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Abstract 

Automated business processes running on distributed transaction processing (DTP) systems 

characterize the IT backbone of services industries. New web services standards such as BPEL 

have increased the importance of DTP systems in business practice. IT departments are forced to 

meet pre-defined quality-of-service metrics, therefore performance prediction is essential. 

Unfortunately, the complexity of multiple interacting services running on multiple hardware 

resources as well as the volatility in the demand for these services can make performance analysis 

extremely difficult. While business process automation has been a dominant topic in the recent 

years, surprisingly little has been published on performance modelling of large-scale DTP systems. 

In this paper, we will describe these systems with respect to the workloads and technical features, 

and compare the predictive accuracy of different types of queueing models and discrete event 

simulations experimentally. The experiments are based on two real-world DTP systems and 

respective data sets of a telecom company. Overall, we found that while the results for average 

utilization scenarios are quite similar, the effort to implement and run analytic solutions is much 

lower. As long as standard distributional assumptions of analytical models hold, they provide a 

reliable and fast methodology to explore different demand mix scenarios even for large-scale 

systems. The difficulty to estimate service and arrival time parameters and demand mix for the 

respective queueing network models can largely be reduced with appropriate tooling. Often, this 

information is missing in IT departments. Also, complex event conditions and error handling in 

DTP systems can make the analysis difficult. For many DTP applications, however, performance 

modelling could provide valuable decision support for service level management.  

Keywords: Performance Modelling, IT Service Management, Transaction  

                 Processing, Queueing Network Model, Discrete Event Simulation 
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1. Introduction 

Automated business processes running on distributed transaction processing 

(DTP) systems are the IT backbone of many businesses these days. DTP systems 

support the flexible, easily adaptable composition of distributed software services 

in heterogeneous environments. Such systems can be found in all areas of today's 

services industries such as the airline, banking, insurance, or telecom sector. 

Automated business processes describe transactions that need to be executed 

consistently and reliably across multiple information systems. For example, 

adding a new customer to a telecommunication company typically requires a 

credit check, the assignment of a new phone number, entries in the billing and 

CRM systems, inserts into various databases of the network that the company is 

operating, etc. In practice, most automated business processes are executed on 

transaction processing (TP) monitors such as BEA Tuxedo, IBM CISC, 

Vitria, or TIBCO Business Works. 

 

DTP systems are typically business critical applications and consist of dozens of 

business processes that are executed on many heterogeneous software systems. 

They need to be designed for hundreds of thousands of requests a day, often 

hundreds of them in parallel and need to meet high quality of service standards in 

terms of response times, throughput, and availability. 

 

Capacity planning and performance modelling for these systems are difficult 

tasks; in particular since the demand for certain processes can vary considerably 

over time due to volatility in the demand of consumers and the market in general. 

Performance problems are a frequent consequence. While investment costs for 

new hardware have been decreasing, the energy costs in data centres have been 

increasing during the past years. IDC reports that the cost of power and cooling 

has increased 400% over the past decade, and these costs are expected to continue 

to rise [1]. In such an environment, IT service managers need to strike a balance, 

trying to maintain agreed upon quality of service while minimizing cost of the 

operations. 
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Unfortunately, the complexity of multiple interacting processes running on 

multiple hardware resources makes performance prediction and capacity planning 

difficult. Distributed systems are already hard to analyze, but the problem 

becomes even harder when they are composed of black-box components: software 

from many different (and perhaps competing) vendors, usually with no source 

code available. 

 

Conceptually, DTP systems can be seen as queueing systems with jobs, waiting 

lines, and service stations. Service stations can be chained to form queueing 

networks where jobs departing from one station enter the next one after being 

served. The difficulty with queueing systems is that their response times develop 

in a non-linear way, and it is not easy to predict, which station in a network of 

interleaved processes will first become a bottleneck given a certain demand mix.  

 

There are basically three approaches to support performance prediction of 

queueing systems in general: experiments in the lab, analytical models, and 

simulation. Experiments in such an environment are problematic. First, in 24/7 

operations experiments cannot be done on a production system. Therefore, 

companies need to set up a lab infrastructure to perform overload tests, which is 

very costly. Second, a single experiment can only provide results for a particular 

demand mix of processes. Since every experiment is costly, it is also expensive to 

perform sensitivity analyses with a larger set of demand scenarios. In comparison, 

analytical models and simulation are cheaper to set up provided that there is tool 

support available including log file analysis, analytic solvers, and a simulation 

engine. Once a valid model is found, it is easy to do various forms of sensitivity 

analyses. There is surprisingly little empirical work on the usage of analytical 

models or simulation for the capacity planning of DTP systems [2-5]. Also, 

knowledge about and usage of these techniques is limited or not existent at all by 

many IT service providers. 

 

Queueing theory has been a main area of research in Computer Science and 

Operations Research in particular in the 70s and 80s. However, most published 

applications up until now focus on rather small systems, such as single computer 

configurations or isolated three-tier web applications. While business process 
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modelling and automation has been an important research thread in Information 

Systems in the recent years [6, 7], surprisingly little has been published on 

performance modelling of automated business processes.  

 

Although, the results of analytical queueing network models for smaller 

applications in lab environments with synthetic workloads are promising [8], it is 

not clear that robust results can be achieved in large-scale DTP systems in the 

field. First, arrival distributions do not typically meet the assumptions of 

analytical models. Second, there are a number of technical features of DTP 

systems (e.g., rollbacks or additional management overhead) that are difficult to 

describe in a queueing network model. Finally, the sheer size of these systems can 

become a problem. Although, some assumptions are not fulfilled, such models 

might still serve as a useful approximation of the real world. So far, there is little 

empirical evidence in the literature that queueing network models or simulation 

can provide reliable results for large-scale DTP systems. Given the importance of 

DTP systems and automated business processes in practice and in the academic 

literature, we believe that performance modelling deserves more attention. 

 

In this paper, we evaluate the predictive accuracy of different types of analytical 

queueing network models. We will compare the results to those of a discrete event 

simulation and the actual response times in log data. We will also show 

prerequisites for performance prediction in this field and discuss problems that 

limit the applicability of analytical models.  

 

Experimental results for these questions need to be based on real-world data. 

Therefore, we have analyzed log data of two large DTP systems of a European 

telecom provider. Based on an analysis of log data, we have derived an estimator 

for arrival rates and service times. As this data is readily available for most 

productive DTP systems, we did not have to rely on additional measurements. We 

have parameterized different types of analytical models and simulations to get 

predictions for response times and throughput, which we could then compare with 

actual performance indices. The effort for the experimental setup is significant, as 

it requires not only the implementation of respective queueing network solvers 

and simulations but also a comprehensive tool to parse, analyze, and filter huge 
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amounts of log data with different syntax. The daily volume of log data for both 

systems that we analyzed is between 400 and 900 MByte, and more than 20 

GByte per month. 

 

In the next section, we will discuss related literature. Section 3 will briefly 

describe essential characteristics of DTP systems, and Section 4 will cover 

appropriate performance modelling techniques. Section 5 will provide an 

overview of the data and the system configuration of the systems in question. In 

Section 6 we will describe the experimental setup, and in Section 7 the results, 

before we conclude in Section 8. 

2. Related Literature 

Performance modelling has long been an issue in Computer Science and 

Operations Research [9-11]. Target areas of performance analysis included file 

and memory systems, databases, computer networks, operating systems, fault-

tolerant systems, and real-time systems [12, 13]. In contrast, in our work, we 

focus on the performance prediction for large-scale DTP systems. Whereas many 

papers on performance prediction are based on synthetic workloads or lab settings 

[2, 3], we have analyzed DTP implementations in the field.  

 

Benchmark tests are regularly used in practice for capacity planning and 

bottleneck detection of computer systems [14]. Several popular benchmarks exist. 

The ones most suitable for DTP systems are the SAP Standard Application 

Benchmarks [15], the SPEC JBB 2005 [16], the Oracle Applications Standard 

Benchmark [17], and TPC-E [18], replacing the popular TPC-C benchmark [19]. 

While benchmark tests deserve their place, we argue that respective experiments 

should be complemented by performance models. IT service managers need to be 

able to analyze the impact of variations in the demand mix. Benchmark tests are 

typically designed to describe the capacity of hardware configurations. They do 

not vary the demand mix and will only provide valid results for a particular 

demand mix scenario.  

 

Published applications of queueing network models (QNMs) to distributed 

systems that we know of are restricted to rather small applications, such as three-
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Fig. 1: Typical structure of a DTP system 

tier web services [4, 5]. Urgaonka et al. have recently applied QNMs for 

predicting the performance of multi-tier internet services [20]. The systems were 

smaller and they could apply an exact mean value analysis (MVA) algorithm to 

solve closed QNMs with good predictive accuracy. We solve large performance 

models analytically by applying several approximate algorithms for open and 

closed queueing networks. Approximate algorithms are necessary due to the size 

of the queueing network models and the underlying systems, which cannot be 

solved exactly any more. In addition, we develop a discrete event simulation 

(DES) engine to compare the results. DES can be of interest, for example, when 

the stationarity assumption of product-form QNMs regarding arrival rate 

distributions is violated. The characteristics of real-world demand distributions 

have been discussed in a number of recent publications [21-23]. 

3. Distributed Transaction Processing 

Typical DTP systems are structured as distributed applications, with services 

running on different processors or in different processes. For instance, a multi-

tiered system might start with 

requests initiated in a Web 

portal, forwarded to a TP 

monitor, which in turn calls  

several applications or services 

(databases, ERP modules, name 

service, credit-card 

authorization, etc.). In this 

paper, we will call such 

automated business processes 

that are executed without 

human interaction workflows. 

Typically, several workflows 

share the same services. For 

example, many of them might call the order entry or the CRM system. DTP 

systems ensure transactional integrity by implementing a distributed two-phase 

commit protocol. 
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Figure 1 shows the structure of a large-scale DTP system: a workflow is 

composed of multiple transactions (aka items) calling a number of basic services 

sequentially or in parallel. Multiple concurrent instances of items exist, sharing an 

item queue. In addition, items can be part of multiple workflows creating a 

complex network of interwoven business processes. 

 

Services provide basic business functionality of a backend system, or a composite 

service that call others to implement new service functionality [24]. In most DTP 

systems one can find internal as well as external services. A problem with the 

latter ones is that their total workload can often not be observed.  

 

Typical order-entry DTP systems have to deal with data entered directly by the 

user. Incomplete or erroneous data (e.g., in address data), but also technical 

failures of the IT infrastructure like hardware defects can cause exceptions. Such 

exceptions are handled by a TP monitor through rollbacks enforcing item level 

transactional integrity.  

4. Performance Modelling Techniques 

Performance modelling and prediction is important for capacity planning tasks of 

IT service providers. The goal of performance modelling is to gain an 

understanding of a computer system's actual performance and to predict how 

changes might affect the performance measures of the system in the future [25]. 

Based on forecasts about future demand, an IT service manager wants to predict 

response times, and determine bottlenecks, i.e., those servers which need to be 

upgraded to improve the performance of the overall system. 

 

DTP systems can be modelled as queueing systems with jobs arriving in queues of 

service stations. The difficulty with queueing systems of this sort is that response 

times develop in a non-linear way and cannot be predicted by simply 

extrapolating response times at low demand. When one station in a queueing 

network becomes overloaded, this can impact all processes and their response 

times will grow rapidly. The two main approaches to performance modelling of 
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such queueing systems are queueing theory (QT) and discrete event simulation 

(DES). 

4.1. Queueing Theory 

Queueing theory is an analytical modelling technique for the mathematical 

analysis of systems with waiting lines and service stations. Queueing network 

models (QNMs) represent a system as a network of service stations with queues 

that serve requests of several classes [26]. Applications range from manufacturing 

system planning and computer processor design to models of multi-tier web 

services [20, 27-29]. 

 

A single service station consists of one or more identical servers with a joint waiting 

room. Jobs arrive at the queue with an arrival rate λ and have an expected service 

time E(S). If the servers are all occupied, jobs have to line up in the queue. The so-

called Kendall notation [30] is often used to classify different types of service 

stations: A / B / C (where A stands for the distribution of inter-arrival times of 

customers, B for the distribution of service times, and C for the number of service 

stations). A and B typically take the following distributions types: M (Exponential / 

Markovian Distribution) or G (General / Arbitrary Distribution).  

 

A QNM consists of a number of interconnected service stations. Depending on their 

characteristics and of the workload (number/type of jobs), several exact and 

approximate solution techniques exist. A solution consists of response times for 

jobs, throughput rates, the lengths of waiting lines, and the utilization of service 

stations. Parameters such as the service time of jobs in a computer system are often 

not readily available, which is one reason why the technique is rarely used for the 

capacity planning of IT systems.  

 

Queueing networks can be classified into three categories: open, closed, and mixed 

queueing networks. Open queueing networks have an external input and an external 

final destination. In closed queueing networks the customers circulate continually 

never leaving the network. Mixed queueing networks combine open and closed 

QNs. If all service stations in the network fulfil certain assumptions concerning the 

distribution of inter-arrival rates and service times and the queueing discipline, each 
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single queueing system can be examined on its own, in isolation from the rest of the 

network. Networks fulfilling these conditions are referred to as separable or 

product-form networks. 

 

The most famous result concerning product-form queueing networks was presented 

by Baskett, Chandy, Muntz and Palacios in [26] known as BCMP theorem. It 

defines the well-known class of BCMP queueing networks with product-form 

solution for open, closed or mixed models with multiple classes of customers and 

various service disciplines and service time distributions. The stationary state 

distribution is expressed as the product of the distributions of the single queues with 

appropriate parameters and, for closed networks, with normalization constant. 

Stationarity means that the mean, variance and autocorrelation structure of a 

stochastic process do not change over time. This assumes flat looking series, 

without trend, with constant variance over time, a constant autocorrelation structure 

over time and no periodic fluctuations 

 

We can analyze product-form networks with various computational algorithms to 

evaluate the performance indices. For the computation of closed QNs we apply 

either the exact Mean Value Analysis (MVA) [31] or, for networks with a large 

numbers of users and multiple job classes, the Self Correcting Approximation 

Technique (SCAT) [32]. These algorithms provide the evaluation of average 

performance indices with a polynomial space and time computational complexity in 

the network dimension that is the number of service stations and the population. In 

our work we use algorithms for open M/M/c queues, as well as algorithms for 

closed QNMs belonging to the BCMP family. We refer the interested reader to [29] 

for a more detailed description of various QNM algorithms. 

 

The assumptions of product-form QNMs are restrictive and often not met to the 

full extent. For example, QNMs produce steady state performance metrics, while 

demand of most information systems is volatile throughout the day. Nevertheless, 

experts in other areas regularly use their predictions as approximations [28]. 
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4.2. Discrete Event Simulation 

In order to provide insight into problems which do not fall under the mathematical 

realm of queueing theory, alternative means of analysis have been devised, most 

notably discrete event simulations (DES) [33]. DES deals with the modelling of a 

stochastic system as it evolves over time in which the system state changes only at 

discrete points of time [34]. In a DES the operation of a system is represented as a 

chronological sequence of events. Each event occurs at an instant in time and 

marks a change of state in the system. 

 

The advantage of simulation is that the performance analyst is not forced to make 

many assumptions as required for analytical solutions allowing for the 

consideration of more detailed network models of a wider variety of systems. 

However, it is typically more time-consuming and costly to implement a 

simulation of the system under study that is exact enough to allow for significant 

performance analysis. The closer the simulation should model the characteristics 

of large-scale IT infrastructures, the more effort it takes to develop a simulation. 

Thus, one has to carefully determine the scope and the level of detail.  

 

The DES was executed on a custom developed simulation, especially designed to 

fit the characteristics of DTP systems such as multiple workflows, nested service 

call structures, and different station types. We developed a simulation engine as 

part of our open source framework PerMoTo (Performance Modelling Tool) 

specially designed for the evaluation of DTP systems [35]. Parts of the simulation 

engine are based on JSIM, an open source simulation engine of the Java 

Modelling Tools framework (JMT [36]). PerMoTo allows for the computation of 

several performance measures of multi-class queueing network models including 

response time, queueing time, queue length, utilization and throughput.  

 

The simulation engine is based on a discrete event list. Each event, like a job 

entering a station or the departure of a job after service completion, is represented 

as an entry in this list. The list acts as a message broker, dispatching messages to 

the related simulation nodes. Each node has three main sections: an input section, 

a service section and an output section. The input section is responsible for 

receiving incoming jobs; storing them in a queueing buffer and releasing them 
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from the queue by realizing a certain queueing discipline such as FCFS (First 

Come First Served) or LCFS (Last Come First Served). The service section 

simulates the service execution on the node. The time needed to process the job 

on this station is specified by the parameters of a service time distribution.  

 

As soon as a simulation is started, a statistical analyzer logs various performance 

measures. The results are analyzed using transient detection and confidence 

interval estimation algorithms. These calculations are periodically run during the 

simulation execution and as soon as the requirements are met, the simulation is 

stopped.  

 

The transient detection is implemented using the R5 heuristic [37] and the MSER-

5 stationarity rule [38]. When a steady-state is assumed, all collected samples are 

cleared and the statistical analyzer proceeds with the calculation of the confidence 

interval estimation using spectral methods [39]. For our experiments we imposed 

the simulations to stop after the half-width of the estimated 95 % confidence 

interval is no more than 10 % of the non-transient sample mean. After matching 

these criteria, the calculated performance measures are stored to the result 

database and the simulation is finished. In the experiments presented in this paper 

we assumed the same product-form assumptions and model parameters as for the 

analytic solution techniques.  

4.3. Performance Prediction Example 

Performance models are used by IT service managers to predict response times 

and bottlenecks in the system. We have integrated a number of QN algorithms as 

well as our simulation engine in PerMoTo to carry out these tasks [35]. Here, we 

will provide a few sample predictions to illustrate typical use cases in IT service 

management. 

 

Figure 2 shows the development of end-to-end workflow response time when 

increasing the demand on the eight most frequent workflows of System A up to 

4.5 times from a baseline workload. Two workflows (WF A2, WF A7) are taking 

significantly more time due to queueing effects on some shared items while the 

response times of the other workflows do not change significantly.  
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Figure 3 depicts the utilization of all 39 items of DTP system A when increasing 

the demand on each workflow up to 4.58 times. Item 40 shows the highest 

utilization. Further drill down into the performance measures on the various 

services would identify the service station that evolves as bottleneck of the DTP 

system given this specific demand mix. 

 

 

 

Fig. 3: Bottleneck detection scenario: Development of item utilizations of system A when  

            increasing the overall load up to 4.58 times of the initial value (prediction of Open QNM) 

Fig. 2: Capacity planning scenario: Development of end-to-end workflow response times  

            while increasing the overall system load up to 4.58 times of the initial load 
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The demand mix of a real-world DTP system typically changes over time. In the 

scenario below, we ran the same scenario with a different mix, i.e., a higher 

overall demand for the order entry process. This means, we performed sensitivity 

analyses with respect to the demand mix. In this scenario, the item with the 

highest utilization was item 9 (see Figure 4) instead of item 40 (see Figure 3).  

 

 

These types of sensitivity analyses are important for an IT service manager to 

understand different demand scenarios and their impact on the utilization of items, 

services, and response times. 

5. Data and DTP System Configuration 

In this paper, we evaluate the predictive performance of analytical queueing 

network models and simulations for DTP systems. We like to explore the 

problems in the application of QNMs to large-scale DTP systems. We have 

therefore looked at two productive DTP systems of a European telecom provider.    

 

System A is the central IT backbone for workflows related to the management of 

the retail customer segment including billing, customer data acquisition, network 

provisioning, and phone number management. The technical implementation is 

based on the Transaction Monitor “Bea Tuxedo” ™. Requests on System A are 

Fig. 4: Bottleneck detection scenario like in Figure 3 but with changed demand  

            mix, assuming an advertisement campaign; new bottleneck candidate is Item 9 
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initiated in the point of sales systems of our industry partner: internet portals, 

shop-based applications, and call centres. Billing and maintenance workflows are 

initiated by other internal IT systems.   

 

System B is the integration backbone for workflows related to the management of 

products hosted by our industry partner but originally sold as prepaid 

telecommunication or DSL packages by external third-party companies. The 

supported functionality includes tariff management, customer subscription and 

deactivation, SIM and phone number management, billing, and age verification. 

System B serves two main classes of workflows: order-entry workflows initiated 

by customers over a Voice Portal (ICR - Interactive Voice Response System), and 

workflows used by internal IT systems of the partner companies like billing or 

tariff administration. Technically, B is based on a customized version of “Tibco 

Business Works” ™. 

 

Details of the system configurations concerning its size and structure are 

summarized in Table 1: System A serves 18 business critical workflows. The 

variable tasks of the workflows are achieved by 39 different item types, calling 51 

services. The length of the workflows varies: a single one is very short as it 

consists of only one item step; the others are more complex and contain up to 17 

items. A maximum of 33 different service types are called inside a single 

workflow, and up to seven service types are called within a single item. The 

length of the items varies as well – one contains only a single service step, the 

others call several services, up to a maximum of 12. Single item types are 

typically called by more than one workflow (up to three); single service types are 

included in up to 25 different items and a maximum of 14 different workflows. 

 

Unlike in system A, the audit logs of the second DTP system under study contain 

only information on workflow and item level. Thus, we modelled the queueing 

networks of B on item level granularity. System B serves 15 workflows 

containing 35 different item types. Several workflows of system B call just one 

item type while others are more complex. A maximum of 19 items are called 

within a single workflow, belonging to a maximum of 17 different types. Most 



15 

Table 1: System characteristics of the real-world DTP systems under study 

items are called in various workflows, one item type actually by up to seven 

different ones.  

 
System A System B 

System Characteristics 
Amount / Min-Max Amount / Min-Max 

Overall number of Workflow types in system 18 15 

Overall number of Item types in system 39 35 

Overall number of Service types in system 51 - 

Overall Item calls in system 53 90 

Overall Service calls in system 156 - 

Number of Item types in single Workflow 1 - 17 1 - 17 

Number of Service types in single Item 1 - 7 - 

Number of Service types in single Workflow 1 - 33 - 

Number of Item steps in single Workflow 1 - 17 1 - 19 

Number of Service steps in single Item 1 - 12 - 

Number of Service steps in single Workflow 1 - 65 - 

Number of Workflow types calling single Item type 1 - 3 1 - 7 

Number of Item types calling single Service type 1 - 25 - 

Number of Workflow types calling singe Service type 1 - 14 - 

 

 

Both DTP systems have a release cycle of three months allowing the company to 

react to changes in the business demand. Whereas the introduction of new 

workflows is relatively rare (e.g., the introduction of a new product), changes in 

the services are part of every new release, adding functionality or fixing errors. 

Such changes can require new estimates for service times.  

 

In order to estimate model parameters, we have analyzed a large volume of log 

data that is described as follows. The log data is written in daily log files 

containing up to seven million raw text lines (400 to 900 MBytes per day). We 

have analyzed log data of both systems of nine weeks in summer 2008. 

Timestamps and request IDs allow for estimating the input parameters that are 

relevant for QNMs and DES, most notably arrival rates on a workflow level and 

service times on a service level, as well as end-to-end response times.  
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The demand mix describes the number of requests for the different workflows. 

Figure 5 shows a daily workload sample that is typical for both DTP systems on 

weekdays. 

 

The daytime workloads are generated by shop employees, customers using the 

web portal, and call centre agents. End-to-end response times of most workflows 

are the primary metric in SLAs as response time is recognized directly by the 

customers and other end users. Weekdays exhibit an overall workload that is 

much higher than the one on weekends (up to 5 times more requests). 

 

As Figure 5 shows, the daytime workload exhibits a certain usage pattern: 

increasing overall workload in the morning, a plateau phase throughout the day, 

followed by a decreasing workload in the evening hours. Figure 6 shows the daily 

demand mix on the workflows of systems A and B. The total demand for the eight 

most frequent workflows A1 to A8 of System A makes up 98.3% of the overall 

workload of this system. Similarly, the sum of shares of the workflows B1 to B8 

make up already 99.7% of the overall workload of System B.  

 

Fig. 5: Sample of the daily demand on a workflow of system A that exhibits a  

            characteristic pattern of both DTP systems on weekdays 



17 

 
 

 

There are seasons with significantly higher workloads throughout the day, such as 

the time before Christmas. These are the top-selling weeks of the year for mobile 

phone providers. For example, the total average workload per week increases by 

25.4% in December 2007 compared to that of September. Similar increases can be 

a consequence of new campaigns or the introduction of new products. Figure 7 

depicts the workload changes from our base period used to parameterize our 

QNMs (40 weekdays in June and July 2008) to our prediction period (5 weekdays 

in July and August 2008). The number of requests on the frequently called 

workflows in September increases even further. Altogether, the demand ratios on 

System A increased by 9.8%, on System B even by 31.5% when comparing the 

prediction period to the base period. For an IT manager, it is important to know, 

what the response times will be if there is a 20%, 50% or even an 80% increase in 

the demand for some workflows, and to perform respective sensitivity analyses. 

 
 

 

Fig. 6: Typical demand mix of systems A and B in percentage shares per day 

Fig. 7: Changes of the daily demand for workflows of systems A and B between the    

            base and the prediction period in summer 2008  
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Fig. 8: Performance modelling process 

6. Experimental Setup 

In our experiments, we predict response times for particular days using different 

types of queueing network models and a discrete event simulation for the two 

different DTP systems A and B (using TP monitors of different vendors) 

described in Table 1.  

 

There are a number of possibilities for modelling multi-class QNMs. First, the 

level of granularity might differ. We have modelled the DTP System A on a 

service level and on an item level, System B only on an item level since service 

level log data was not available. Second, the DTP systems are modelled as open 

and closed QNMs to allow for the analysis of the performance of both types of 

QNMs for large DTP systems. We apply an algorithm developed by Bolch et al. 

[40] to directly transform the open into closed QNMs. These different models 

constitute the main treatments of our experimental setup. 

 

Figure 8 provides an overview 

of the main steps in the 

performance prediction 

experiments: based on 

information about the system 

configuration and historic log 

data, we modelled the structure 

of the queueing network and 

estimated the relevant 

parameters. The models were 

then solved in the PerMoTo 

toolset, which allows for the 

prediction of response times, 

queueing times, throughput, and 

utilization.   

 

The PerMoTo tool includes a log analyzer that is used to parameterize the QNM. 

This includes the determination of appropriate estimators for the workflow arrival 

rates and service times, i.e., the fraction of time needed to execute a single service 
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Table 2: Key characteristics of the queueing network models of systems A and B 

step of a workflow (see Figure 1). With appropriate tooling even the analysis of 

large log files becomes viable. Actually, the results of such an analysis (demand 

mix, arrival rates, service times) are of interest in itself to IT service managers, 

even without a performance prediction, as they reveal arrival rates and demand 

mix that are often unknown. The use of log data is non-intrusive and leverages 

data that is already available when using DTP systems. In contrast, some software 

vendors provide specific tools that monitor resource consumption of individual 

applications on certain servers. 

 

The performance measures can then be calculated using analytic solvers or a 

discrete event simulation. Finally, the performance measures can be visualized. 

The entire PerMoTo toolset can be downloaded as open source at: 

http://ibis.in.tum.de/research/itsom/itm08/. 

 

In Table 2, we provide details of the models of two business critical DTP systems 

A and B of our industry partner. They can both be considered large-scale DTP 

systems, with more than 15 classes and more than 100 stations.  

 
System A System B 

Queueing Network Model Characteristics 
Amount / Min-Max Amount / Min-Max 

Number of classes (i.e., workflows) 18 15 

Number of stations (i.e., services) 140 126 

Number of parallel workers in station 1 - 8 1 - 6 

Mean response time on a service level [sec] 0.17 - 

Min - Max response time on a service level [sec] 0.01 - 4.41 - 

Mean response time on item level [sec] 0.68 0.23 

Min - Max response time on item level [sec] 0.01 - 5.46 0.051 - 2.53 

Mean response time on workflow level [sec] 37.81 5.13 

Min - Max response time on workflow level [sec] 4.41 - 248.26 0.01 - 36.06 

 

 

A full description of all models for these systems in XML format can be 

downloaded from http://ibis.in.tum.de/research/itsom/itm08/. 

 

For the parameterization of systems A and B, we used log data of 40 weekdays in 

June and July 2008. We chose the last week of July as the prediction period as this 

week had a higher than average demand on both systems due to a marketing 
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Table 3: Mean throughputs and predictions of the three models 

campaign. Thus, the average arrival rates of our forecast models are estimated 

based on the five weekdays of this week. The demand mix of systems A and B 

vary throughout the day, but reach a plateau between 11 am and 6 pm (see Figure 

5). While stationarity of the time series is an idealized assumption, the results of 

our QNMs can still be used as an estimate for response time and utilization for 

these time frames during the day.  

7. Results 

We focus on throughput and response time as primary metrics of interest for end-

to-end quality-of-service. Table 3 summarizes the mean throughput (number of 

workflow calls per second) of the system during the prediction period and the 

predictions of open and closed QNMs, as well as the DES. The QNMs provide a 

very high predictive accuracy if compared to the mean throughput of the 

prediction period, higher than that of DES. 

 

System Workflow 
Mean  

[#/sec] 

Open QNM 

[#/sec] 

Closed QNM 

 [#/sec] 

DES 

 [#/sec] 

A WF A1 0.340 0.340 0.339 0.342 

A WF A2 0.312 0.312 0.306 0.314 

A WF A3 0.290 0.290 0.287 0.298 

A WF A4 0.255 0.255 0.254 0.262 

A WF A5 0.130 0.130 0.130 0.126 

A WF A6 0.041 0.041 0.041 0.042 

A WF A7 0.021 0.021 0.021 0.021 

A WF A8 0.020 0.020 0.020 0.019 

B WF B1 0.139 0.139 0.139 0.141 

B WF B2 0.139 0.139 0.139 0.141 

B WF B3 0.139 0.139 0.139 0.142 

B WF B4 0.065 0.065 0.065 0.065 

B WF B5 0.039 0.039 0.039 0.039 

B WF B6 0.007 0.007 0.007 0.008 

B WF B7 0.004 0.004 0.004 0.004 

B WF B8 0.002 0.002 0.002 0.002 

 

 

 

Response times are more difficult to predict as they exhibit a high variance due to 

various latencies in DTP systems and in computer systems in general. Table 4 
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Table 4: Real-world workflow response times and the predictions of Open QNM, Closed  

               QNM and DES solution methods with corresponding RMSE 

provides an overview of the median, the mean, the coefficient of variation (CV) of 

the empirical response times, the predictions, and the respective root mean 

squared error (RMSE).  

 

Real-World Response Time 
Prediction Open 

QNM 

Prediction Closed 

QNM 
Prediction DES 

System Workflow 
Median 

 [sec] 

Mean  

[sec] 
CV 

RMSE  

[sec] 

Prediction 

[sec] 

RMSE  

[sec] 

Prediction 

[sec] 

RMSE 

[sec] 

Prediction 

[sec] 

RMSE  

[sec] 

A WF A1 9.688 9.926 0.421 3.994 9.353 4.007 9.329 4.010 9.382 4.004 

A WF A2 237.656 248.276 0.346 76.685 239.853 75.537 238.629 75.583 238.752 75.579 

A WF A3 14.936 14.769 0.233 3.212 14.879 3.208 14.878 3.208 14.880 3.208 

A WF A4 10.552 11.213 0.446 4.621 10.147 4.680 10.147 4.680 10.147 4.680 

A WF A5 4.996 5.091 0.595 3.017 4.945 3.019 4.945 3.019 4.946 3.019 

A WF A6 6.146 6.192 0.522 3.125 5.392 3.162 5.375 3.166 5.380 3.164 

A WF A7 220.078 240.215 0.619 168.781 228.281 169.367 226.639 169.968 226.656 169.961 

A WF A8 7.840 8.278 0.553 3.767 7.728 3.745 7.728 3.745 7.728 3.745 

B WF B1 0.264 0.281 0.197 0.047 0.258 0.050 0.258 0.050 0.257 0.050 

B WF B2 0.256 0.276 0.217 0.051 0.255 0.053 0.255 0.053 0.259 0.052 

B WF B3 0.460 0.482 0.203 0.087 0.439 0.094 0.438 0.094 0.441 0.093 

B WF B4 11.860 12.512 0.225 2.479 13.365 2.719 13.329 2.704 13.412 2.738 

B WF B5 0.016 0.018 0.247 0.003 0.019 0.004 0.019 0.004 0.019 0.004 

B WF B6 5.692 6.186 0.300 1.627 5.278 1.773 5.267 1.778 5.274 1.775 

B WF B7 0.016 0.017 0.244 0.003 0.018 0.004 0.018 0.004 0.018 0.004 

B WF B8 0.016 0.018 0.235 0.003 0.019 0.004 0.019 0.004 0.019 0.004 

 

The variance in the response time leads to the fact that the RMSE is high and 

difficult to interpret. As an alternative measure, one might therefore be interested 

in the difference of the predictions from the median of the response times 

observed during the prediction period. Table 5 and Figure 9 provide an overview 

of these deviations in percentage of the median.  

 
Real-World Resp. 

Time 
Open QNM Closed QNM DES 

System Workflow 

Median [sec] Error [%] Error [%] Error [%] 

A WF A1 9.688 - 3.457 - 3.709 - 3.157 

A WF A2 237.656 0.924 0.409 0.461 
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Table 5: The medians of the real-world response times and respective errors of  Open QNM,  

              Closed QNM and DES 

A WF A3 14.936 - 0.383 - 0.385 - 0.376 

A WF A4 10.552 - 3.841 - 3.841 - 3.842 

A WF A5 4.996 - 1.022 - 1.022 - 0.994 

A WF A6 6.146 - 11.296 - 11.571 - 11.481 

A WF A7 220.078 3.727 2.981 2.989 

A WF A8 7.840 - 1.435 - 1.434 - 1.434 

B WF B1 0.264 - 2.143 - 2.185 - 2.558 

B WF B2 0.256 - 0.484 - 0.526 1.021 

B WF B3 0.460 - 4.655 - 4.683 - 4.053 

B WF B4 11.860 12.691 12.388 13.086 

B WF B5 0.016 17.049 17.049 17.702 

B WF B6 5.692 - 7.268 - 7.465 - 7.343 

B WF B7 0.016 15.371 15.371 14.550 

B WF B8 0.016 16.907 16.907 17.462 

 

 

 

While closed QNMs often have a higher predictive accuracy than open QNMs 

[27], there was no significant difference in our predictions. This might be 

explained by the fact, that the systems were oversized and not fully utilized during 

Fig. 9: Relative error of the predictions of Open QNM, Closed QNM and DES to the medians  

            of the real-world workflow response times of systems A and B 
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Table 6: Calculation times of the different solution methods of a single load scenario and a  

               what-if analysis containing 100 load scenarios 

the prediction period. In general, the differences can partly be explained by the 

variance in the data, which makes it much harder to predict than throughput. 

Those workflows that had more than 10% difference were also the ones accessing 

external systems that could not be fully observed. 

 

Overall, the predictions of our DES were not significantly better than those of the 

Open and Closed QNMs. This is due to the fact that the basic QN model and the 

parameters were the same, and we used the same estimates for arrival rates and 

service times. In such situations, DES does not have a clear advantage over 

analytical solutions. Only, when there are systems specifics that cannot be 

modelled as product-form QN, DES would have advantages. For example, if the 

arrival rates were very volatile during the day and stationarity assumption was 

heavily violated, DES would provide a better prediction. It is also possible to 

analyze state-dependent routing policies in workflows or different priority-based 

scheduling strategies as they can be used in DTP systems instead of FCFS or 

LCFS and analyze their impact on the different performance metrics. This was 

actually one of the main reasons for implementing the DES. 

 
System A System B 

Solution Method 
Single Load Factor What-If Analysis Single Load Factor What-If Analysis 

Open QNM 0.095 sec 8.911 sec 0.032 sec 8.211 sec 

Closed QNM 2.915 sec 274.236 sec 1.077 sec 102.892 sec 

DES around 8 h - around 6 h - 

 

This flexibility of DES, however, comes at a cost. Table 6 shows how long it 

takes to generate predictions for the two DTM systems A and B on a PC with an 

Intel Core 2 Duo processor, 2 x 2.66 GHz, 4 GB RAM, and MS Vista Business. 

While open QNMs could be solved in a matter of millisconds, and closed QNMs 

in seconds, the DES typically ran for hours in order to produce the same 

performance metrics. For more complex what-if analyses including 100 scenarios 

of increasing load, the DES would take way too much time, while the QNMs 

provided results within a few minutes, even for this complex scenario. 
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Apart from the fact that the arrival rates were not fully stationary and response 

times exhibited a large variance, we encountered a few additional problems, when 

modelling DTP systems.  

• First, errors and rollbacks occurred in a number of transactions. They can 

be modelled as probabilistic conditions in the QNMs, but depend heavily 

on the implementation and the type of workflow. The reasons for errors in 

workflows need to be analyzed separately, as they can significantly impact 

the overall performance of the system. 

• Second, a common problem in large-scale DTP systems is that they access 

external systems that cannot be fully observed by the analyst. Sometimes, 

the response times of these workflows dominate the entire workflow and 

render accurate predictions impossible. 

• Third, some workflows have complex event conditions that sometimes 

lead to the fact that items or services are skipped or alternative services are 

called. Of course, one could model a single class as multiple and estimate 

their respective arrival rates. However, this information is often very 

difficult to extract from the log files, plus it makes the interpretation of 

performance metrics for many different classes of a particular workflow 

much more complex for the analyst. 

8. Conclusions 

Automated business processes running on DTP systems are of fundamental 

importance for nowadays services industries. IT managers need to meet pre-

defined quality-of-service metrics for these systems. Therefore, performance 

prediction and sizing have become essential.  

 

Queueing Theory and DES have been used in the past to develop performance 

models for queueing systems. Applications that are discussed in the literature 

were, however, largely restricted to fairly small IT systems. In this paper, we 

analyzed the predictive performance of open and closed QNMs, and DES. 

Overall, the predictions based on estimates of arrival rates and service times were 

close to the mean throughput and response times that we found in the log data. 

The relative error of the predictions of Open QNM, Closed QNM and DES to the 
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medians of the real-world workflow response times of systems A and B was 

between 0.38 % and a maximum of 17.7 %.  

 

Given the fact that our analysis was based on two productive DTP systems in the 

field, some caveats apply. As the infrastructure is very expensive, it cannot easily 

be replicated in a lab environment. While we were fortunate to get access to log 

data and system specifications of these mission critical systems, we could not run 

experiments with overload scenarios. We did, however, evaluate such situations in 

earlier work in smaller laboratory settings and found the predictions of QNMs to 

be very accurate [8].  

 

Overall, QNMs are very helpful for IT managers to predict throughput and 

response times. DES are much more expensive from a computational point of 

view and also very costly to build.  They are, however, useful to analyze questions 

that are beyond the theory of product-form queueing networks, such as special 

scheduling or routing strategies applied in real-world DTP systems.  

 

Given the importance of end-to-end quality-of-service and the fact that much of 

the theory and algorithmic solutions to queueing network models have been 

developed in the 70s and 80s, it is unclear why these tools are hardly being used 

in practice. One explanation is that IT managers need to have a good 

understanding of service times and arrival rates in their system. Often, this 

knowledge is not available at a sufficient level of detail to set the model 

parameters. In our analysis, we could show that it is not necessary to set up an 

expensive metering and monitoring infrastructure. Standard log data of DTP 

systems is typically rich enough to get parameter estimates with sufficient quality 

that allows for useful predictions and sensitivity analyses. 

 

In our future work we want to investigate performance tuning and software-based 

capacity adaption based on the prioritization of workflows. Simulations should be 

used to analyze how well these strategies help to cope with volatile demand. 

Another set of questions arises in virtualized data centres where capacity of virtual 

machines can be adapted on the level of the virtual machine manager. Also here, 

we are interested in the adaptivity of such strategies to changes in the arrival rates. 
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