX",

 "Tax Rate": "30"

 }

 }

],

 "edges": [

 {

 "ordering": "start(source) >= start(target)",

 "target": "nodes[0]",

 "source": "nodes[1]"

 }

]

 }

 },

 {

 "Pattern Description": "Duplicate dividends",

 "PDAG": {

 "nodes": [

 {

 "id": "2a2552f7-2875-5af4-b578-164c9df38b0a",

133

 "source": "TR_Stream",

 "startTime": "2008-10-29 00:00:00.000, +10",

 "endTime": null,

 "dataList": {

 "Period Length": "6",

 "Period Units": "12",

 "Mandatory Voluntary Indicator": "MAN",

 "Div Ex Date": "18-Nov-08",

 "Franking %": "100",

 "Feature": "40",

 "Frequency": "2",

 "Currency": "AUD",

 "Ind. An Amount": "1.82",

 "Qual. Income Elig.": "10",

 "Descr": " Dividend Rinvestment plan in operation.",

 "Div End Date": "30-Sep-08",

 "Reinvestment Plan Available": "Y",

 "Source of Fund": "2",

 "Tax Marker": "2",

 "Payment Status": "APPD",

 "Corporate Action ID": "9035722",

 "Spec. Tax Rules": "7",

 "Div Reg. Date": "24-Nov-08",

 "Div Amt.": "0.94",

 "Payment Type": "CDI",

 "Div Delete Marker": "0",

 "Div Ann. Date": "29-Oct-08",

 "Type": "Dividend",

 "Date[L]": "29-Oct-08",

 "Div Mkt Lvl ID": "8018469",

 "Div Pay Date": "18-Dec-08",

 "Qual. Income %": "100",

 "Type Marker": "61",

 "#RIC": "SGB.AX",

 "Tax Rate": "30"

 }

 },

 {

 "id": "1f175487-0b36-5152-a2a2-3dbbfbcb2385",

 "source": "TR_Stream",

 "startTime": "2008-10-29 00:00:00.000, +10",

 "endTime": null,

 "dataList": {

 "Period Length": "6",

 "Period Units": "12",

 "Mandatory Voluntary Indicator": "MAN",

 "Div Ex Date": "18-Nov-08",

 "Franking %": "100",

 "Feature": "40",

134

 "Frequency": "2",

 "Currency": "AUD",

 "Ind. An Amount": "1.82",

 "Qual. Income Elig.": "10",

 "Descr": "Dividend Rinvestment plan in operation.",

 "Div End Date": "30-Sep-08",

 "Reinvestment Plan Available": "Y",

 "Source of Fund": "2",

 "Tax Marker": "2",

 "Payment Status": "APPD",

 "Corporate Action ID": "9035722",

 "Spec. Tax Rules": "7",

 "Div Reg. Date": "24-Nov-08",

 "Div Amt.": "0.94",

 "Payment Type": "CDI",

 "Div Delete Marker": "0",

 "Div Ann. Date": "29-Oct-08",

 "Type": "Dividend",

 "Date[L]": "29-Oct-08",

 "Div Mkt Lvl ID": "8018469",

 "Div Pay Date": "18-Dec-08",

 "Qual. Income %": "100",

 "Type Marker": "61",

 "#RIC": "SGB.AX",

 "Tax Rate": "30"

 }

 }

],

 "edges": [

 {

 "ordering": "start(source) >= start(target)",

 "target": "nodes[0]",

 "source": "nodes[1]"

 }

]

 }

 }

]

 }

135

Appendix B: Additional Results for Case Study

This appendix presents supplementary materials to the case study discussed in Chapter 7.

Table B.1. Recorded execution times of one rule used in Section 7.3.1.

All values in the table are time in seconds.

Dataset 1 Dataset 2 Dataset 3

EP-RDR BP EP-RDR BP EP-RDR BP

1 0.435 0.314 0.845 0.739 8.027 5.748

2 0.414 0.235 0.895 0.743 7.798 5.334

3 0.380 0.240 0.909 0.703 7.804 5.323

4 0.421 0.228 0.859 0.736 7.560 5.440

5 0.324 0.248 0.933 0.915 8.102 5.712

6 0.335 0.226 0.821 0.753 7.827 5.557

7 0.317 0.245 0.818 0.718 7.667 5.313

8 0.316 0.248 0.889 0.740 7.317 5.555

9 0.366 0.244 0.892 0.751 8.179 5.593

10 0.432 0.246 0.834 0.735 8.007 5.423

avg 0.374 0.247 0.870 0.753 7.829 5.500

136

Table B.2. Recorded execution times of seven rules used in Section 7.3.1.

All values in the table are time in seconds.

Dataset 1 Dataset 2 Dataset 3

EP-RDR BP EP-RDR BP EP-RDR BP

1 2.553 0.681 5.001 1.914 33.656 10.324

2 2.629 0.589 4.805 1.849 34.593 9.943

3 2.563 0.581 4.719 1.852 34.560 10.080

4 2.621 0.572 4.888 1.850 35.724 10.582

5 2.560 0.572 4.782 1.802 36.289 10.079

6 2.700 0.576 4.706 1.778 39.754 10.130

7 2.578 0.576 4.725 1.972 37.592 10.012

8 2.575 0.559 4.955 1.784 32.158 10.075

9 2.559 0.606 4.791 1.766 33.021 10.123

10 2.508 0.599 4.799 1.878 34.052 10.143

avg 2.585 0.591 4.817 1.845 35.140 10.149

Table B.3. RICs of the Dubai companies in Dataset 3 in Section 7.3.1.

AIRA.DU ASCI.DU DISB.DU EMAR.DU JEEM.DU SALAMA.DU

AJBNK.DU CBD.DU DNIN.DU ENBD.DU MASB.DU SHUA.DU

AMAN.DU DEYR.DU DSI.DU ERC.DU NBDD.DU TABR.DU

AMLK.DU DFM.DU DTKF.DU GGIC.DU NCC.DU TAML.DU

ARMX.DU DINC.DU DU.DU GNAV.DU NGIN.DU TKFE.DU

ARTC.DU DINV.DU EBIL.DU IAIC.DU OIC.DU UPRO.DU

Table B.4. RICs of the companies used in Section 7.4.1.

ANZ.AX AIX.AX AMP.AX BEN.AX BOQ.AX BXB.AX

BHP.AX AJL.AX ASX.AX BKN.AX BPT.AX BIL.AX

AGO.AX AMC.AX AWE.AX BLD.AX BSL.AX

AIO.AX APN.AX AUN.AX BLY.AX BWP.AX

	Title Page - Enabling User-Driven Rule Management in Event Data Analysis
	Table of Contents
	Abstract
	Acknowledgments
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations

	Chapter 1 - Introduction
	Chapter 2 - Literature Review
	Chapter 3 - Research Plan
	Chapter 4 - Proposed Architecture
	Chapter 5 - Proposed Event Data Modelling Framework
	Chapter 6 - Prototype Implementation
	Chapter 7 - Evaluation and Case Study: Financial Market Data Pre-Processing
	Chapter 8 - Conclusion and Future Work
	References
	Appendix A: Additional Information for EDMF
	Appendix B: Additional Results for Case Study

