Skip to main content
Log in

OrgMiner: A Framework for Discovering User-Related Process Intelligence from Event Logs

  • Published:
Information Systems Frontiers Aims and scope Submit manuscript

Abstract

Process Intelligence refers to the extraction and analysis of valuable knowledge nuggets embedded in business process instances/event logs or enterprise applications, for the purpose of supporting various decision-making processes. Researchers and practitioners mine such event logs using Process Mining and Analytics (PMA) techniques that help analyze business processes across three perspectives: control flow, organization, and data. While previous PMA studies have made advances toward the control flow and data flow perspectives, there is limited research toward the organizational perspective of process intelligence. In this study, we propose an organizational mining framework, OrgMiner, that supports constructing organizational models from event logs. The framework utilizes the notion of behavioral patterns, which rely on the weak order relations appearing in event logs. The various modules and knowledge elements in the framework are described in detail. The components of the framework support identifying, selecting, and applying behavioral patterns using different metrics for organizational mining purposes. The derived organizational models can be used to support decision making in scenarios such as task assignment, resource allocation, as well as role-based access control. Compared to extant studies, the proposed approach does not assume prior availability of explicit process models. Additionally, the process patterns presented in this study can be used as building blocks, so that researchers and practitioners can use them directly or extend them further to identify complex organizational processes. A case study is presented to evaluate the feasibility and effectiveness of the OrgMiner framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agrawal, R., and Srikant, R. (1994). “Fast Algorithms for Mining Association Rules,” in Proceeding VLDB ‘94 Proceedings of the 20th International Conference on Very Large Data Bases, pp. 487–499.

  • Alirezaei, E., and Parsa, S. (2018). “Adaptable cross-organizational unstructured business processes via dynamic rule-based semantic network,” Information Systems Frontiers.

  • Alves de Medeiros, A. K., van Dongen, B., van der Aalst, W. M. P., and Weijters, A. J. M. M. (2004). “Process mining: Extending the alpha-algorithm to mine short loops,” Eindhoven.

  • Becker, J., Delfmann, P., Dietrich, H. A., Steinhorst, M., & Eggert, M. (2016). Business process compliance checking – Applying and evaluating a generic pattern matching approach for conceptual models in the financial sector. Information Systems Frontiers, 18(2), 359–405. https://doi.org/10.1007/s10796-014-9529-y.

    Article  Google Scholar 

  • Bertolini, M., Bevilacqua, M., Ciarapica, F. E., & Giacchetta, G. (2011). Business process re-engineering in healthcare management: A case study. Business Process Management Journal, 17(1), 42–66. https://doi.org/10.1108/14637151111105571.

    Article  Google Scholar 

  • Bose, R., and van der Aalst, W. M. P. (2010). “Trace clustering based on conserved patterns: Towards achieving better process models,” in Business Process Management Workshops, Lecture Notes in Business Information Processing (Vol. 43), pp. 170–181 (available at http://www.springerlink.com/index/n4h7t16v75752749.pdf).

  • Bose, R., & van der Aalst, W. M. P. (2012). Process Diagnostics Using Trace Alignment : Opportunities , Issues , and Challenges. Information Systems, 37(2), 117–141.

    Article  Google Scholar 

  • Bucher, T., Gericke, A., & Sigg, S. (2009). Process-centric business intelligence. Business Process Management Journal, 15(3), 408–429. https://doi.org/10.1108/14637150910960648.

    Article  Google Scholar 

  • Caron, F., Vanthienen, J., and Baesens, B. (2013). “Comprehensive rule-based compliance checking and risk management with process mining,” Decision Support Systems (54:3), Elsevier B.V., pp. 1357–1369 (doi: https://doi.org/10.1016/j.dss.2012.12.012).

  • Cong, Z., Fernandez, A., Billhardt, H., & Lujak, M. (2015). Service discovery acceleration with hierarchical clustering. Information Systems Frontiers, 17(4), 799–808. https://doi.org/10.1007/s10796-014-9525-2.

    Article  Google Scholar 

  • Fan, S., Kang, L., & Zhao, J. L. (2015). Workflow-aware attention tracking to enhance collaboration management. Information Systems Frontiers, 17(6), 1253–1264. https://doi.org/10.1007/s10796-015-9565-2.

    Article  Google Scholar 

  • Ferreira, D. R., and Alves, C. (2012). “Discovering user communities in large event logs,” Lecture Notes in Business Information Processing (99 LNBIP:PART 1), pp. 123–134 (doi: https://doi.org/10.1007/978-3-642-28108-2_11).

  • Ferreira, D. R., & Thom, L. H. (2012). A semantic approach to the discovery of workflow activity patterns in event logs. International Journal of Business Process Integration and Management, 6(1), 4–17.

    Article  Google Scholar 

  • Fowlkes, E. B., & Mallows, C. L. (1983). A method for comparing two hierarchical Clusterings. Journal of the American Statistical Association, 78(383), 553–569.

    Article  Google Scholar 

  • Fraga, A., Llorens, J., and Génova, G. (2019). “Towards a Methodology for Knowledge Reuse Based on Semantic Repositories,” Information Systems Frontiers (21:1), Information Systems Frontiers, pp. 5–25 (doi: https://doi.org/10.1007/s10796-018-9862-7).

  • Garriga, M., De Renzis, A., Lizarralde, I., Flores, A., Mateos, C., Cechich, A., & Zunino, A. (2018). A structural-semantic web service selection approach to improve retrievability of web services. Information Systems Frontiers, 20(6), 1319–1344. https://doi.org/10.1007/s10796-016-9731-1.

    Article  Google Scholar 

  • Ghattas, J., Soffer, P., and Peleg, M. (2014). “Improving business process decision making based on past experience,” Decision Support Systems (59), Elsevier B.V., pp. 93–107 (doi: https://doi.org/10.1016/j.dss.2013.10.009).

  • Guillet, F., and Hamilton, H. J. (Eds.). (2007). Quality Measures in Data Mining, Vol. 43, Springer.

  • Guinard, D., Trifa, V., Karnouskos, S., Spiess, P., and Savio, D. (2010). “Interacting with the SOA-Based Internet of Things : Discovery , Query , Selection , and On-Demand Provisioning of Web Services,” Services Computing, IEEE Transactions on (3:3), pp. 223–235.

  • Günther, C. W., and van der Aalst, W. M. P. (2007). “Fuzzy Mining – Adaptive Process Simplification Based on Multi-perspective Metrics,” in Business Process Management, Lecture Notes in Computer Science (Vol. 4714), pp. 328–343.

  • Huang, Z., Lu, X., and Duan, H. (2012). “Resource behavior measure and application in business process management,” Expert Systems with Applications (39:7), Elsevier Ltd, pp. 6458–6468 (doi: https://doi.org/10.1016/j.eswa.2011.12.061).

  • IEEE Task Force on Process Mining. (2011). “Process Mining Manifesto,” in Business Process Management Workshops, Lecture Notes in Business Information Processing (Vol. 99), pp. 169–194.

  • Jareevongpiboon, W., & Janecek, P. (2013). Ontological approach to enhance results of business process mining and analysis. Business Process Management Journal, 19(3), 459–476. https://doi.org/10.1108/14637151311319905.

    Article  Google Scholar 

  • Kannan, S., & Bhaskaran, R. (2009). Association rule pruning based on interestingness measures with clustering. Journal of Computer Science, 6(1), 35–43 available at http://arxiv.org/abs/0912.1822.

    Google Scholar 

  • Kluza, K., and Nalepa, G. J. (2018). “Formal model of business processes integrated with business rules,” Information Systems Frontiers, Information Systems Frontiers, pp. 1–19 (doi: https://doi.org/10.1007/s10796-018-9826-y).

  • Köck, M., & Paramythis, A. (2011). Activity sequence modelling and dynamic clustering for personalized e-learning. User Modeling and User-Adapted Interaction, 21(1–2), 51–97. https://doi.org/10.1007/s11257-010-9087-z.

    Article  Google Scholar 

  • Leyer, M., Schneider, C., and Claus, N. (2016). “Would you like to know who knows? Connecting employees based on process-oriented knowledge mapping,” Decision Support Systems (87), Elsevier B.V., pp. 94–104 (doi: https://doi.org/10.1016/j.dss.2016.05.003).

  • Liu, Y., Wang, J., Yang, Y., & Sun, J. (2008). A semi-automatic approach for workflow staff assignment. Computers in Industry, 59(5), 463–476. https://doi.org/10.1016/j.compind.2007.12.002.

    Article  Google Scholar 

  • Liu, T., Cheng, Y., and Ni, Z. (2012). “Mining event logs to support workflow resource allocation,” Knowledge-Based Systems (35), Elsevier B.V., pp. 320–331 (doi: https://doi.org/10.1016/j.knosys.2012.05.010).

  • Lohmann, N. (2013). Compliance by design for artifact-centric business processes. Information Systems, 38(4), 606–618. https://doi.org/10.1016/j.is.2012.07.003.

    Article  Google Scholar 

  • Nguyen, D., Vo, B., and Le, B. (2014). “Efficient strategies for parallel mining class association rules,” Expert Systems with Applications (41:10), Elsevier Ltd, pp. 4716–4729 (doi: https://doi.org/10.1016/j.eswa.2014.01.038).

  • Ni, Z., Wang, S., and Li, H. (2011). “Mining organizational structure from workflow logs,” in e-Education, Entertainment and e-Management (ICEEE), 2011 International Conference on, pp. 222–225 (available at http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6137791).

  • Pourmasoumi, A., Kahani, M., and Bagheri, E. (2017). “Mining variable fragments from process event logs,” Information Systems Frontiers (19:6), Information Systems Frontiers, pp. 1423–1443 (doi: https://doi.org/10.1007/s10796-016-9662-x).

  • Qiu, J., and Lin, Z. (2011). “A framework for exploring organizational structure in dynamic social networks,” Decision Support Systems (51:4), Elsevier B.V., pp. 760–771 (doi: https://doi.org/10.1016/j.dss.2011.01.011).

  • Savasere, A., Omiecinski, E., and Navathe, S. (1995). “An efficient algorithm for mining association rules in large databases,” (available at http://smartech.gatech.edu/handle/1853/6678).

  • Sellami, R., Gaaloul, W., & Defude, B. (2013). Process socio space discovery based on semantic logs. Journal of Internet Technology, 14(3), 401–412. https://doi.org/10.6138/JIT.2013.14.3.05.

    Article  Google Scholar 

  • Shepitsen, A., Gemmell, J., Mobasher, B., and Burke, R. (2008). “Personalized recommendation in social tagging systems using hierarchical clustering,” in Proceedings of the 2008 ACM conference on Recommender systems - RecSys ‘08, New York, New York, USA: ACM Press, p. 259 (doi: https://doi.org/10.1145/1454008.1454048).

  • Smirnov, S., Weidlich, M., Mendling, J., & Weske, M. (2012). Action patterns in business process model repositories. Computers in Industry, 63(2), 98–111.

    Article  Google Scholar 

  • Song, M., and van der Aalst, W. M. P. (2008). “Towards comprehensive support for organizational mining,” Decision Support Systems (46:1), Elsevier B.V., pp. 300–317 (doi: https://doi.org/10.1016/j.dss.2008.07.002).

  • Sun, S. X., & Zhao, J. L. (2013). Formal workflow design analytics using data flow modeling. Decision Support Systems, 55(1), 270–283. https://doi.org/10.1016/j.dss.2013.01.028.

    Article  Google Scholar 

  • Sun, S. X., Zhao, J. L., Nunamaker, J. F., & Sheng, O. R. L. (2006). Formulating the data-flow perspective for business process management. Information Systems Research, 17(4), 374–391. https://doi.org/10.1287/isre.1060.0105.

    Article  Google Scholar 

  • Tan, W., Jiang, C., Li, L., & Lv, Z. (2008). Role-oriented process-driven enterprise cooperative work using the combined rule scheduling strategies. Information Systems Frontiers, 10(5), 519–529. https://doi.org/10.1007/s10796-008-9107-2.

  • Tao, J., & Deokar, A. V. (2015). “Semantics-based Event Log Aggregation for Process Mining and Analytics,” Information Systems Frontiers, (17):1209–1226. https://doi.org/10.1007/s10796-015-9563-4.

  • Thomas, O., and Fellmann, M. (2006). “Semantic event-driven process chains,” in Proceedings of the Workshop on Semantics for Business Process Management (SBPM ‘06), held at the 3rd European Semantic Web Conference (ESWC 2006), Budva, Montenegro, June, p. 2.

  • Tiwari, A., Turner, C. J., & Majeed, B. (2008). A review of business process mining: State-of-the-art and future trends. Business Process Management Journal, 14(1), 5–22. https://doi.org/10.1108/14637150810849373.

    Article  Google Scholar 

  • van der Aalst, W. M. P. (2011). Process mining: Discovery, conformance and enhancement of business processes (2nd ed.). Berlin Heidelberg: Springer. https://doi.org/10.1007/978-3-662-49851-4.

    Book  Google Scholar 

  • van der Aalst, W. M. P. (2012a). Process mining: Overview and opportunities. ACM Transactions on Management Information Systems, 3(2), 1–17. https://doi.org/10.1145/2229156.2229157.

    Article  Google Scholar 

  • van der Aalst, W. M. P. (2012b). “Process Mining,” Communications of the ACM (55:8) (pp. 76–83). Berlin: Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-19345-3.

    Book  Google Scholar 

  • van der Aalst, W. M. P., Alves de Medeiros, A. K., & Weijters, A. J. M. M. (2005). In G. Ciardo & P. Darondeau (Eds.), “Genetic process mining,” in Applications and Theory of Petri Nets 2005, Proceedings (Vol. 3536, pp. 48–69). Berlin: Springer-Verlag.

    Google Scholar 

  • van der Aalst, W. M. P., Zhao, J. L., & Wang, H. J. (2015). Business process intelligence: Connecting data and processes. ACM Transactions on Management Information Systems, 5(4), 1–7. https://doi.org/10.1145/2685352.

    Article  Google Scholar 

  • van Dongen, B., & van der Aalst, W. M. P. (2004). EMiT: A process mining tool. In Applications and Theory of Petri Nets 2004, Proceedings (Vol. 3099, pp. 454–463). Berlin: Springer-Verlag Berlin.

    Chapter  Google Scholar 

  • Vladimir, K., Budiselić, I., & Srbljić, S. (2015). Consumerized and peer-tutored service composition. Expert Systems with Applications, 42(3), 1028–1038. https://doi.org/10.1016/j.eswa.2014.09.033.

    Article  Google Scholar 

  • Wahyudi, A., Kuk, G., and Janssen, M. (2018). “A Process Pattern Model for Tackling and Improving Big Data Quality,” Information Systems Frontiers (20:3), Information Systems Frontiers, pp. 457–469 (doi: https://doi.org/10.1007/s10796-017-9822-7).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amit V. Deokar.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1. Repair Case: Top 10 Candidate Rules from the Event Log

No.

Rule

Support

Confidence

Lift

3114

{(B, Tester5), (C2, SolverS3), (E2, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

5696

{(C2, SolverS3), (D, Tester1), (D, Tester4)} = > {(C2, SolverS1)}

0.01

1.00

5.348

6004

{(C2, SolverS2), (D, Tester5), (D, Tester6)} = > {(C2, SolverS1)}

0.01

1.00

5.348

6104

{(C2, SolverS3), (D, Tester5), (D, Tester6)} = > {(C2, SolverS1)}

0.01

1.00

5.348

8226

{(B, Tester5), (C2, SolverS3), (E2, System), (F, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

8231

{(A, System), (B, Tester5), (C2, SolverS3), (E2, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

8236

{(B, Tester5), (C2, SolverS3), (E1, System), (E2, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

11,210

{(C2, SolverS3), (D, Tester1), (D, Tester4), (E2, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

11,215

{(C2, SolverS3), (D, Tester1), (D, Tester4),(F, System)} = > {(C2, SolverS1)}

0.01

1.00

5.348

11,220

{(A, System), (C2, SolverS3), (D, Tester1), (D, Tester4)} = > {(C2, SolverS1)}

0.01

1.00

5.348

Appendix 2. Repair Case: Top 10 Resource Allocation Rules Filtered by OR

No.

Rule

Support

Confidence

Lift

1971

{(C1, SolverS2),(C1, SolverS3)} = > {(C1, SolverS1)}

0.012

0.545

2.917

1216

{(D, Tester1),(D, Tester4)} = > {(B, Tester1)}

0.01

0.417

2.408

269

{(C1, SolverS1)} = > {(C1, SolverS2)}

0.087

0.465

2.398

415

{(D, Tester4),(D, Tester5)} = > {(B, Tester4)}

0.011

0.344

2.338

1585

{(D, Tester1),(D, Tester3)} = > {(B, Tester6)}

0.01

0.333

1.852

304

{(C2, SolverC1)} = > {(C2, SolverC3)}

0.072

0.385

1.791

414

{(B, Tester4),(D, Tester5)} = > {(D, Tester4)}

0.011

0.333

1.642

3

{(B, Tester4)} = > {(D, Tester4)}

0.041

0.279

1.374

198

{(B, Tester6)} = > {(D, Tester1)}

0.051

0.283

1.288

140

{(B, Tester1)} = > {(D, Tester5)}

0.047

0.272

1.229

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deokar, A.V., Tao, J. OrgMiner: A Framework for Discovering User-Related Process Intelligence from Event Logs. Inf Syst Front 23, 753–772 (2021). https://doi.org/10.1007/s10796-020-09990-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10796-020-09990-7

Keywords

Navigation